
HAL Id: hal-00270933
https://hal.science/hal-00270933

Submitted on 7 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative Game Semantics for Linear Logic
Ugo Dal Lago, Olivier Laurent

To cite this version:
Ugo Dal Lago, Olivier Laurent. Quantitative Game Semantics for Linear Logic. Computer Science
Logic, Sep 2008, Bertinoro, Italy. pp.230–245, �10.1007/978-3-540-87531-4_18�. �hal-00270933�

https://hal.science/hal-00270933
https://hal.archives-ouvertes.fr

Quantitative Game Semantics for Linear Logic

Ugo Dal Lago∗ Olivier Laurent†

Abstract

We present a game-based semantic framework into which the time complexity of any IMELL

proof can be read out of its interpretation. This gives a compositional view of the geometry

of interaction framework introduced by the first author. In our model the time measure is

given by means of slots, as introduced by Ghica in a recent paper. The cost associated to

a strategy is polynomially related to the normalization time of the interpreted proof, in the

style of a complexity-theoretical full abstraction result.

1 Introduction

Implicit computational complexity (ICC) is a very active research area lying at the intersection
between mathematical logic, computational complexity and programming language theory. In the
last years, a myriad of systems derived from mathematical logic (often through the Curry-Howard
correspondence) and characterizing complexity classes (e.g. polynomial time, polynomial space or
logarithmic space) have been proposed.

The techniques used to analyze ICC systems are usually ad-hoc and cannot be easily generalized
to other (even similar) systems. Moreover, checking whether extending an existing ICC system
with new constructs or new rules would break the correspondence with a given complexity class
is usually not easy: soundness must be (re)proved from scratch. Take, for example, the case of
subsystems of Girard’s linear logic capturing complexity classes: there are at least three distinct
subsystems of linear logic corresponding to polynomial time, namely bounded linear logic, light
linear logic and soft linear logic. All of them can be obtained by properly restricting the rules
governing the exponential connectives. Even if they have not been introduced independently,
correspondence with polynomial time had to be reproved thrice. Moreover, it is not clear how
robust the correspondence with polynomial time is. In other words, there is not any principled
way to check whether extending one of the above systems with new logical rules would break
(polytime) soundness. We need to understand why certain restrictions on the usual comonoidal
exponential discipline in linear logic lead to characterizations of certain complexity classes.

This is the typical situation where semantics can be useful. And, indeed, some proposals
for semantic frameworks into which some existing ICC systems can be interpreted have already
appeared in the literature. Moreover, there are some proposals for semantic models in which
the interpretation “reveals” quantitative, intensional, properties of proofs and programs. One of
them [5] is due to the first author and is based on context semantics. There, the complexity of a
proof is obtained by a global analysis of its interpretation as a set of paths.

In this paper, we show that the above mentioned context semantics can be put into a more
interactive form by defining a game model for multiplicative and exponential linear logic and
showing a quantitative correspondence between the interpretation of any proof and the time needed
to normalize the proof.

Context semantics is a model of Girard’s geometry of interaction. As a consequence, turning
it into an AJM game model should not be difficult (at least in principle), due to the well-known

∗Dipartimento di Scienze dell’Informazione, Università di Bologna. dallago@cs.unibo.it

Partially supported by a Marie Curie EIF grant “ASFIX”.
†Preuves Programmes Systèmes, CNRS – Université Paris 7. Olivier.Laurent@pps.jussieu.fr

Partially supported by the French ANR “NO-CoST” project (JC05 43380).

1

A ` A
A

Γ ` A ∆, A ` B

ς(Γ, ∆) ` B
U

Γ ` B
ς(Γ, !A) ` B

W
Γ, !A, !A ` B

ς(Γ, !A) ` B
C

Γ, A ` B

ς(Γ) ` A(B
R(

Γ ` A ∆, B ` C

ς(Γ, ∆, A(B) ` C
L(

Γ ` A ∆ ` B
ς(Γ, ∆) ` A ⊗ B

R⊗

Γ, A, B ` C

ς(Γ, A ⊗ B) ` C
L⊗

A1, . . . , An ` B

ς(!A1, . . . , !An) `!B
P!

Γ, A ` B

ς(Γ, !A) ` B
D!

Γ, !!A ` B

ς(Γ, !A) ` B
N!

Figure 1: A sequent calculus for IMELL

strong correspondence between the two frameworks (see [3], for example). But there are at least
two problems: first of all, the context semantics framework described in [5] is slightly different
from the original one and, as such, it is not a model of geometry of interaction. This is why we
introduced a lifting construction in our game model.

