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For estimating parameters in an unstable AR(2) model, the paper proposes a sequential least squares estimate with a special stopping time defined by the trace of the observed Fisher information matrix. It is shown that the sequential LSE is asymptotically normally distributed in the stability region and on its boundary in contrast to the usual LSE, having six different types of asymptotic distributions on the boundary depending on the values of the unknown parameters. 1 2

Introduction

Consider an autoregressive AR(2) model

x n = θ 1 x n-1 + θ 2 x n-2 + ε n , n = 1, 2, . . . , (1.1) 
where (x n ) is the observation, (ε n ) is a sequence of independent identically distributed (i.i.d.) random variables with Eε 1 = 0 and 0 < Eε 2 1 = σ 2 < ∞, σ 2 is known, x 0 = x -1 = 0. The process (1.1) is assumed to can be unstable, that is, both roots of the characteristic polynomial

P(z) = z 2 -θ 1 z -θ 2 (1.2)
lie on or inside the unit circle. The model (1.1) is a particular case of unstable autoregressive processes AR(p) which have been studied by many authors due to their applications in automatic control, identification and in modeling economic and financial time series (we refer the reader to Anderson (1971), Ahtola and Tiao (1987), Dickey and Fuller (1979), Chan and Wei (1988), Rao (1978) for details and futher references).

A commonly used estimate of parameter vector θ = (θ 1 , θ 2 ) is the least squares estimate (LSE)

θ(n) = (θ 1 (n), θ 2 (n)) = M -1 n n k=1 X k-1 x k , M n = n k=1 X k-1 X k-1 , (1.3) 
where X k = (x k , x k-1 ) ; the prime denotes the transpose; M -1 n denotes the inverse of matrix M n if det M n > 0 and M -1 n = 0 otherwise.

It is well known that

√ n(θ(n) -θ) L =⇒ N (0, F ), as n → ∞,
for all θ ∈ Λ, where Λ is the stability region of process (1.1), that is,

Λ = {θ = (θ 1 , θ 2 ) : -1 + θ 2 < θ 1 < 1 -θ 2 , |θ 2 | < 1}, (1.4) 
F = F (θ) is a positive definite matrix (see, e.g., Anderson (1971), Th.

5.5.7),

L =⇒ indicates convergence in law. If θ belongs to the boundary ∂Λ of the stability region Λ, the limiting distribution of LSE is no longer normal.

Moreover, there is no one universal limiting distribution for all θ ∈ ∂Λ and the corresponding set of limiting distributions numbers 6 different types depending on the values of roots z 1 and z 2 of the polynomial (1.2). Each limiting distribution of LSE on the boundary coincides with that of the ratio of certain Brownian functionals (we refer the reader to the paper of Chan and Wei (1988) for general results on the limiting distributions of the least squares estimates for unstable AR(p) processes and further details). For example, for conjugate complex roots z 1 = e iϕ , z 2 = e -iϕ one has

n•(θ 1 (n)-2 cos ϕ) L =⇒ (W 2 1 (1) -W 2 2 (1)) sin ϕ + (W 2 1 (1) + W 2 2 (1) -2) cos ϕ 1 0 [W 2 1 (s) + W 2 2 (s)]ds , n • (θ 2 (n) + 1) L =⇒ (2 -W 2 1 (1) -W 2 2 (1))/ 1 0 [W 2 1 (s) + W 2 2 (s)]ds ,
where (W 1 (t), 0 ≤ t ≤ 1) and (W 2 (t), 0 ≤ t ≤ 1) are independent standard Brownian motion processes; if θ = (2, -1), then (see Theorem 3.1.2 ibid)

  n 2 0 0 n   (θ(n) -θ) L =⇒ G -1 ξ, ξ =   1 0 Z(t)dW (t) 1 0 W (t)dW (t)   ,
where

G =   1 0 W 2 (t)dt 1 0 W (t)Z(t)dt 1 0 W (t)Z(t)dt 1 0 Z 2 (t)dt   , Z(t) = t 0 W (s)ds .
It is well-known that a similar situation takes place in case of AR(1) process

x n = θx n-1 + ε n , (1.5) 
for which the limiting distributions of the least squares estimate are not normal at the end-points θ = ±1 of stability interval (-1,1) (see White (1958), Lai and Siegmund (1983)). Lai and Siegmund (1983) for a first order non-explosive autoregressive process (1.5) proposed to use a sequential sampling scheme and proved that the sequential least squares estimate for θ with the stopping time based on the observed Fisher information is asymptotically normal uniformly in θ ∈ [-1, 1] in contrast with the ordinary LSE.

In this paper we develop a sequential sampling scheme for estimating parameter vector θ = (θ 1 , θ 2 ) in model (1.1). We will use the sequential least squares estimate defined by the formula

θ(τ (h)) = M -1 τ (h) τ (h) k=1 X k-1 x k , (1.6) 
where τ (h) is the stopping time for the threshold h > 0 :

τ (h) = inf{n ≥ 1 : n k=1 (x 2 k-1 + x 2 k-2 ) ≥ hσ 2 }, inf{∅} = +∞. (1.7)
This construction of sequential estimate is similar to that proposed in the paper of Lai and Siegmund for AR [START_REF] Ahtola | Distribution of least squares estimators of autoregressive parameters for a process with complex roots on the unit circle[END_REF] which is defined as

θτ(h) =   τ (h) k=1 x 2 k-1   -1 τ (h) k=1 x k-1 x k , (1.8) 
τ (h) = inf{n ≥ 1 :

n k=1 x 2 k-1 ≥ hσ 2 }.
(1.9)

It should be noted, however, that the first factor in (1.6) is a random matrix and not a random variable, as in (1.8), and this makes additional difficulties.

For AR [START_REF] Ahtola | Distribution of least squares estimators of autoregressive parameters for a process with complex roots on the unit circle[END_REF] the stopping time (1.9) turns the denominator in (1.8) practically into a constant hσ 2 and this allows to use the central limit theorem for martingales. In the case of AR(2) the stopping time (1.7) enables one to control the inverse matrix M -1 τ (h) in (1.6) only partially since it remains random. Nevertheless, we will see that such a change of time also enables one to improve the properties of the estimate (1.3).

In our paper (2006) we proved the following result.

Theorem 1.1. Let (ε n ) n≥1 in (1.1) be a sequence of i.i.d. random variables with Eε n = 0, 0 < Eε 2 n = σ 2 < ∞. Then, for any compact set K ⊂ Λ 1 ,

lim h→∞ sup θ∈K sup t∈R 2 |P θ M 1/2 τ (h) (θ(τ (h)) -θ) ≤ t -Φ 2 (t/σ)| = 0,
where Φ 2 (t) = Φ(t 1 )Φ(t 2 ), Φ is the standard normal distribution function,

Λ 1 = {θ = (θ 1 , θ 2 ) : -1 + θ 2 < θ 1 < 1 -θ 2 , -1 ≤ θ 2 < 1}, t = (t 1 , t 2 ) .
This theorem implies, in particular, that estimate (1.6) is asymptotically normal not only inside the stability region (1.4) but also on the part of its

boundary {θ = (θ 1 , -1) : -2 < θ 1 < 2} in contrast to the LSE (1.3).
The goal of this paper is to prove the asymptotic normality of the estimate (1.6),(1.7) in the whole region [Λ] including its boundary ∂Λ.

Our main result (Theorem 3.1) claims that, as h → ∞, In this section the attention is mainly focused on the case when the unknown parameter θ = (θ 1 , θ 2 ) belongs to the boundary ∂Λ of the stability region (1.4). The boundary ∂Λ includes three sides:

M 1/2 τ (h) (θ(τ (h)) -θ) L =⇒ N (0, σ 2 I), (1.10 
Γ 1 = {θ : -θ 1 + θ 2 = 1, -2 < θ 1 < 0} , Γ 2 = {θ : θ 1 + θ 2 = 1, 0 < θ 1 < 2} , Γ 3 = {θ : -2 < θ 1 < 2, θ 2 = -1} (2.1)
and three apexes (0, 1), (-2, -1), (2, -1). Denote

A =   θ 1 θ 2 1 0   , B =   1 0 0 0   , W (n) (t) = 1 σ √ n [nt] i=0 ε i , W (n) 1 (t) = 1 σ √ n [nt] i=0 (-1) i ε i , 0 ≤ t ≤ 1, (2.2) 
and introduce the following functionals

J 1 (x; t) = t 0 x 2 (s)ds, J 2 (x; t) = t 0 s 0 x(u)du 2 ds, (2.3) 
J 3 (x; y; t) = t 0 (x 2 (s) + y 2 (s))ds, J 4 (x; t) = t 0 x(s)ds 2 . Theorem 2.1. Let (ε n ) n≥1 in (1.
1) be a sequence of i.i.d. random variables with Eε n = 0, Eε 2 n = σ 2 and τ (h) be defined by (1.7). Denote by a and b real roots of the polynomial (1.2), -1 ≤ a < b ≤ 1. Then, for each θ ∈ Λ,

P θ -lim h→∞ τ (h)/h = 1/trF, F -AF A = B.
(2.4)

Moreover, for each θ ∈ ∂Λ, as h → ∞, τ (h) ψ(θ, h) L =⇒                        ν 1 (W 1 ) = inf{t ≥ 0 : J 1 (W 1 ; t) ≥ 1} if θ ∈ Γ 1 , ν 2 (W ) = inf{t ≥ 0 : J 1 (W ; t) ≥ 1} if θ ∈ Γ 2 , ν 3 (W, W 1 ) = inf{t ≥ 0 : J 3 (W ; W 1 ; t) ≥ 1} if θ ∈ Γ 3 ∪ {(0, 1)}, ν 4 (W ) = inf{t ≥ 0 : J 2 (W ; t) ≥ 1} if θ = (2, -1), ν 5 (W 1 ) = inf{t ≥ 0 : J 2 (W 1 ; t) ≥ 1} if θ = (-2, -1), (2.5) 
where inf{∅} = ∞, Λ is defined in (1.4),

ψ(θ, h) =                        (1 + b) h/2 if θ ∈ Γ 1 , (1 -a) h/2 if θ ∈ Γ 2 , √ 2h sin ϕ if θ = (2 cos ϕ, -1) ∈ Γ 3 , √ 2h if θ = (0, 1), (h/2) 1/4 if θ ∈ {(-2, -1), (2, -1)} , (2.6) 
W (t), W 1 (t) are independent standard Brownian motions.

Proof Assertion (2.4) easily follows from Lemma 3.12 in [START_REF] Galtchouk | On uniform asymptotic normality of sequential least squares estimators for the parameters in a stable AR(p)[END_REF].

For θ ∈ ∂Λ we decompose the original process (1.1) into two processes (u k ) k≥1 and (v k ) k≥1 using the transformation

QX k = (u k , v k ) , (2.7) 
where Q is a non-degenerate constant matrix of size 2 × 2 which will be chosen later depending on the values of θ. The limiting relation (2.5) for θ ∈ ∪ 3 i=1 Γ i has been proved in [START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF], Th 2.2. It remains to consider the apexes (2, -1), (-2, -1), (0, 1).