Moreover, the global analysis needed in [5] to extract the complexity of a proof from its
interpretation cannot be easily turned into a more interactive analysis, in the spirit of game
semantics. The extraction of time bounds from proof interpretations is somehow internalized here
through the notion of time analyzer (see Section 2). One of the key technical lemmas towards
the quantitative correspondence cited above is proved through a game-theoretical reducibility
argument (see Section 4).

Another semantic framework designed with similar goals is Ghica’s slot games [7]. There,
however, the idea is playing slots in correspondence with any potential redex in a program, while
here we focus on exponentials. On the other hand, the idea of using slots to capture intensional
properties of proofs (or programs) in an interactive way is one of the key ingredients of this paper.
In Section 5 the reader can find a more detailed comparison with Ghica’s work. To keep the
presentation simple, we preferred to adopt Ghica’s way of introducing cost into games, rather
than Leperchey’s time monad.

In Baillot and Pedicini’s geometry of interaction model [4], the “cost” of a proof is strongly
related to the length of regular paths in its interpretation. But this way, one can easily define a
family of terms which normalize in linear time but have exponential cost.

2 Syntax

We here introduce multiplicative exponential linear logic as a sequent calculus. It would be more
natural to deal with proof-nets instead of the sequent calculus, but our semantic constructions will
rely on a precise sequentiality in proof constructions that we would have to rebuild in a proof-net
setting.

The language of formulas is defined by the following productions:

A ::= α | A(A | A ⊗ A | !A

where α ranges over a countable set of atoms. A context is a sequence Γ = A1, . . . , An of formulas.
If Γ = A1, . . . , An is a context and ς : {1, . . . , n} → {1, . . . , n} is a permutation, then ς(Γ) stands
for the context Aς(1), . . . , Aς(n).

The rules in Figure 1 define a sequent calculus for (intuitionistic) multiplicative and exponential
linear logic, IMELL, with an exchange rule integrated in the other ones.

Given any proof π : Γ ` A, we can build another proof [π] : Φ, Γ ` A, where Φ is a sequence in
the form !k1(A1 (A1), . . . , !

kn(An (An). We say that “cuts are exposed” in [π]. It is defined
as follows, by induction on the structure of π:

2

• If the last rule in π is not U and the immediate subproofs of π are ρ1, . . . , ρn, then [π] is
obtained from [ρ1], . . . , [ρn] in the natural way. For a promotion rule, as an example, π and [π]
are given by:

ρ : A1, . . . , An ` B

ς(!A1, . . . , !An) `!B
P!

[ρ] : Φ, A1, . . . , An ` B

!Φ, ς(!A1, . . . , !An) `!B
P!

• For a cut rule, π and [π] are given by:

ρ : Γ ` B σ : ∆, B ` A

ς(Γ, ∆) ` A
U

[ρ] : Φ, Γ ` B [σ] : Ψ, ∆, B ` A

Φ, B(B, Ψ, ς(Γ, ∆) ` A
L(

If π : Γ ` A is a proof and [π] : Φ, Γ ` A, we can label formulas !k(B (B) in Φ with labels
reflecting the rules which introduced the two formula occurrences B. We explain this concept
through an example. If π is the following proof:

α(β ` α(β
A

α ` α
A

β ` β
A

α, α(β ` β
L(

α(β, α ` β
U

!(α(β), !α `!β
P!

!(α(β)⊗!α `!β
L⊗

β ` β
A

!β ` β
D!

!(α(β)⊗!α ` β
U

then [π] will be the following proof:

α(β ` α(β
A

α ` α
A

β ` β
A

α, α(β ` β
L(

(α(β)((α(β), α(β, α ` β
L(

!((α(β)((α(β)), !(α(β), !α `!β
P!

!((α(β)((α(β)), !(α(β)⊗!α `!β
L⊗

β ` β
A

!β ` β
D!

!((α(β)((α(β)), !β (!β, !(α(β)⊗!α ` β
L(

As expected, the conclusion of [π] includes two formulas which are not in the conclusion of π,
namely !((α (β)((α(β)) and !β (!β. The first one corresponds to the leftmost cut in π:
there, the two occurrences of α(β are introduced by an axiom and by a L(rule. So the natural
label for it is A−L(The second one corresponds to the rightmost cut in π: the two occurrences
of !β are introduced by P! and D!, respectively. As a consequence, the label for it is P! − D!. We
obtain the following decoration of [π]:

α(β ` α(β
A

α ` α
A

β ` β
A

α, α(β ` β
L(

[(α(β)((α(β)]A−L(
, α(β, α,` β

L(

[!((α(β)((α(β))]A−L(
, !(α(β), !α `!β

P!

[!((α(β)((α(β))]A−L(
, !(α(β)⊗!α `!β

L⊗

β ` β
A

!β ` β
D!

[!((α(β)((α(β))]A−L(
, [!β(!β]P!−D!

, !(α(β)⊗!α ` β
L(

Cut-elimination The cut-elimination steps π ρ are an easy adaptation of the usual ones.
We just have to take care of the exchange parts, but they can be handled without any particular
problem.

A1, . . . , An ` B

ς(!A1, . . . , !An) ` !B
P!

Γ, !B, !B ` C

ϑ(Γ), !B ` C
C

$(!A1, . . . , !An, Γ) ` C
U

A1, . . . , An ` B

ς(!A1, . . . , !An) ` !B
P!

A1, . . . , An ` B

ς(!A1, . . . , !An) ` !B
P!

Γ, !B, !B ` C

ς(!A1, . . . , !An), Γ, !B ` C
U

Γ, !A1, !A1, . . . , !An, !An ` C
U

!An, Γ, !A1, !A1, . . . , !An−1, !An−1 ` C
C

.

.

.

C

$(!A1, . . . , !An, Γ) ` C
C

3

A1, . . . , An ` B

ς(!A1, . . . , !An) ` !B
P!

Γ ` C

ϑ(Γ), !B ` C
W

$(!A1, . . . , !An, Γ) ` C
U

Γ ` C

!An, Γ ` C
W

.

.

.

W

!A2 . . . , !An, Γ ` C
W

$(!A1, . . . , !An, Γ) ` C
W

A1, . . . , An ` B

ς(!A1, . . . , !An) ` !B
P!

Γ, B ` C

ϑ(Γ), !B ` C
D!

$(!A1, . . . , !An, Γ) ` C
U

A1, . . . , An ` B Γ, B ` C

Γ, A1, . . . , An ` C
U

!An, Γ, A1, . . . , An−1 ` C
D!

.

.

.

D!

!A2, . . . , !An, Γ, A1 ` C
D!

$(!A1, . . . , !An, Γ) ` C
D!

A1, . . . , An ` B

ς(!A1, . . . , !An) ` !B
P!

Γ, !!B ` C

ϑ(Γ), !B ` C
N!

$(!A1, . . . , !An, Γ) ` C
U

A1, . . . , An ` B

!A1, . . . , !An ` !B
P!

!!A1, . . . , !!An ` !!B
P!

Γ, !!B ` C

Γ, !!A1, . . . , !!An ` C
U

!An, Γ, !!A1, . . . , !!An−1 ` C
N!

.

.

.

N!

!A2, . . . , !An, Γ, !!A1 ` C
N!

$(!A1, . . . , !An, Γ) ` C
N!

A1, . . . , An ` B

ς(!A1, . . . , !An) ` !B
P!

ϑ(B1, . . . , Bm, B) ` C

!B1, . . . , !Bm, !B ` !C
P!

$(!A1, . . . , !An, !B1, . . . , !Bm) ` !C
U

A1, . . . , An ` B ϕ(B1, . . . , Bm), B ` C

ϑ(B1, . . . , Bm, 〈A1, . . . , An〉) ` C
U

$(!A1, . . . , !An, !B1, . . . , !Bm) ` !C
P!

where ϑ(B1, . . . , Bm, 〈A1, . . . , An〉) is Bϑ(1), . . . , Bϑ(k−1), A1, . . . , An, Bϑ(k+1), . . . , Bϑ(m) if ϑ−1(m+
1) = k. To avoid stupid loops, we allow a cut rule c to commute upwards with another cut rule
d during reduction only if d introduces the left premise of c (and not if d introduces the right
premise of c).

For our complexity analysis to make sense, we will restrict the cut elimination procedure to
a particular strategy of reduction called surface reduction. From a proof-net point of view it
corresponds to reducing cuts at depth 0 only. In a sequent calculus setting, we only apply a
reduction step to a cut rule if it is not above a promotion rule P!.

For practical reasons, we introduce a particular atomic formula U and we extend the IMELL

system with the following “pseudo”-rules (which are not valid from a logical point of view):

` X
a Γ ` A

ς(X, Γ) ` A
w

where X is any atomic formula: α or U.
This allows us to define a proof TAA of A ` U and a proof TA0

A of ` A. TAA is called the time
analyzer of A. They are defined by mutual induction on A:

` U
a

TAα : α ` U
w TA0

α : ` α
a

TAA : A ` U

TAB : B ` U

U, B ` U
w

A, B ` U
U

TAA⊗B : A ⊗ B ` U
L⊗

TA0

A
: ` A TA0

B
: ` B

TA0

A⊗B
: ` A ⊗ B

R⊗

TA0

A
: ` A TAB : B ` U

TAA(B : A(B ` U
L(

TAA : A ` U

TA0

B
: ` B

U ` B
w

A ` B
U

TA0

A(B
: ` A(B

R(

` U
a

TA!A : !A ` U
W

TA0

A
: ` A

TA0

!A
: ` !A

P!