For θ = (2, -1), putting in (2.7)

Q =   1 0 1 -1   (2.8)
one obtains

v k = k j=1 ε j , u k = k j=1 (x j -x j-1 ) = k j=1 v j = k j=1 j i=1 ε i , n k=1 X k-1 2 = n k=1 u 2 k-1 + n k=1 u 2 k-2 = 2 n k=1 u 2 k-1 -u 2 n-1 . (2.9)
By the definition of τ (h) in (1.7), one gets

P θ {τ (h) ≤ th 1/4 } = P θ { [th 1/4 ] k=1 X k-1 2 ≥ hσ 2 } (2.10) = P θ { 2 hσ 2 [th 1/4 ] k=1 u 2 k-1 - 1 hσ 2 u 2 [th 1/4 ]-1 ≥ 1} .
Further we show (by the argument similar to that in the proof of Lemma 2.3 in the Appendix) that the sum

S n (t) = 1 n 4 σ 2 [nt] k=1 u 2 k-1 satisfies the relation S n (t) = J 2 (W (n) ; t) + g (n) (t),
where g (n) (t) is a random process such that, for any δ > 0,

lim n→∞ P θ (|g (n) (t)| > δ) = 0. Now we check that lim n→∞ u 2 n /n 4 = 0 P θ -a.s. . (2.11)
By the Cauchy-Schwarz-Bunyakovskii inequality and the law of iterated logarithm we have

u 2 n /n 4 ≤ n -3 n k=1   k j=1 ε i   2 , n k=1 1 k 3   k j=1 ε i   2 < ∞ P θ -a.s. .
These inequalities, in virtue of the Kronecker Lemma, imply (2.11).

From here and (2.10), (2.11), we obtain

P θ (τ (h)/ψ(θ, h) ≤ t) = P θ (ν (n) θ ≤ t) + β θ (h) ,
where

ν (n) θ = inf{t ≥ 0 : J 2 (W (n) ; t) ≥ 1}, lim h→∞ β θ (h) = 0 , W (n) (t) is given in (2.
2). This, by the functional Donsker theorem (see Billingsley (1968)), leads to (2.5) for θ = (2, -1).

The case of the apexes (0, 1), (-2, -1) can be considered similarly with the use of Theorem 5.14 given in the Appendix. This completes the proof of Theorem 2.1. Now we will establish some properties of the observed Fisher information matrix M n . Introduce the following subsets of the closed region [Λ] :

Λ d = [Λ]\ 2 i=1 B i , Λ d = Λ d,1 + Λ d,2 , (2.12) 
where

Λ d,1 = Λ d ∩ V d , Λ d,2 = Λ d \Λ d,1 ; V d = θ : -2 + d √ 2 ≤ θ 1 ≤ 0, -θ 2 1 4 + d 2 8 < θ 2 ≤ 1 + θ 1 ∪ θ : 0 ≤ θ 1 ≤ 2 - d √ 2 , -θ 2 1 4 + d 2 8 ≤ θ 2 ≤ 1 -θ 1 ;
B i are open balls of radius d > 0 centered at the apexes (-2, -1), (2, -1).

In view of Theorem 1.1, it suffices to study the properties of M n only for the parametric subset Λ d,1 and the apexes (-2, -1), (2, -1). In the case of Λ d,1 , one can use the transformation (2.7) with

Q =   1 -b 1 -a   , (2.13) 
where -1 ≤ a < b ≤ 1. Substituting (2.7) and (2.13) in M n (1.3) yields

M n = Q -1 S n (Q ) -1 = Q -1 R -1 n J n R -1 n (Q ) -1 , (2.14) 
where 

S n =   (u, u) n (u, v) n (u, v) n (v, v) n   , R n =   (u, u) -1/2 n 0 0 (v, v) -1/2 n   , J n = R n S n R n =   1 ξ n ξ n 1   , (2.15) 
ξ n = (u, u) -1/2 n (v, v) -1/2 n (u, v) n , (u, v) n = n k=1 u k-1 v k-1 . ( 2 
P θ J τ (h) -T (θ 1 , θ 2 ) > δ = 0, (2.17) 
where

T (θ 1 , θ 2 ) =   1 r(a, b) r(a, b) 1   , r(a, b) = √ 1 -a 2 √ 1 -b 2 1 -ab . (2.18)
The proof of Proposition 2.2 is given in the Appendix.

Further we consider the asymptotic behaviour of the matrix J n in the extreme cases when the process x k is "most" unstable, that is, θ coincides with one of the apexes (-2, -1), (2, -1) of the parametric region [Λ].

For θ = (2, -1) we take the matrix Q from (2.8). This yields

u k = k j=0 j i=0 ε i , v k = k j=0 ε j , k ≥ 1, u 0 = v 0 = ε 0 = 0. (2.19)
For θ = (-2, -1) we take

Q =   1 0 1 1   .
This implies

u k = (-1) k k j=1 j i=1 (-1) i ε i , v k = k j=1
(-1) j ε j .

Lemma 2.3. Let ξ n be given by (2.16) and θ ∈ {(-2, -1), (2, -1)}. Then

ξ n L =⇒    ϕ(W ) if θ = (2, -1), ϕ(W 1 ) if θ = (-2, -1), as n → ∞, (2.20) 
where

ϕ(W ) = 2 -1 J -1/2 2 (W ; 1)J -1/2 1
(W ; 1)J 4 (W ; 1).

(2.21)

The proof of Lemma 2.3 is given in the Appendix.

3 Asymptotic normality. 

u k = au k-1 + ε k , v k = bv k-1 + ε k , u 0 = v 0 = 0. ( 3.2) 
Since the matrix Q in (2.13) is non-degenerate, one can represent the observed Fisher information matrix M n in the form (2.14) to obtain

M 1/2 n = Q -1 R -1 n J 1/2 n . (3.3) 
Substituting this matrix in the standardized deviation of the sequential estimate (1.6), one gets

M 1/2 τ (h) (θ(τ (h)) -θ) = M -1/2 τ (h) τ (h) k=1 X k-1 ε k = J -1/2 τ (h) R τ (h) τ (h) k=1 QX k-1 ε k = J -1/2 τ (h) Z τ (h) ,
where

Z n =   (u, u) -1/2 n n k=1 u k-1 ε k (v, v) -1/2 n n k=1 v k-1 ε k   . (3.4)
Further we note that Proposition 2.2 implies that, for any δ > 0,

lim h→∞ sup θ∈Γ 1 ∪Γ 2 ∪{(0,1)} P θ J -1/2 τ (h) -I > δ = 0 . (3.5)
Therefore in order to prove (3.1) for θ ∈ Γ 1 ∪ Γ 2 ∪ {(0, 1)} it suffices to establish the following result.

Proposition 3.2. Let θ ∈ Γ 1 ∪ Γ 2 ∪ {(0, 1)}.
Then, for each constant vector

λ = (λ 1 , λ 2 ) ∈ R 2 with λ = 1, the random variable Y h = λ Z τ (h) /σ (3.6)
is asymptotically normal with mean 0 and unit variance, as h → ∞, that is,

lim h→∞ sup t∈R |P θ (Y h ≤ t) -Φ(t)| = 0.
The main difficulty in the analysis of Y h is that the stopping time (1.7)

enables one to control the sums (u, u) τ (h) , (v, v) τ (h) in the denominators of (3.6) only partially because one of them or both are random variables even in the asymptotics as h → ∞.

The proof of Proposition 3.2 is given in the Appendix. The key idea of the proof is to replace Y h by a more tractable random variable Ỹh equivalent to Y h in distribution by making use of the Skorohod coupling theorem and then apply the Central Limit Theorem for martingales. The appendix contains also the proof of Theorem 3.1 for the case of θ ∈ {(-2, -1), (2, -1)}.

This case is considered separately because the matrix J n in (3.3) converges, according to Lemma 2.3, only in distribution.

4 Asymptotic normaliy in the case of unknown variance.

In this section, we extend the sequential estimation scheme to model Suppose that the variance σ 2 in (1.1) is unknown. A commonly used estimate for σ 2 in autoregression processes on the basis of observations (x 1 , . . . , x n ) is defined as

σ2 n = n -1 n k=1 (x k -θ (n)X k-1 ) 2 , (4.1) 
where θ(n) is the least squares estimate of θ defined in (1.3). Now we must modify the stopping time (1.7). At first sight, to this end one should replace σ 2 in (1.7) by σ2 n . However, we will use a different modification similar to that proposed by Lai and Siegmund for AR(1) model, which turns out to be more convenient in the theoretic studies. Define the sequential estimate as

θ(τ (h)) = M -1 τ (h) τ (h) k=1 X k-1 x k , (4.2) 
τ (h) = inf{n ≥ 3 :

n k=1 (x 2 k-1 + x 2 k-2 ) ≥ hs 2 n } , (4.3) 
where s 2 n = σ2 n ∨ δ n , δ n is a sequence of positive numbers with δ n → 0.

The main results of this section are stated in the following theorems.

Theorem 4.1. Let (ε n ) n≥1 in (1.1) be a sequence of i.i.d. random variables,

Eε n = 0, 0 < Eε 2 n = σ 2 < ∞. Then, for any compact set K ⊂ Λ 1 , lim h→∞ sup θ∈K sup t∈R 2 |P θ M 1/2 τ (h) (θ(τ (h)) -θ)/σ τ (h) ≤ t -Φ 2 (t)| = 0, (4.4) 
where Φ 2 (t) = Φ(t 1 )Φ(t 2 ), Φ is the standard normal distribution function,

Λ 1 = {θ = (θ 1 , θ 2 ) : -1 + θ 2 < θ 1 < 1 -θ 2 , -1 ≤ θ 2 < 1}, t = (t 1 , t 2 ) . Theorem 4.2. Let (ε n ) n≥1 in (1.
1) be a sequence of i.i.d. random variables,

Eε n = 0, 0 < Eε 2 n = σ 2 < ∞. Then, for any θ ∈ [Λ], lim h→∞ sup t∈R 2 |P θ M 1/2 τ (h) (θ(τ (h)) -θ)/σ τ (h) ≤ t -Φ 2 (t)| = 0 .
The proofs of Theorems 4.1-4.2 proceed along the lines of those of Theorems 1.1 and 3.1 though they become more laborious because one needs to control the additional terms appearing as a result of the unknown variance.

We will give only the proof of Theorems 4.1.

Proof of Theorems 4.1.

Substituting (1.1) in (4.2) yields M 1/2 τ (h) (θ(τ (h)) -θ)/σ τ (h) = M -1/2 τ (h) τ (h) k=1 X k-1 ε k /σ τ (h) = M τ (h) σ2 τ (h) /(σ 4 h/2) -1/2 τ (h) k=1 X k-1 ε k /(σ 2 h/2) . (4.5) 
Further we need the following results. 

P θ M τ (h) σ2 τ (h) /(σ 4 h/2) -L(θ 1 , θ 2 ) > δ = 0 , (4.6) 
where

L(θ 1 , θ 2 ) =   1 θ 1 /(1 -θ 2 ) θ 1 /(1 -θ 2 ) 1   .
Lemma 4.4. Under the assumptions of Theorem 1.1, for any compact set

K ⊂ Λ 1 and for each constant vector λ = (λ 1 , λ 2 ) with λ = 1, lim h→∞ sup θ∈K sup t∈R |P θ (Y h ≤ t) -Φ(t)| = 0 ,
where

Y h = λ L -1/2 (θ 1 , θ 2 ) τ (h) k=1 X k-1 ε k /(σ 2 h/2) .
The proofs of these Lemmas are given below in this section. Now we rewrite (4.5) as

M 1/2 τ (h) (θ(τ (h)) -θ)/σ τ (h) = M τ (h) σ2 τ (h) /(σ 4 h/2) -1/2 L 1/2 (θ 1 , θ 2 ) (4.7) ×L -1/2 (θ 1 , θ 2 ) τ (h) k=1 X k-1 ε k /(σ 2 h/2) .
According to Lemma 4.3 we have for each δ > 0

lim h→∞ sup θ∈K P θ M τ (h) σ2 τ (h) /(σ 4 h/2) -1/2 L 1/2 (θ 1 , θ 2 ) -I > δ = 0 .
From here and (4.7) by applying Lemma 4.4, we come to (4.4). This completes the proof of Theorem 4.1.