4

3 Game Semantics

The game model we use is based on the constructions presented in [1]. We extend it with the sim-
plest (and well known) exponential construction (by enriching moves with copy indexes) together
with a lifting operation (adding two fresh moves at the beginning of a game).

3.1 Games

A game A consists in:
• A set of moves MA. vA is the prefix relation over M∗

A, i.e., s vA r iff s is a prefix of r. v
takes the place of vA when the underlying game A is clear from the context.

• A function λA : MA → {P, O}. λA denotes the function from MA to {P, O} defined by
λA(m) 6= λA(m). M~

A denotes the subset of M∗
A containing alternated, opponent-initiated

sequences only, i.e., λA(m) = O whenever ms ∈ M~

A and, moreover, λA(m) 6= λA(n) whenever
smnr ∈ M~

A . MP
A and MO

A are subsets of MA defined in the natural way.
• A set PA of valid plays such that PA ⊆ M~

A and PA is closed under prefixes.
The language E of exponential signatures is defined by induction from the following set of pro-
ductions: t, s, u ::= f | e | l(t) | r(t) | p(t) | n(t, t).

3.2 Constructions on Games

To each connective corresponds a game construction. In the particular case of the exponential
connective !, we decompose its interpretation in our model into a “sequentiality construction”
given by lifting and a “copying construction” given by a traditional exponential construction with
copy indexes given by exponential signatures.
• Atomic game α:

• Mα = {αP, αO}.
• λα(αP) = P and λα(αO) = O.
• Pα is {ε, αO, αO · αP}.

One particular atomic game is called U with moves denoted by a (instead of αP) and q (instead
of αO).

• Tensor game A ⊗ B:
• MA⊗B = MA + MB . If s ∈ M∗

A⊗B , then sA denotes the subsequence of s consisting of
moves in MA. Similarly for sB .

• λA⊗B = λA + λB .
• The elements of PA⊗B are sequences s ∈ M~

A⊗B such that sA ∈ PA, sB ∈ PB .
• Arrow game A(B:

• MA(B = MA + MB.
• λA(B = λA + λB .
• The elements of PA(B are sequences s ∈ M~

A(B such that sA ∈ PA, sB ∈ PB .
• Lifting game ↓A:

• M↓A = MA + {open, close}.
• λ↓A(m) = λA(m) whenever m ∈ MA, λ↓A(open) = O, λ↓A(close) = P.
• P↓A is {ε, open} ∪ {open · close · s | s ∈ PA}.

• Exponential game #A:
• M#A = E ×MA. Given any sequence s in M∗

#A and any exponential signature t, st denotes
the subsequence of s consisting in moves in the form (t, m). Given any sequence s in M ∗

A

and any exponential signature t, t × s denotes the sequence in M ∗
#A obtained by pairing

each move in s with t.
• λ#A(t, m) = λA(m).
• The elements of P#A are sequences s ∈ M~

#A such that for every t ∈ E , st = t × r with
r ∈ PA.

We will often use the notation !A for #↓A.

5

3.3 Strategies

Proofs are interpreted as particular strategies over games. However since we are not looking for
full completeness results (but for complexity full abstraction instead), we are not particularly
restrictive on the kind of strategies we deal with. There is no particular notion of uniformity on
strategies such as history-freeness, innocence, etc. Important properties of strategies coming from
proofs will be recovered through realizability (see Section 4).

A strategy σ over a game A is a non-empty set of even-length plays in PA satisfying the
following conditions:
• σ is even-prefix-closed ;
• σ is deterministic: if smn ∈ σ, smo ∈ σ, then n = o.

A strategy σ over A is total if s ∈ σ and sm ∈ PA implies smn ∈ σ for some n ∈ MA.
Composition of strategies can be defined in the usual way. Given a strategy σ over A (B

and τ over B(C, we can first define σ ‖ τ as follows:

σ ‖ τ = {s ∈ (MA ∪ MB ∪ MC)∗ | sA,B ∈ σ ∧ sB,C ∈ τ}.

The composition of σ and τ , denoted σ; τ is simply σ; τ = {sA,C | s ∈ σ ‖ τ}.

Proposition 1 If σ is a strategy over A (B and τ is a strategy over B (C, then σ; τ is a
strategy over A(C.