In order to prove Lemmas 4.3, 4.4, we need the following result. Proof. We have

θ(n) -θ = (M n /(x, x) n ) -1 (x, x) -1 n n k=1 X k-1 ε k .
By Lemma 3.3 in [START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF], for any δ > 0 and any compact K ⊂

• Λ= [Λ] \ {(0, 1), (-2, -1), (2, -1)}, lim m→∞ sup θ∈K P θ ( M n /(x, x) n -L(θ 1 , θ 2 ) > δ for some n ≥ m) = 0 . (4.10)
Further it will be observed that, for any 0 < C < ∞ and compact set K, there exists a positive number ∆ that, for all matrices L(θ 1 , θ 2 ) with

θ = (θ 1 , θ 2 ) ∈ K and B such that B -L(θ 1 , θ 2 ) < ∆, one has B -1 ≤ C.
Let C, B be such a pair. Then, for each θ ∈ K, we have the inclusions

( θ(n) -θ > δ for some n ≥ m) ⊆ (M n /(x, x) n ) -1 (x, x) -1 n n k=1 X k-1 ε k > δ for some n ≥ m = (•) ⊆ (•, M n /(x, x) n -L(θ 1 , θ 2 ) ≤ ∆ for all n ≥ m) ∪ (•, M n /(x, x) n -L(θ 1 , θ 2 ) > ∆ for some n ≥ m) ⊂ C (x, x) -1 n n k=1 X k-1 ε k > δ for some n ≥ m ∪ ( M n /(x, x) n -L(θ 1 , θ 2 ) > ∆ for some n ≥ m) .
This yields

P θ ( θ(n) -θ > δ for some n ≥ m) ≤ P θ (x, x) -1 n n k=1 X k-1 ε k > δ for some n ≥ m +P θ ( M n /(x, x) n -L(θ 1 , θ 2 ) > ∆ for some n ≥ m) , δ = δ/C .
By Lemmas 3.2,3.3 from [START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF], limiting m → ∞, we come to (4.8).

Consider (4.9). Rewrite σ2 n in (4.1) as

σ2 n = n -1 n k=1 (ε k + (θ -θ(n)) X k-1 ) 2 = n -1 n k=1 ε 2 k +2n -1 (θ -θ(n)) n k=1 X k-1 ε k + n -1 (θ -θ(n)) n k=1 X k-1 X k-1 (θ -θ(n)) . Substituting here θ(n) from (1.3) yields σ2 n -σ 2 = n -1 n k=1 ε 2 k -σ 2 -2n -1 n k=1 X k-1 ε k M -1 n n k=1 X k-1 ε k +n -1 n k=1 X k-1 ε k M -1 n M n M -1 n n k=1 X k-1 ε k = n -1 n k=1 ε 2 k -σ 2 -n -1 n k=1 X k-1 ε k M -1 n n k=1 X k-1 ε k = n -1 n k=1 ε 2 k -σ 2 - 1 n (x, x) n n k=1 X k-1 ε k (M n /(x, x) n ) -1 n k=1 X k-1 ε k .
The first term in the right-hand side of this equality converges to zero in virtue of the strong law of large numbers. Therefore, in order to prove (4.9), we have to verify that, for each K ⊂ Λ 1 and δ > 0,

lim m→∞ sup θ∈K P θ 1 n n k=1 X k-1 ε k M -1 n n k=1 X k-1 ε k > δ for some n ≥ m = 0
In view of Lemma 3.3 in [START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF], it is equivalent to the following limiting relations

lim m→∞ sup θ∈K P θ   n k=1 x k-1 ε k 2 > δn(x, x) n for some n ≥ m   = 0 , (4.11) lim m→∞ sup θ∈K P θ   n k=1 x k-2 ε k 2 > δn(x, x) n for some n ≥ m   = 0 . (4.12)
To prove these relations we will make use of Lemma 2.2 from [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF]. First we note that the matrix A defined in (2.2) possesses the property (see, [START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF]):

sup θ∈K A n ≤ κ, n = 1, 2, . . . , (4.13) 
where κ is some positive number. This implies the following inequality

(x, x) n ≤ κ 2 n k=1 ( k j=1 |ε j |) 2 =: U n . (4.14)
Indeed, writing down (1.1) in the vector form

X k = AX k-1 + ξ k , ξ k = (ε k , 0) ,
and using the formula 

X k = k j=1 A k-j ξ j , lead to the estimate |x k | ≤ X k ≤ κ k j=1 |ε j |
x k-1 ε k > δ 1/2 (x, x) 5/8 n n 4 /(x, x) n 1/8 ≥ δ 1/2 (x, x) 5/8 n n 4 /U n 1/8 . (4.16)
This enables us to obtain the following inclusions for ∆ < σ 2 :

| n k=1 x k-1 ε k | > δ 1/2 n 1/2 (x, x) 1/2 n for some n ≥ m ⊆ •, |n -1 n k=1 ε 2 k -σ 2 | ≤ ∆ for all n ≥ m ∪ |n -1 n k=1 ε 2 k -σ 2 | > ∆ for some n ≥ m ⊆ •, n -1 n k=1 ε 2 k > σ 2 -∆ for all n ≥ m ∪ |n -1 n k=1 ε 2 k -σ 2 | > ∆ for some n ≥ m ⊆ •, n -1 n k=1 ε 2 k > σ 2 -∆ all n ≥ m, U n /n 4 ≤ 1 all n ≥ m ∪ |n -1 n k=1 ε 2 k -σ 2 | > ∆ for some n ≥ m ∪ ( U n n 4 > 1 for some n ≥ m) .
From here one gets

P θ n k=1 x k-1 ε k > δ 1/2 n 1/2 (x, x) 1/2 n for some n ≥ m ≤ P θ n k=1 x k-1 ε k > δ 1/2 4 -1 n 3/2 (σ 2 -∆) ∨ (x, x) 5/8 n for some n ≥ m +P θ | 1 n n k=1 ε 2 k -σ 2 | > ∆ for some n ≥ m +P θ U n n 4 > 1 for some n ≥ m .
In order to come to (4.11), it remains to use Lemma 2.2 from [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF], the strong law of large numbers and put m → ∞ . This completes the proof of Proposition 4.5.

Proof of Lemma 4.3. We start with the representation

M τ (h) σ2 τ (h) σ 4 h/2 = M τ (h) (x, x) τ (h) • (x, x) τ (h) 2 -1 τ (h) k=1 X k-1 2 • τ (h) k=1 X k-1 2 hs 2 τ (h) • s 2 τ (h) σ 2 • σ2 τ (h) σ 2 .
It suffices to show, for any δ > 0, the limiting relations Consider (4.17). We have

lim h→∞ sup θ∈K P θ M τ (h) /(x, x) τ (h) -L(θ 1 , θ 2 ) > δ = 0 , (4.17) lim h→∞ sup θ∈K P θ   (x, x) τ (h)   2 -1 τ (h) k=1 X k-1 2   -1 -1 > δ   = 0 , (4.18) lim h→∞ sup θ∈K P θ   τ (h) k=1 X k-1 2 /(hs 2 τ (h) ) -1 > δ   = 0 , (4.19) 
lim h→∞ sup θ∈K P θ |s 2 τ (h) /σ 2 -1| > δ = 0 , (4.20) 
P θ M τ (h) /(x, x) τ (h) -L(θ 1 , θ 2 ) > δ ≤ P θ (τ (h) ≤ m) (4.22) +P θ ( M n /(x, x) n -L(θ 1 , θ 2 ) > δ for some n ≥ m) .
In view of (4.10), we need to check only that, for each sufficiently large m,

lim h→∞ sup θ∈K P θ (τ (h) ≤ m) = 0 . (4.23)
Let m 0 be a number such that, for all m ≥ m 0 , the sequence (δ m ) satisfies the inequality δ m ≤ σ 2 /2. By the definition of the stopping time τ (h) in (4.3), it follows that

P θ (τ (h) ≤ m) = P θ ( m k=1 X k-1 2 ≥ hs 2 m ) = P θ ( m k=1 X k-1 2 ≥ hδ m , δ m ≥ σ2 m ) + P θ ( m k=1 X k-1 2 ≥ hσ 2 m , δ m < σ2 m ) ≤ P θ (σ 2 m ≤ δ m ) + P θ m k=1 X k-1 2 ≥ hσ 2 m ≤ P θ (|σ 2 m -σ 2 | ≥ σ 2 /2) + P θ m k=1 X k-1 2 ≥ hσ 2 m . (4.24) 
Further we have

P θ m k=1 X k-1 2 ≥ hσ 2 m = P θ (•, |σ 2 m -σ 2 | ≤ ∆) + P θ (•, |σ 2 m -σ 2 | > ∆) ≤ P θ m k=1 X k-1 2 ≥ h(σ 2 -∆) + P θ (|σ 2 m -σ 2 | > ∆) . (4.25)
The inequalities (4.24),(4.25), in view of Proposition 4.5, imply (4.23). This leads to (4.17). To show (4.18) we use the identity Proof of Lemma 4.4. We will use the argument similar to that in the proof of Proposition 2.1 in [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF]. First we introduce a sequence (x n ) of truncated observations (x n ) defined as Further we introduce stopping times Th and T h as Th = inf{n ≥ 3 :

(x, x) n = 2 -1 n k=1 X k-1 2 + x 2 n-1 /2 ,
xn =    x n if x 2 n ≤ δ 2 h , δ √ h if x 2 n > δ 2 h, 0 < δ < 1 ,
n k=1 (x 2 k-1 + x2 k-2 ) ≥ h(σ 2 n-1 ∨ δ n )} , T h = inf{n ≥ 3 : n k=1 (x 2 k-1 + x2 k-2 ) ≥ h(σ 2 ∨ δ n )} , (4.27) 
where

σ2 n-1 = n -1 n k=1 (x k-1 -θ (n) Xk-1 ) 2 , θ(n) = n k=1 Xk-1 X k-1 -1 n k=1
Xk-1 xk .

On the set Ωh , we have Th = τ (h), σ2 n = σ2 and θ(n) = θ(n).

Now we write down Y h as

Y h = K θ σ 2 √ h Th k=1 Xk-1 ε k 1 Ωh + K θ σ 2 √ h τ (h) k=1 X k-1 ε k 1 Ωc h = K θ σ 2 √ h Th k=1 Xk-1 ε k + K θ σ 2 √ h   τh k=1 X k-1 ε k - Th k=1 Xk-1 ε k   1 Ωc h = K θ σ 2 √ h T h k=1 Xk-1 ε k + K θ σ 2 √ h   τh k=1 X k-1 ε k - Th k=1 Xk-1 ε k   1 Ωc h + K θ σ 2 √ h   Th k=1 Xk-1 ε k - T h k=1 Xk-1 ε k   = Ỹh + r h , (4.28) 
where

1 A is the indicator of a set A, K θ = √ 2λ L -1/2 (θ 1 , θ 2 ), Ỹh = K θ σ 2 √ h T h k=1 Xk-1 (ε k -Eε k ) , (4.29) 
r h = K θ σ 2 √ h T h k=1 Xk-1 ( εk -E εk ) + K θ σ 2 √ h X Th -1 ε Th -XT h -1 ε T h (4.30) +η h + K θ σ 2 √ h   τh k=1 X k-1 ε k - Th k=1 Xk-1 ε k   1 Ωc h , η h = K θ σ 2 √ h   Th -1 k=1 Xk-1 ε k - T h -1 k=1 Xk-1 ε k   , εk = ε k 1 (|ε k |≤1/ √ δ) , εk = ε k 1 (|ε k |>1/ √ δ) .
Let us show that The first term in the right-hand side of (4.30) can be estimated as

E θ ( K θ σ 2 √ h T h k=1 Xk-1 ( εk -E εk )) 2 ≤ K θ /(σ 2 √ h) 2 E θ T h k=1 Xk-1 2 E( εk -E εk ) 2 ≤ K θ /(σ 2 √ h) 2 E θ h(σ 2 ∨ δ T h ) + hδ 2 D( ε1 ) ≤ K θ σ 2 √ h 2 (σ 2 ∨ sup n≥1 δ n ) + δ 2 D( ε1 ) .
From here, limiting δ → 0 we obtain

lim δ→0 sup h>0 sup θ∈K E θ K θ σ 2 √ h T h k=1 Xk-1 ( εk -E εk ) 2 = 0 . (4.33) 
The second term in (4.30) can be estimated as

E θ K θ σ 2 √ h X Th -1 ε Th 2 ≤ K θ σ 2 √ h 2 E θ X Th -1 2 Eε 2 Th ≤ K θ /(σ 2 √ h) 2 δ 2 hEε 2 Th = K θ/σ 2 2 δ 2 .
Therefore one gets lim

δ→0 sup h>0 sup θ∈K E θ ( K θ σ 2 √ h X Th -1 ε Th ) 2 = 0 . (4.34)
Further we note that

E θ η 2 h ≤ K θ /(σ 2 h/2) 2 E θ t h , (4.35) 
where

t h = 1 σ 2 h Th -1 k=1 Xk-1 2 - 1 σ 2 h T h -1 k=1 Xk-1 2 .
Let us estimate t h . If T h ≥ Th , then

t h ≤ 1 σ 2 h T h -1 k=1 Xk-1 2 ≤ h(σ 2 ∨ δ T h ) σ 2 h ≤ (1 ∨ (σ -2 sup n≥1 δ n )) . (4.36)
This estimate is also true in the case when T h < Th because then σ2 T h -1 < σ 2 and, hence,

t h ≤ 1 σ 2 h Th -1 k=1 Xk-1 2 ≤ h σ 2 h (σ 2 Th -1 ∨ δ Th ) ≤ (1 ∨ (σ -2 sup n≥1 δ n )) .
Thus

t h ≤ 1 ∨ (σ -2 sup n≥1 δ n ) .
Now we will show that, for any ∆ > 0,

lim h→∞ sup θ∈K P θ (t h ≥ ∆) = 0 . (4.37)
We have the following estimate

t h ≤ 1 σ 2 h Th -1 k=1 Xk-1 2 - 1 σ 2 (σ 2 Th -1 ∨ δ Th ) + 1 σ 2 (σ 2 Th -1 ∨ δ Th ) -(1 ∨ δ T h σ 2 ) + (1 ∨ δ T h σ 2 ) - 1 σ 2 h T h -1 k=1 Xk-1 2 .
From the definitions of Th and T h , it follows that

1 σ 2 h Th -1 k=1 Xk-1 2 ≤ h σ 2 h (σ 2 Th -1 ∨ δ Th ) ≤ 1 σ 2 h Th k=1 Xk-1 2 , 1 σ 2 h T h -1 k=1 Xk-1 2 ≤ h σ 2 h (σ 2 ∨ δ T h ) ≤ 1 σ 2 h T h k=1 Xk-1 2 . Therefore 0 ≤ 1 σ 2 (σ 2 Th -1 ∨ δ Th ) - 1 σ 2 h Th -1 k=1 Xk-1 2 ≤ 1 σ 2 h X Th -1 2 , 0 ≤ (1 ∨ σ -2 δ T h ) - 1 σ 2 h T h -1 k=1 Xk-1 2 ≤ 1 σ 2 h XT h -1 2 
and this leads to the estimate

t h ≤ (σ 2 h) -1 X Th -1 2 + (σ 2 h) -1 XT h -1 2 + ζ h ,
where

ζ h = σ -2 (σ 2 Th -1 ∨ δ Th ) -(1 ∨ (σ -2 δ T h )) .
Now we have to verify that, for any ∆ > 0,

lim h→∞ sup θ∈K P θ ((σ 2 h) -1 X Th -1 2 > ∆) = 0 . (4.38) lim h→∞ sup θ∈K P θ ((σ 2 h) -1 XT h -1 2 > ∆) = 0 , (4.39) lim h→∞ sup θ∈K P θ (ζ h > ∆) = 0 . (4.40)
For any ∆ > 0 and 0 < ∆ < 1, one has the inclusions

(σ 2 h) -1 X Th -1 2 > ∆ ⊂ (σ 2 h) -1 X Th -1 2 > ∆, Ωh ∪ Ωc h ⊂ (σ 2 h) -1 X τ (h)-1 2 > ∆, Ωh ∪ Ωc h ⊂ (τ (h) ≤ m) ∪ (σ 2 h) -1 X τ (h)-1 2 > ∆, Ωh , τ (h) > m ∪ Ωc h ⊂ (τ (h) ≤ m) ∪ σ 2 s -2 τ (h) -1 > ∆ ∪ Ωc h ∪   X τ (h)-1 2 > ∆(1 -∆) τ (h) k=1 X k-1 2 , τ (h) > m   ⊂ (τ (h) ≤ m) ∪ σ 2 s -2 τ (h) -1 > ∆ ∪ Ωc h ∪( X n-1 2 > ∆(1 -∆) n k=1 X k-1 2 for some n > m) .
This yields the inequality

P θ (σ 2 h) -1 X Th -1 2 > ∆ ≤ P θ (τ (h) ≤ m) + P θ σ 2 s -2 τ (h) -1 > ∆ +P θ ( Ωc h ) + P θ ( X n-1 2 > ∆(1 -∆) n k=1 X k-1 2 for some n > m) .
From here, (4.9),(4.23),(4.26) and Lemma 3.1 from [START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF], we come to (4.38).

In a similar way one can check (4.39).

Further, for sufficiently large m, we have the inclusions

(ζ h > ∆) = (ζ h > ∆, Th ≤ m, T h ≤ m) ∪ (ζ h > ∆, Th > m or T h > m) ⊂ (T h ≤ m) ∪ (ζ h > ∆, Th > m, T h > m) ∪ (ζ h > ∆, Th > m, T h ≤ m) ∪(ζ h > ∆, Th ≤ m, T h > m) ⊂ (T h ≤ m) ∪ ( Th ≤ m) ∪(ζ h > ∆, Th > m, T h > m) ⊂ (T h ≤ m) ∪ ( Th ≤ m) ∪ (|σ 2 Th -1 σ -2 -1| > ∆) .
This implies

P θ (ζ h > ∆) ≤ P θ (T h ≤ m) + P θ ( Th ≤ m) + P θ |σ 2 Th -1 σ -2 -1| > ∆ . (4.41)
From the definition of T h in (4.27), it follows that for sufficiently large m

P θ (T h ≤ m) = P θ ( m i=1 Xi-1 2 ≥ h(σ 2 ∨ δ m )) ≤ P θ ( m i=1 X i-1 2 ≥ hσ 2 )
and, hence,

lim h→∞ sup θ∈K P θ (T h ≤ m) = 0 . (4.42) 
Let us estimate the second term in the right-hand side of (4.41). In view of (4.27), one has the inclusion

( Th ≤ m) = m i=1 Xi-1 2 ≥ h(σ 2 m-1 ∨ δ m ) ⊂ m i=1
Xi-1 2 ≥ hδ m . It remains to consider the last term in the right-hand side of (4.41). We have the following inclusions

Thus

|σ 2 Th -1 σ -2 -1| > ∆ ⊂ ( Th ≤ m) ∪ |σ 2 Th -1 σ -2 -1| > ∆, Th > m, Ωh ∪ Ωc h ⊂ |σ 2 Th -1 σ -2 -1| > ∆, τ (h) > m ∪ ( Th ≤ m) ∪ Ωc h ⊂ ( Th ≤ m) ∪ |σ 2 n σ -2 -1| > ∆ for some n ≥ m -1 ∪ Ωc h .
This yields

P θ |σ 2 Th -1 σ -2 -1| > ∆ ≤ P θ ( Th ≤ m) + P θ ( Ωc h ) +P θ |σ 2 n -σ 2 | > σ 2 ∆ for some n ≥ m -1 .
From here, (4.9), ( In order to complete the proof of Lemma 4.4, it remains to show (4.32).

Define the set Ωh = (x n = xn for all n < T h ) .

By the definition of T h in (4.27) one gets

P θ ( Ωc h ) ≤ m k=1 P θ (x 2 k-1 > δ 2 h) +P θ (T h > m, x n = xn for some m ≤ n < T h ) ≤ m k=1 P θ (x 2 k-1 > δ 2 h) + P θ x 2 n ≥ δ 2 n i=1 (x 2 i-1 + x2 i-2 ) for some n ≥ m .
It can be proved that for the unstable model (1.1)

lim h→∞ sup θ∈K P θ x 2 n ≥ δ 2 n i=1 (x 2 i-1 + x2 i-2 ) for some n ≥ m = 0 . Therefore lim h→∞ sup θ∈K P θ ( Ωc h ) = 0 . Let T 0 (h) = inf{n ≥ 3 : n i=1 (x 2 i-1 + x 2 i-2 ) ≥ h(σ 2 ∨ δ n )} .
Since, T h = T 0 (h) on the set Ωh , we rewrite Ỹh defined in (4.29) as

Ỹh = K θ σ 2 √ h T h k=1 Xk-1 (ε k -Eε k )1 Ωh + K θ σ 2 √ h T h k=1 Xk-1 (ε k -Eε k )1 Ωc h = K θ σ 2 √ h   T h k=1 Xk-1 (ε k -Eε k ) - T 0 (h) k=1 X k-1 (ε k -Eε k )   1 Ωc h + K θ σ 2 √ h T 0 (h) k=1 X k-1 (ε k -Eε k ) = 1 √ h T 0 (h) k=1 g k-1 (ε k -Eε k ) D(ε k ) + K θ σ 2 √ h   T h k=1 Xk-1 (ε k -Eε k ) - T 0 (h) k=1 X k-1 (ε k -Eε k )   1 Ωc h , where 
g k-1 = K θ σ 2 √ h D(ε k )X k-1 .
Further we introduce the stopping time

τ 0 = τ 0 (h) = inf{n ≥ 3 : n k=1 g 2 k-1 ≥ h}
and represent Ỹh as

Ỹh = 1 √ h τ 0 (h) k=1 g k-1 (ε k -Eε k ) D(ε k ) + η(h) + ∆(h) , where ∆(h) = ∆ 1 (h) + ∆ 2 (h), ∆ 1 (h) = h -1/2 g T 0 (h)-1 ε T 0 (h) , ∆ 2 (h) = -h -1/2 g τ 0 (h)-1 ε τ 0 (h) , η(h) = 1 √ h T 0 (h)-1 k=1 g k-1 (ε k -Eε k ) D(ε k ) - 1 √ h τ 0 (h)-1 k=1 g k-1 (ε k -Eε k ) D(ε k ) + K θ σ 2 √ h   T h k=1 Xk-1 (ε k -Eε k ) - T 0 (h) k=1 X k-1 (ε k -Eε k )   1 Ωc h .
Further analysis of Ỹh proceeds along the lines of Lemma 3.7 in [START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF] and is omitted. This completes the proof of Lemma 4.4.

Auxiliary propositions.

This section contains the proofs of some results used in this paper.

1. Proof of Proposition 2.2. First we will prove the following three Lemmas. 

(τ (h) < m) = m k=1 (x 2 k-1 + x 2 k-2 ) > hσ 2 ⊂ U m > hσ 2 .
This implies (5.1). Hence Lemma 5.1. 

P θ   1 τ (h) τ (h) k=1 ε 2 k -σ 2 > δ   = 0 .
Proof. One has

P θ   | 1 τ (h) τ (h) k=1 ε 2 k -σ 2 | > δ   ≤ P θ (τ (h) < m) +P θ | 1 n n k=1 ε 2 k -σ 2 | > δ for some n ≥ m .
Applying Lemma 5.1 and the strong law of large number one comes to the desired result. Hence Lemma 5.2.

Lemma 5.3. Let (u k ) k≥0 and (v k ) k≥0 be the processes defined in (3.2).

Then, for each d > 0 and any δ > 0, lim h→∞ sup θ∈Λ d,1

P θ |τ (h)(u, u) -1 τ (h) -(1 -a 2 )/σ 2 | > δ = 0, (5.2) lim h→∞ sup θ∈Λ d,1 P θ |τ (h)(v, v) -1 τ (h) -(1 -b 2 )/σ 2 | > δ = 0.
Proof. Since these relations are similar, we verify only (5.2). First we show that, for each d > 0 and any δ > 0,

lim h→∞ sup θ∈Λ d,1 , -θ 1 +θ 2 <1 P θ |τ (h)(u, u) -1 τ (h) -(1 -a 2 )/σ 2 | > δ = 0. (5.3)
Squaring both sides of the first equation in (3.2) and summing give

(1 -a 2 ) τ (h) j=1 u 2 j-1 = u 2 0 -u 2 τ (h) + 2a τ (h) j=1 u j-1 ε j + τ (h) j=1 ε 2 j .
By making use of this equality one obtains

|τ (h)(u, u) -1 τ (h) -(1 -a 2 )/σ 2 | ≤ u 2 τ (h) σ 2 (u, u) τ (h) + 2| τ (h) k=1 u k-1 ε k | σ 2 (u, u) τ (h) + | τ (h) k=1 (ε 2 k -σ 2 )| σ 2 (u, u) τ (h) ≤ u 2 τ (h) σ 2 (u, u) τ (h) + 2| τ (h) k=1 u k-1 ε k | σ 2 (u, u) τ (h) + | τ (h) k=1 (ε 2 k -σ 2 )| (σ 2 /4) τ (h)-1 k=1 ε 2 k .
(5.4)

The last inequality follows from the estimate

n-1 k=1 ε 2 k ≤ 4 n k=1 u 2 k-1 .
By Lemma 5.2, we have to show that, for each d > 0 and any δ > 0,

lim h→∞ sup θ∈Λ d,1 , -θ 1 +θ 2 <1 P θ u 2 τ (h) (u, u) -1 τ (h) > δ = 0, (5.5) lim h→∞ sup θ∈Λ d,1 , -θ 1 +θ 2 <1 P θ   | τ (h) k=1 u k-1 ε k |(u, u) -1 τ (h) > δ   = 0. (5.6)
We have

P θ u 2 τ (h) (u, u) -1 τ (h) > δ ≤ P θ (τ (h) < m) (5.7) +P θ u 2 n (u, u) -1 n > δ for some n ≥ m .
It is known (see, [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF]) that

lim m→∞ sup |a|≤1 P θ   u 2 n n k=1 u 2 k-1 -1 > δ for some n ≥ m   = 0. (5.8)
Applying this and Lemma 5.1 in (5.7) yields (5.5). To prove (5.6) we use the representation

τ (h) k=1 u k-1 ε k /(u, u) τ (h) = ζ τ (h) max   τ (h) (u, u) τ (h) , τ (h) (u, u) τ (h) 1/4 1 4 τ (h)   ,
where

ζ n = 1 max n, (u, u) 3/4 n n k=1 u k-1 ε k .
By Lemmas 5.1, 5.2 and applying the uniform law of large numbers for martingales (see [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF]) we come to (5.6). Combining (5.4) -(5.5) and Lemma 5.2 one gets (5.3). It remains to show that, for each d > 0 and δ > 0, By making use of the inequality

lim h→∞ sup θ∈Λ d,1 , -θ 1 +θ 2 =1 P θ (|τ (h)/(u, u) τ (h) -(1 -a 2 )/σ 2 | > δ) = 0. ( 5 
P θ τ (h) (u, u) τ (h) > δ ≤ P θ (τ < m) + P θ n (u, u) n
> δ for some n ≥ m and (5.10), we come to (5.9). This completes the proof of Lemma 5. 

P θ |ξ τ (h) -r(a, b)| > δ = 0. (5.11) Denote η (l) h = A h τ (h) k=l u k-l v k-l , l = 1, . . . , τ (h), A h = (u, u) -1/2 τ (h) (v, v) -1/2 τ (h) .
(5.12)

From equations (3.2), one gets

τ (h) k=l u k-l v k-l = τ (h) k=l+1 (au k-l-1 + ε k-l ) (bv k-l-1 + ε k-l ) = ab τ (h) k=l+1 u k-l-1 v k-l-1 + a τ (h) k=l+1 u k-l-1 ε k-l + +b τ (h) k=l+1 v k-l-1 ε k-l + τ (h) k=l+1 ε 2 k-l , l = 1, . . . , τ (h) -1.
Substituting this in (5.12) yields

η (l) h = abη (l+1) h + z τ (h)-l , 1 ≤ l < τ (h),
where

z τ (h)-l = A h   a τ (h) k=l+1 u k-l-1 ε k-l + b τ (h) k=l+1 v k-l-1 ε k-l + τ (h) k=l+1 ε 2 k-l   .
(5.13)

Putting ζ m = η (τ (h)-m) h
we come to the equation

ζ m = abζ m-1 + z m , 1 ≤ m < τ (h), ζ 0 = 0.
Solving this equation one finds

ξ τ (h) = ζ τ (h)-1 = τ (h)-2 j=0 (ab) j z τ (h)-1-j .
Introducing the sums

S m = m l=0
(ab) l , m ≥ 0, (5.14) one can rewrite this formula as follows

ξ τ (h) = z τ (h)-1 + τ (h)-2 j=1 (ab) j z τ (h)-1-j (5.15) = z τ (h)-1 + τ (h)-2 j=1 (S j -S j-1 )z τ (h)-1-j = z τ (h)-1 + τ (h)-2 j=1 S j z τ (h)-1-j - τ (h)-3 j=0 S j z τ (h)-2-j = τ (h)-2 j=0 S j z τ (h)-1-j - τ (h)-3 j=0 S j z τ (h)-2-j = S τ (h)-2 z 1 + τ (h)-3 j=0 S j (z τ (h)-1-j -z τ (h)-2-j ).
By making use of (5.13) one can easily verify that

z τ (h)-1-j -z τ (h)-2-j = aA h u τ (h)-2-j ε τ (h)-j-1 +bA h v τ (h)-2-j ε τ (h)-j-1 + A h ε 2 τ (h)-j-1 .
Substituting this in (5.15) we obtain

ξ τ (h) = ξ (1) h + ξ (2) h + ξ (3) h , (5.16) 
where ξ

(1)

h = A h τ (h)-1 k=1 S τ (h)-1-k ε 2 k , ξ (2) 
h = aA h τ (h)-1 k=2 S τ (h)-1-k u k-1 ε k , (5.17) ξ (3) h = bA h τ (h)-1 k=2 S τ (h)-1-k v k-1 ε k .
To show (5.11) we have to check that, for each d > 0 and δ > 0,

lim h→∞ sup θ∈Λ d,1 P θ (|ξ (1) h -r(a, b)| > δ) = 0, (5.18) lim h→∞ sup θ∈Λ d,1 P θ (|ξ (i) h | > δ) = 0, i = 2, 3. (5.19)
First we will verify the equalities for some subsets of Λ d,1 : for any q ∈]0, 

h = A h S * τ (h)-1 k=1 ε 2 k + W h , (5.22) 
where

W h = A h τ (h)-1 k=1 (S τ (h)-1-k -S * )ε 2 k .
(5.23) By Lemmas 5.1, 5.3 one gets

A h S * τ (h)-1 k=1 ε 2 k = S * τ (h) (u, u) τ (h) 1/2 τ (h) (v, v) τ (h) 1/2 1 τ (h) τ (h)-1 k=1 ε 2 k (5.24) = 1 -a 2 1 -b 2 (1 -ab) -1 + α h ,
where α h satisfies, for d > 0, 0 < q < 1, and δ > 0, the limiting relation

lim h→∞ sup θ∈Λ d,1 ∩{θ:|ab|≤q} P θ (|α h | > δ) = 0 . (5.25) 
For |W h |, on the set (τ (h) > N + 1), one has the following estimate

|W h | = A h   τ (h)-N -1 k=1 (S τ (h)-1-k -S * )ε 2 k + τ (h)-1 k=τ (h)-N (S τ (h)-1-k -S * )ε 2 k   ≤ max n≥N |S n -S * |A h τ (h)-N -1 k=1 ε 2 k + max n≥1 |S n -S * |A h τ (h)-1 k=τ (h)-N ε 2 k ≤ max n≥N |S n -S * | τ (h) (u, u) τ (h) 1/2 τ (h) (v, v) τ (h) 1/2 1 τ (h) τ (h)-1 k=1 ε 2 k + max n≥1 |S n -S * | τ (h) (u, u) τ (h) 1/2 τ (h) (v, v) τ (h) 1/2 ×   1 τ (h) τ (h)-1 k=1 ε 2 k - 1 τ (h) τ (h)-N -1 k=1 ε 2 k   .
From here, in view of the inequalities, It will be observed that, by the definition of parametric set Λ d,1 in (2.12), there exists a number q * ∈ (0, 1) such that for all q * ≤ q < 1 the corresponding set Λ d,1 ∩ {θ : |ab| ≤ q} contains all points of Λ d,1 except for those lying in some vicinity of the apex (0, 1). On the other hand, function r(a, b) in (5.18) vanishes when |ab| approaches 1. Therefore, for a given δ > 0, there exists a number q ≥ q * such that, for every

max n≥N |S n -S * | ≤ q N +1 /(1 -q), max n≥1 |S n -S * | ≤ q/(1 -q),
θ ∈ Λ d,1 ∩ {θ : |ab| ≥ q}, 1 -a 2 1 -b 2 < δ/3, which implies r(a, b) < δ/3. (5.26) Consider ξ (1) 
h . Since S n ≤ 1 for negative ab, then, in view of Lemmas 5.1, 5.3, |ξ

h | can be estimated as

|ξ (1) h | ≤ τ (h) (u, u) τ (h) 1/2 τ (h) (v, v) τ (h) 1/2 1 τ (h) τ (h)-1 k=1 ε 2 k = 1 -a 2 1 -b 2 + α h , where lim h→∞ sup θ∈Λ d,1 P θ (|α h | > δ/3) = 0.
From here and (5.26) one has

|ξ (1) h -r(a, b)| ≤ 2δ/3 + α h .
Therefore, for any ∆ > 0, there exists a number h 0 such that for all h ≥ h 0 sup θ∈Λ d,1 ∩{θ:|ab|>q}

P θ (|ξ (1) h -r(a, b)| > δ) ≤ ∆.
(5.27)

In view of (5.22), for a given ∆, there exists a number h 1 such that for all

h ≥ h 1 sup θ∈Λ d,1 ∩{θ:|ab|≤q} P θ (|ξ (1) 
h -r(a, b)| > δ) ≤ ∆.
(5.28)

Combining (5.27) and (5.28) we come to (5.18).

To prove (5.19), we estimate |ξ

h | for θ ∈ Λ d,1 ∩ {θ : |ab| > q} as |ξ (2) 
h | ≤   τ (h)-1 k=2 ε 2 k   1/2   τ (h)-1 k=2 u 2 k-1   1/2 (u, u) -1/2 τ (h) (v, v) -1/2 τ (h) ≤ τ (h) (v, v) τ (h) 1/2   1 τ (h) τ (h)-1 k=2 ε 2 k   1/2 = 1 -b 2 + α (2) 
h satisfies lim h→∞ sup θ∈Λ d,1 P θ (|α (1) h , where α (1) 
h | > δ/3) = 0. (1) 
This enables us, by the same argument as in the case of ξ

h , to show (5.19). The case of ξ

h can be studied by a similar way. This completes the proof of Proposition 2.2.

2. Proof of Lemma 2.3. Consider in detail the case when θ = (2, -1).

Denote

f (n) (t) = 1 n [nt-1] j=0 W (n) j n , I t (f ) = t 0 f (s)ds, (5.29) 
where W

(n) t is given in (2.2). Then the nominator in (2.16) becomes

n k=1 u k-1 v k-1 = n k=1   k-1 j=0 j i=0 ε i   k-1 l=0 ε l = n 3 n k=1   n -1 k-1 j=0 W (n) j n   W (n) k-1 n 1 n = n 3 n k=1 f (n) ( k n )W (n) k-1 n 1 n .
(5.30)

It will be observed that

f (n) (t) = I [nt-1] n (W (n) ) + r (1) n (t), (5.31) 
|r (1) 

n (t)| ≤ ω(W (n) ; [0, 1]; 1/n), (5.32) 
where ω(f ; E; δ) denotes the oscilation of a function f :

E → R of radius δ > 0, that is ω(f ; E; δ) = sup |x-y|≤δ,x,y∈E |f (x) -f (y)|.
By (5.29), (5.32)

r (1) n (t) ≤ max 1≤i≤n |ε i |/ √ n → 0 a.s. (5.33) 
Substituting (5.31) in (5.30) yields

n k=1 u k-1 v k-1 = n 3 n k=1 I k-1 n (W (n) )W (n) k-1 n 1 n + n 3 r (2) n , (5.34) 
where

r (2) n = n k=1 r (1) n ( k n )W (n) k-1 n 1 n .
Note that in view of (5.33)

|r (2) n | ≤ max 0≤t≤1 |W (n) t | • max 1≤i≤n |ε i | √ n = max 1≤k≤n 1 √ n k i=1 ε i max 1≤i≤n |ε i | √ n .
Show that, for any δ > 0,

lim n→∞ P θ |r (2) n | > δ = 0. (5.35)
By applying the Kolmogorov inequality one gets, for any δ > 0 and ∆ > 0,

P θ |r (2) n | > δ ≤ P θ max 1≤i≤n |ε i | √ n > ∆ + P θ ∆ max 1≤k≤n 1 √ n k i=1 ε i > δ ≤ P θ max 1≤i≤n |ε i | √ n > ∆ + ∆ 2 δ 2 n E θ n i=1 ε 2 i = P θ max 1≤i≤n |ε i | √ n > ∆ + ∆ 2 σ 2 δ 2 .
This implies (5.35). Now we rewrite (5.34) as

n k=1 u k-1 v k-1 = n 3 1 0 I [tn-1] n (W (n) )W (n) [tn-1] n dt + n 3 r (3) n (5.36) = n 3 1 0 I t (W (n) )W (n) t dt + n 3 r (3) n + n 3 r (4) n ,
where

|r (3) n | ≤ ω I [tn-1] n (W (n) )W (n) [tn-1] n ; [0, 1]; 1 n (5.37) 
≤ max 0≤t≤1 I [tn-1] n (W (n) ) • ω W (n) [tn-1] n ; [0, 1]; 1 n + max 0≤t≤1 W (n) [tn-1] n • ω I [tn-1] n (W (n) ); [0, 1]; 1 n ≤ max 0≤t≤1 W (n) t • ω I t (W (n) ); [0, 1]; 1 n + max 0≤t≤1 W (n) t • ω W t ; [0, 1]; 1 n = 2 max 1≤k≤n 1 √ n k i=1 ε i max 1≤i≤n |ε i | √ n ; r (4) n = 1 0 I [tn-1] n (W (n) )W (n) [tn-1] n dt - 1 0 I t (W (n) )W (n) t dt = A n + B n , (5.38) A n = 1 0 I [tn-1] n (W (n) ) -I t (W (n) ) W (n) [tn-1] n dt, B n = 1 0 I t (W (n) ) W (n) [tn-1] n -W (n) t dt.
For A n and B n one has the estimates

|A n | ≤ n -1 max 0≤t≤1 |W (n) t | 2 = n -2 max 1≤k≤n n i=1 ε i 2 ; |B n | ≤ max 0≤t≤1 |I t (W (n) )| • max 1≤i≤n |ε i |/ √ n ≤ max 0≤t≤1 |W (n) t | • max 1≤i≤n |ε i |/ √ n.
From here and (5.37) and (5.38), it follows that, for any δ > 0,

lim n→∞ P θ (|r (i) n | > δ) = 0, i = 3, 4.
(5.39)

Consider now the sums in the denominator of (2.16). By the same argument, one can show that (u, u) n = n 4 1 0

I 2 t (W (n) )dt + n 4 r (5) n , (v, v) n = n 2 1 0 W (n) t 2 dt + n 2 r (6) n , (5.40) 
where r

n and r

n are such that, for any δ > 0,

lim n→∞ P θ (|r (i) n | > δ) = 0, i = 5, 6.
(5.41) Substituting (5.34) and (5.40) in (2.16) yields

ξ n = ϕ(W (n) ) + r n , (5.42) 
where r n , in view of (5.35), (5.39), (5.41), satisfies, for any δ > 0, the limiting relation

lim n→∞ P θ (|r n | > δ) = 0.
One can check that functional ϕ(x) given by (2.21) is continuous everywhere in C[0, 1] except for the point x(t) ≡ 0. Since the Wiener measure of the set D = {x ≡ 0} equals zero we can apply the Donsker theorem to this functional in (5.42). This leads to (2.20). It remains to verify that 0 ≤ ϕ(W ) ≤ 1. It is obvious that the function ϕ(W ) in (2.21) can be viewed as the inner product of the functions

x(t) = J -1/2 2 (W ; 1) t 0 W (s)ds, y(t) = J -1/2 1 (W ; 1) W (t).
The equality ϕ(W ) = 1 is possible iff the functions x(t) and y(t) are linearly dependent, that is, x(t) = Cy(t), 0 ≤ t ≤ 1, for some constant C. However this does not hold with probability one, because x(t) is absolutely continuous and y(t) is non-differentiable almost everywhere. Hence the case θ = (2, -1).

By similar argument, one can show (2.20) for θ = (-2, -1). This completes the proof of Lemma 2.3.

Additional properties of the sums

τ (h) k=1 u 2 k-1 and τ (h) k=1 v 2 k-1 .
In addition to Lemma 5.3 we will need the following results. 

P θ hσ 2 τ (h) k=1 u 2 k-1 - 2(1 + ab) (1 -ab)(1 -b 2 ) > δ = 0, (5.43) lim h→∞ sup θ∈Λ d,1 P θ 1 τ (h) k=1 v 2 k-1 - 1 -b 2 τ (h) > δ = 0, (5.44) lim h→∞ sup θ∈Λ d,1 ∩(θ:θ 1 >0) P θ hσ 2 τ (h) k=1 v 2 k-1 - 2(1 + ab) (1 -ab)(1 -a 2 ) > δ = 0 , (5.45) 
τ (h) τ (h) k=1 u 2 k-1 = 1 -a 2 + α 1 (h), τ (h) τ (h) k=1 v 2 k-1 = 1 -b 2 + α 2 (h),
where α 1 (h) and α 2 (h) satisfy, for any δ > 0, the relation lim

h→∞ sup θ∈Λ d,1 P θ (|α i (h)| > δ) = 0, i = 1, 2. (5.47) Therefore 1 τ (h) k=1 u 2 k-1 - 1 -a 2 τ (h) = α 1 (h) τ (h) , 1 τ (h) k=1 v 2 k-1 - 1 -b 2 τ (h) = α 2 (h) τ (h) .
These equalities and (5.47) imply (5.44), (5.46). Denote

t h = hσ 2 (u, u) -1 τ (h) -2(1 + ab)/((1 -ab)(1 -b 2 )).
By the definition of stopping time τ (h) in (1.7), one has

hσ 2 = τ (h)-1 k=1 X k-1 2 + α h X τ (h)-1 2 = τ (h) k=1 X k-1 2 ,
where the prime at the sum sign means that the last addend is taken with the correction factor α h providing the validity of the left-hand side equality,

0 < α h ≤ 1.
This equality implies

hσ 2 τ (h) k=1 u 2 k-1 = 1 τ (h) k=1 u 2 k-1 tr τ (h) k=1 X k-1 X k-1 = trQ -1   1 (u, v) τ (h) /(u, u) τ (h) (u, v) τ (h) /(u, u) τ (h) (v, v) τ (h) /(u, u) τ (h)   (Q -1
) .

(5.48) 

By Lemma 5.3 (v, v) τ (h) (u, u) τ (h) = τ (h) (u, u) τ (h) × (v, v) τ (h) τ (h) = [ 1 -a 2 σ 2 +α 1 (h)](v, v) τ (h) /τ (h) .
P θ |(τ (h)) -1 (v, v) τ (h) -σ 2 (1 -b 2 ) -1 | > δ = 0.
From here and (5.49), it follows that

(v, v) τ (h) /(u, u) τ (h) = (1 -a 2 )/(1 -b 2 ) + α 3 (h),
where α 3 (h) satisfies the following relation : for any δ > 0,

lim h→∞ sup θ∈Λ d,1 P θ (|α 3 (h)| > δ) = 0.
(5.50)

In view of (5.49), Lemma 5.3 and Proposition 2.2, the cross-term in (5.48) can be written as

(u, v) τ (h) (u, u) τ (h) = (v, v) τ (h) (u, u) τ (h) 1/2 (u, v) τ (h) (u, u) 1/2 τ (h) (v, v) 1/2 τ (h) = 1 -a 2 1 -ab + α 4 (h) , (5.51)
where α 4 (h), in view of Proposition 2.2, also possesses the property given in (5.50). Hence

hσ 2 (u, u) τ (h) = trQ -1   1 (1 -a 2 )/(1 -ab) (1 -a 2 )/(1 -ab) (1 -a 2 )/(1 -b 2 )   (Q -1 ) + r h , (5.52) 
where

r h = trQ -1   0 α 4 (h) α 4 (h) α 3 (h)   (Q -1 ) .
One can easily verify that

trQ -1   1 (1 -a 2 )/(1 -ab) (1 -a 2 )/(1 -ab) (1 -a 2 )/(1 -b 2 )   (Q -1 ) = 2(1 + ab) (1 -ab)(1 -b 2 )
.

From here and (5.52), taking into account (5.50), we come to the assertion of Lemma 5.4. 

The

(η n ) L → f (η).
Then there exists a probability space with some random elements η L = η and ηn

L = η n , n ∈ N, with f n (η n ) → f (η) a.s.
Let W = (W (t)) t≥0 and W 1 = (W 1 (t)) t≥0 be independent Brownian 

ρ(η , η ) = ρ 1 (ε , ε ) + ρ 2 (W , W ) + ρ 3 (W 1 , W 1 ) ,
where

ρ 1 (ε , ε ) = k≥1 2 -k |ε k -ε k | 1 + |ε k -ε k | , ρ i (x, y) = k≥1 2 -k max 1≤t≤k |x(t) -y(t)| 1 + max 1≤t≤k |x(t) -y(t)| , i = 2, 3 .
Let (S, B(S), P η ) be the corresponding Borel space with the distribution P η induced by η, that is,

P η = P ε × P W × P W 1 .
Now we are ready to prove Proposition 3.2.

Assume that θ ∈ Γ 1 ∪ Γ 2 .

Consider only the case when θ ∈ Γ 1 (the case θ ∈ Γ 2 is similar). For θ ∈ Γ 1 the processes (u k ) k≥0 and (v k ) k≥0 are described by equations (3.2) with a = -1 and |b| < 1. Let us apply the Skorohod Theorem 5.5 to the functional

f n (η) = 1 √ n τ (h) k=1 v 2 k-1 , n = [h/2] ,
and put η n ≡ η. By Lemma 5.3 and Theorem 2.1 we have

f n (η) L → ν 1 (W 1 )σ 2 /(1 -b) = f (η) .
By Theorem 5.5 there exists η = (ε, W , W1 ) such that η = (ε, W , W1 ) In view of (5.53) and Lemma 5.4, we start the analysis of Ỹh by rewriting it as

L = η = (ε, W, W 1 ) and f n (η) = 1 √ n τ (h) k=1 ṽ2 k-1 a.s. → ν 1 ( W1 )σ 2 1 -b = f (η), n = [h/2] . ( 5 
Ỹh = λ 1 σ √ h h (ũ, ũ) τ (h) τ (h) k=1 ũk-1 εk + λ 2 σ(h/2) 1/4 h/2 (ṽ, ṽ) τ (h) τ (h) k=1 ṽk-1 εk = 1 σ 2 √ h τ (h) k=1 gk-1 εk + r 1 (h), (5.55) 
where

gk-1 = λ 1 √ 2 1 + b ũk-1 + λ 2 1 -b ν 1 ( W1 ) (2h) 1/4 ṽk-1 , (5.56) r 1 (h) = 1 √ h t 1 h τ (h) k=1 ũk-1 εk + 1 h 1/4 t 2 h τ (h) k=1 
ṽk-1 εk , (5.57)

t 1 h = λ 1 σ 2 hσ 2 /(ũ, ũ) τ (h) - √ 2 1 + b , t 2 h = 2 1/4 λ 2 σ 2 σ 2 (h/2)/(ṽ, ṽ) τ (h) -(1 -b)/ν 1 ( W1 ) .
Let us show that, for any δ > 0,

lim h→∞ P θ (|r 1 (h)| > δ) = 0 , (5.58) 
where P θ is the distribution of the process (x k ). We rewrite r 1 (h) as

r 1 (h) = t 1 h √ h τ (h)-1 k=1 ũk-1 εk + t 1 h √ h ũτ(h)-1 ετ(h) + 1 h 1/4 t 2 h τ (h) k=1 
ṽk-1 εk .

For any δ > 0 and any C > 0, we have the estimate

P θ (|r 1 (h)| > δ) ≤ P θ   t 1 h √ h τ (h)-1 k=1 ũk-1 εk > δ 3   +P θ | t 1 h √ h ũτ(h)-1 ετ(h) | > δ 3 + P θ   1 h 1/4 |t 2 h τ (h) k=1 ṽk-1 εk | > δ 3   ≤ P θ ( 1 √ h | τ (h)-1 k=1 ũk-1 εk | > C) + P θ (|t 1 h |C > δ 3 ) + P θ ( |ũ τ (h)-1 ετ(h) | √ h > δ 3 ) +P θ (|t 1 h | > δ/3) + P θ ( 1 h 1/4 | τ (h) k=1 ṽk-1 εk | > C) + P θ (|t 2 h |C > δ 3 
) . (5.59)

Now we will study the asymptotic behaviour of the summands in the righthand side of (5.59).

Lemma 5.6. 

For each θ ∈ Γ 1 , lim C→∞ sup h>0 P θ   1 √ h | τ (h)-1 k=1 ũk-1 εk | > C   = 0 . ( 5 
P θ   1 h 1/4 | τ (h) k=1 ṽk-1 εk | ≥ C   ≤ a C + P θ   1 √ h τ (h) k=1 ṽ2 k-1 ≥ a   . (5.62)
Lemma 5.9. For any a > 0 and ∆ > 0,

lim h→∞ P θ   1 √ h τ (h) k=1 ṽ2 k-1 ≥ a   ≤ P θ (ν 1 ( W1 ) ≥ a ) , (5.63 
)

where a = a √ 2(1 + b) -1 σ 2 (1 -b 2 ) -1 + ∆ -1 .
Proof of Lemma 5.6. By definition of stopping time τ (h) in (1.7) one obtains

E θ   1 √ h τ (h)-1 k=1 ũk-1 εk   2 = σ 2 h E θ   τ (h)-1 k=1 ũ2 k-1   ≤ σ 2 h E θ   τ (h)-1 k=1 (ũ 2 k-1 + ṽ2 k-1 )   ≤ σ 2 h Q 2 E θ   τ (h)-1 k=1 Xk-1 2   ≤ σ 4 Q 2 ,
where E θ is the expectation with respect to P θ . This implies (5.60). Hence Lemma 5.6.

Proof of Lemma 5.7. One has

P θ |ũ τ (h)-1 ετ(h) |/ √ h > δ ≤ P θ Q ( √ h) -1 Xτ(h)-1 • |ε τ (h) | > δ ≤ P θ (•, |ε τ (h) | ≤ C) + P θ (•, |ε τ (h) | > C) ≤ P θ Q √ h Xτ(h)-1 C > δ + C -2 E θ ε2 τ (h) ≤ P θ h -1 Q 2 Xτ(h)-1 2 C 2 > δ 2 + C -2 σ 2 .
It remains to show that lim h→∞ P θ (h -1 Xτ(h)-1 2 > δ) = 0, (5.64) where δ = δ 2 Q -2 C -2 . We have

P θ (h -1 Xτ(h)-1 2 > δ) ≤ P θ   Xτ(h)-1 2 ≥ δ σ 2 τ (h)-1 k=1 Xk-1 2   ≤ P θ (τ (h) ≤ m) + P θ Xn 2 ≥ δ σ 2 n k=1
Xk-1 2 for some n ≥ m .

In virtue of relation (3.3) in [START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF] and Lemma 5.1, we come to (5.64). This completes the proof of Lemma 5.7.

Further we need the following Lenglart inequality.

≤ P θ τ (h) √ h ( σ 2 1 -b 2 + ∆) ≥ a + P θ (ṽ, ṽ) τ (h) τ (h) - σ 2 1 -b 2 ≥ ∆ = P θ τ (h) (1 + b) h/2 (1 + b) √ 2 (σ 2 (1 -b 2 ) -1 + ∆) ≥ a +P θ |τ (h) -1 (ṽ, ṽ) τ (h) -σ 2 /(1 -b 2 )| ≥ ∆ .
From here, in virtue of Theorem 2.1 and Lemma 5.3, we comme to (5.63).

Hence Lemma 5.9. Z (ũ k-1 , ṽk-1 )

2 = Z R -1 n J n R -1 n Z = Z R -1 n (J n -I)R -1 n Z + Z R -2 n Z, Z = (z 1 , z 2 ) ; Z R -2 n Z = z 2 1 (u, u) n + z 2 2 (v, v) n .
(5.76)

From here it follows that

A ⊂ g2 τ 0 (h)-1 > δZ R-2 τ 0 (h)-1 Z(1 -Jτ 0 (h)-1 -I ), Jτ 0 (h)-1 -I ≤ ∆ ⊂ g2 τ 0 (h)-1 > δ(1 -∆)Z R-2 τ 0 (h)-1 Z ⊂ (τ 0 (h) ≤ m) ∪ g2 n > δ(1 -∆)Z R-2 n Z for some n ≥ m ⊂ (τ 0 (h) ≤ m) ∪ 2z 2 1 ũ2 n > δ2 -1 (1 -∆)Z R-2 n Z for some n ≥ m ∪ 2z 2 2 ṽ2 n > δ2 -1 (1 -∆)Z R-2 n Z for some n ≥ m ⊂ (τ 0 (h) ≤ m) ∪ 2ũ 2 n > δ2 -1 (1 -∆) (ũ, ũ
) n for some n ≥ m ∪ 2ṽ 2 n > δ2 -1 (1 -∆) (ṽ, ũ) n for some n ≥ m . From the definition of τ (h), Theorem 2.1 and (5.81) it follows that f n (η) L → (J 1 (W 1 ; 1), J 1 (W ; 1), ν 3 (W, W 1 )) = f (η) .

By Theorem 5.5 there exists η such that η L = η and f n (η) a.s. → f (η) = J 1 ( W1 ; 1), J 1 ( W ; 1), ν 3 ( W , W1 ) .

On the basis of this η we define as before (x k ), (ũ k ), (ṽ k ) and Ỹh . It should be noted that the ratio t n = (ũ, ũ) n /(ṽ, ṽ) n satisfies the limiting relation 

2 τ

 2 scheme for the case of unknown variance σ 2 in model (1.1). The appendix contains some technical results.

(1. 1 )

 1 with unknown variance. It is shown that the sequential least squares es-timate modified to embrace this case remains asymptotically normal uniformly in θ for any compact set in the region Λ 1 = Λ ∪ Γ 3 (Th. 4.1) and it is asymptotically normal in the closure of the stability region [Λ] (Th. 4.2).

Lemma 4 . 3 .

 43 Let M n , τ (h) be given by (1.3), (4.3). Then, for any compact set K ⊂ Λ 1 and δ > 0, lim h→∞ sup θ∈K

Proposition 4 . 5 .P θ |σ 2 n -σ 2 |

 4522 Let θ(n) and σ2 n be given by (1.3) and (4.1). Then, for any compact set K ⊂ Λ 1 and δ > 0, lim m→∞ sup θ∈K P θ ( θ(n)θ > δ for some n ≥ m) = 0 , > δ for some n ≥ m = 0 .(4.9)

  lim h→∞ sup θ∈K P θ |σ 2 τ (h) /σ 2 -1| > δ = 0 . (4.21)

( 4 .

 4 23) and apply Lemma 3.1 from[START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF]. The relations (4.19)-(4.21) can be checked in a similar way. This completes the proof of Lemma 4.3.

  x n = xn for all n < τh ) .Along the lines of the proof of Proposition 2.1, one can verify that lim

  Ỹh ≤ t) -Φ(t) = 0 . (4.32)

P

  θ ( Th ≤ m) ≤ P θ

Lemma 5 . 1 .

 51 Under conditions of Theorem 2.1, for each m = 1, 2, . . . and for any δ > 0, lim h→∞ sup θ∈[Λ]P θ (τ (h) < m) = 0, lim h→∞ sup θ∈[Λ] P θ (1/τ (h) > δ) = 0. (5.1) Proof. From the definition of stopping time τ (h) in (1.7) and (4.14), it follows that

Lemma 5 . 2 .

 52 Under conditions of Theorem 2.1, for any δ > 0

. 9 )

 9 If θ 1 + θ 2 = 1, then a = -1 and the process u k in (3.2) satisfies the limiting relation (see, e.g.,Lai and Wei (1983)) 

  h | > δ) = 0, i = 2, 3.(5.21)Denoting lim n→∞ S n = (1ab) -1 = S * we rewrite ξ

  by applying Lemmas 5.1-5.3, we obtain lim h→∞ sup θ∈Λ d,1 ∩{θ:|ab|≤q} P θ (|W h | > δ) = 0. This and (5.22)-(5.25) imply (5.20). By a similar argument, one can show (5.21). Thus we have verified all limiting relationships (5.20),(5.21), which give the asymptotic convergence of random variables ξ (i) h on the parametric set Λ d,1 with the additional condition |ab| ≤ q. It remains to show that ξ (i) h converges on the set Λ d,1 .

Lemma 5 . 4 .

 54 For each d > 0 and δ > 0, lim h→∞ sup θ∈Λ d,1 ∩(θ:θ 1 ≤0)

4 .

 4 Consider first (5.44) and(5.46). ByLemma 5.3 

  (5.49) Since, on the set Λ d,1 ∩ (θ : θ 1 ≤ 0), parameter b is bounded away from the end-points of the interval (-1, 1), then, for any δ > 0, lim h→∞ sup θ∈Λ d,1 ∩(θ:θ 1 ≤0)

motions and ε = (ε 1

 1 , ε 2 , . . .) be an sequence of i.i.d. random variables with Eε 1 = 0 and Eε 2 1 = σ 2 , which does not depend on W, W 1 . Random elements η = (ε, W, W 1 ) take on values in the space S = R ∞ × C(R + ) × C(R + ), where C(R + ) is the set of all continuous functions on R + = [0, ∞). Define the metric on S by the formula

λ 1 σ

 1 .53) It should be noted that all the sequences (x k ), (ũ k ), (ṽ k ) and the stopping time τ are defined by formulae (1.1),(3.2) and (1.7) with a given θ ∈ Γ 1 replacing in them ε = (ε k ) by ε = (ε k ). Besides we define a counterpart Ỹh for Y h in (3.6) by the formula Ỹh = the distribution of the random variable Ỹh coincides with that of Y h and therefore, for our purposes, it suffices to study its asymptotic distribution as h → ∞.

.60) Lemma 5 . 7 .Lemma 5 . 8 .

 5758 For each δ > 0,lim h→∞ P θ h -1/2 |ũ τ (h)-1 ετ(h) | > δ = 0 .(5.61) For any 0 < C < ∞ and a > 0,

1 / 4 ṽk- 1 .

 141 Now we are ready to show(5.58). Limiting in (5.59) h → ∞ and taking into account Lemma 5.4, Lemmas 5.6-5.9 and (5.53) we obtain lim suph→∞ P θ (|r 1 (h)| > δ) ≤ sup h>0 + P θ (ν 1 ( W1 ) ≥ a ) .In view of Lemma 5.6, limiting C → ∞ and then a → ∞, we come to (5.58).For a given h > 0 we define the random variableτ 0 (h) = inf{n ≥ 1 : n k=1 g2 k-1 ≥ hσ 2 }, inf{∅} = ∞ ,(5.69)which is a stopping time with respect to the filtration (F n ) in(5.67)

(- 1 )

 1 Jτ 0 (h)-1 -I > ∆ ∪ (τ 0 (h) ≤ m) ∪ ũ2 n > δ (ũ, ũ) n for some n ≥ m ∪ ṽ2 n > δ (ṽ, ṽ) n for some n ≥ m , δ = δ 4 -1 (1θ ( Jτ 0 (h)-1 -I > ∆) (5.78) +P θ (τ 0 (h) ≤ m) + P θ ũ2 n > δ (ũ, ũ) n for some n ≥ m +P θ ṽ2 n > δ (ṽ, ṽ) n for some n ≥ m .The case θ = (0, 1). Then a = -1, b = 1 and equations (3.2) yieldu k = (-1) k k j=1 j ε j , v k = k j=1 ε j .By Corollary 5.15 one hasσ -2 n -2 (u, u) n , n -2 (v, v) n L → (J 1 (W 1 ; 1), J 1 (W ; 1)) .(5.81)Introduce a sequence of functionalsf n (η) = (σn) -2 (u, u) n , (σn) -2 (v, v) n , τ (h)/ √ 2h , n = [h] .

- 1 τ 1 =

 11 lim h→∞ t τ (h) = κ, κ = J 1 ( W1 ; 1)/J 1 ( W ; 1) . ũ) τ (h) (ũ, ṽ) τ (h) (ũ, ṽ) τ (h) (ṽ, ṽ) τ (h) -1 ) ,where ξ n is defined in(2.16). Since for any δ > 0lim h→∞ P θ (|ξ τ (h) |tOn the other hand, by the definition of stopping time τ (h) in (1.7) and Proposition 2.2 one hasP θlim h→∞ h λ 1 (1 + κ -1 )/2 ũk-1 + λ 2 (1 + κ)/2 ṽk-1 ,

  3. 

	Now we can prove Proposition 2.2. We have to show that, for each d > 0
	and any δ > 0,	
	lim h→∞	sup θ∈Λ d,1

Key words: Autoregressive process, least squares estimate, sequential estimation, asymptotic normality .
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Lemma 5.10. (See, [START_REF] Shiryaev | Probability[END_REF] Ch VII, 3, Th4). Let (ξ n , F n ) be non-negative adapted sequence of random variables and (A n , F n ) be predictable increasing sequence which dominates (ξ n ) in the sense that, for any stopping time σ with respect to (F n ), one has Eξ σ ≤ EA σ . Then, for any ε > 0 and a > 0,

Proof of Lemma 5.8. Denote

(5.65)

Let us introduce the filtration (F n ) n≥0 with F 0 = σ{ν( W1 )}, F n = σ{ν( W1 ), ε1 . . . , εn } .

(5.67) Note that for each stopping time σ with respect to this filtration, one has

Therefore the processes (5.65)-(5.66) satisfy the conditions of Lemma 5.10.

Applying this Lemma with σ = τ (h) yields (5.62):

Hence Lemma 5.8.

Proof of Lemma 5.9. For any ∆ > 0 one has

Now we observe that the first term in the right-hand side of (5.70) is a martingale with respect to the filtration (F n ) in (5.67)) stopped at the time (5.69). According to the Theorem 2.1 from [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF], it is asymptotically normal with mean 0 and unit variance as h → ∞. Therefore to end the proof of Theorem 3.1 for θ ∈ Γ 1 it remains to prove that, for any δ > 0,

(5.72) First we will establish the following results.

Lemma 5.11. For each θ ∈ Γ 1 and any δ > 0,

(5.73) Lemma 5.12. For each θ ∈ Γ 1 and any δ > 0,

where

Proof of Lemma 5.11. One has the inclusions, for any ∆ > 0,

where I is 2 × 2 identity matrix,

By (5.56) one gets

)

By the same argument as in the proofs of Lemma 5.1 and Proposition 2.2, one can show that for every θ ∈ Γ 1 ∪ Γ 2 and for each m = 1, 2, . . . and any ∆ > 0, respectively,

The last two terms in (5.78) also converge to zero by the well-known property of AR(1)-processes with parameter in the interval [-1, 1] (see, [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF]). This completes the proof of Lemma 5.11.

Proof of Lemma 5.12. Note that

In view of (5.75) this quantity can be estimated as

Now we show that, for any δ > 0,

(5.80) Using (5.76) and taking into account that for

This, in view of (5.43) gives (5.80).

Now by applying Proposition 2.2 and Lemma 5.11 to (5.79) we come to desired result. Hence Lemma 5.12.

Taking into account (5.83), (5.84), one can show along the lines of the proof of Proposition 3.2 that, for any δ > 0,

Further analysis of (5.85) repeats the case of θ ∈ Γ 1 and is omitted.

This completes the proofs of Proposition 3.2 and Theorem 3.1 for θ ∈ 

with the solutions given by the formulae (2.19).

Now we introduce a sequence of functionals

where ξ n is defined in (2.16).

By Lemma 2.3 and Theorem 2.1 we have

By Theorem 5.5 there exists η such that η L = η and

(5.86)

On the basis of η we define (x k ), (ũ k ), (ṽ k ) and Ỹh . In view of (5.86) we have lim h→∞ J τ (h) = T 1 a.s., (5.87) where

ũk-1 ṽk-1 .

(5.89)

Besides, we will need the relations

which directly follow from (5.86).

Consider now the standardized deviation of the sequential estimate (1.6):

Its distribution coincides with that of the vector

Xk-1 εk constructed from (x k ), (ε k ). Representing the matrix

Taking into account (5.87), it suffices to establish the following result. Lemma 5.13. For each constant vector λ = (λ 1 , λ 2 ) with λ = 1, the random variable

is asymptotically normal with mean 0 and unit variance as h → ∞.

Proof of Lemma 5.13. Represent Ỹh as

k=1 ũk-1 εk (ṽ, ṽ)

By an argument similar to that in the proof of Proposition 3.2, one can verify that r 1 (h) satisfies (5.58). Further analysis of Ỹh holds true.

Let us check only that lim h→∞ (σ 2 h) -1 (g, g) τ (h) = 1 .

Using (5.92) one obtains

Now using (5.91) we rewrite the cross term as

From here, (5.90),(5.91) and (5.87) it follows that

This completes the proof of Theorem 3.1 for θ ∈ {(-2, -1), (2, -1)}.

Theorem 5.14. Let W (n) = (W (n) (t)) 0≤t≤1 and W

(n) 1

= (W (1982). This functional central limit theorem implies the following result.

Corollary 5.15. Let u k = (-1) k k j=1 (-1) j ε j , v k = k j=1 ε j . Then (σn) -2 (u, u) n , (σn) -2 (v, v) n L → (J 1 (W 1 ; 1), J 1 (W ; 1)) .

(5.93)