A useful restriction on strategies is given by history-free strategies σ satisfying: if sm·nextσ(m) ∈
PA then sm ·nextσ(m) ∈ σ if and only if s ∈ σ where nextσ is the generating partial function from
MO

A to MP
A. The composition of two history-free strategies is an history-free strategy generated by

the composition of generating functions. Some of the strategies we use happen to be history-free,
but not all of them are.

The history-free identity strategy idA over A(A is given by the generating function (assume
A(A is A1 (A2):

∀m ∈ MO
A .next idA

(mA2) = mA1

∀m ∈ MP
A.next idA

(mA1) = mA2

According to [1], games and strategies define a symmetric monoidal closed category (SMCC).

3.4 Constructions on Strategies

We describe elementary constructions on strategies which, once plug together, will allow us to
interpret proofs in the game model.
• Left-lifting Strategy: Given a strategy σ over the game A ⊗ B (C, the subset ll(σ) of

P↓A⊗B(C is defined as follows:

ll(σ) = {ε} ∪ {m · open↓A | ∃ms ∈ σ} ∪ {m · open↓A · close↓A · s | ms ∈ σ}

In the same spirit, we can define llB(σ) over A ⊗ ↓B(C (so that llA(σ) = ll(σ)).
• Right-lifting Strategy: Given a strategy σ over the game A, the subset rl(σ) of P↓A is

defined as follows:
rl(σ) = {ε} ∪ {open↓A · close↓A · s | s ∈ σ}

Using the immediate bijection between M↓(A(B) and MA(↓B , if σ is a strategy over A(B,
we will often use rl(σ) as a strategy over A(↓B.

• Lifting Strategy: Given a strategy σ over the game A1 ⊗ · · · ⊗ An (B, the subset l(σ) of
P↓A1⊗···⊗↓An(↓B is defined by l(σ) = llA1(. . . llAn

(rl(σ))).
• Dereliction Strategy: The subset dA of P#A(A is the one induced by the following (assume

#A(A is #A1 (A2):

∀m ∈ MO
A .nextdA

(mA2) = (e, m)#A1

∀m ∈ MP
A.nextdA

((e, m)#A1) = mA2

6

• Weakening Strategy: The subset wA of P#A(A is the one induced by the following (assume
#A(A is #A1 (A2):

∀m ∈ MO
A .nextwA

(mA2) = (f, m)#A1

∀m ∈ MP
A.nextwA

((f, m)#A1) = mA2

In spite of their similarity, the dA and wA strategies will be used in a quite different manner
for interpreting proofs.

• Digging Strategy: The subset nA of P#↓A(↓#↓#↓A is the one induced by the following
(assume #↓A(↓#↓#↓A is #↓A1 (↓#↓#↓A2):

nextnA
(open↓#↓#↓A2

) = (f, open)#↓A1

nextnA
((f, close)#↓A1) = close↓#↓#↓A2

nextnA
((t, open)↓#↓#↓A2) = (p(t), open)#↓A1

nextnA
((p(t), close)#↓A1) = (t, close)↓#↓#↓A2

∀m ∈ MO
A .nextnA

((t, (s, m))↓#↓#↓A2) = (n(t, s), m)#↓A1

∀m ∈ MP
A.nextnA

((n(t, s), m)#↓A1) = (t, (s, m))↓#↓#↓A2

• Contraction Strategy: The subset cA of P#↓A(↓#↓A⊗#↓A is the one induced by the follow-
ing (assume #↓A(↓#↓A ⊗ #↓A is #↓A1 (↓#↓A2 ⊗ #↓A3):

nextcA
(open↓#↓A2

) = (f, open)#↓A1

nextcA
((f, close)#↓A1) = close↓#↓A2

∀m ∈ MO
A .nextcA

((t, m)↓#↓A2) = (l(t), m)#↓A1

∀m ∈ MP
A.nextcA

((l(t), m)#↓A1) = (t, m)↓#↓A2

∀m ∈ MO
A .nextcA

((t, m)#↓A3) = (r(t), m)#↓A1

∀m ∈ MP
A.nextcA

((r(t), m)#↓A1) = (t, m)#↓A3

• Promotion Strategy: Given a strategy σ over the game A1 ⊗· · ·⊗An (B, the subset p(σ)
of P#A1⊗···⊗#An(#B is defined as follows:

p(σ) = {s ∈ P#A1⊗···⊗#An(#B | ∀t.∃r ∈ σ.st = t × r}

We use the notation pl(σ) for p(l(σ)).

Proposition 2 For any game A, dA, wA, nA and cA are strategies. Let σ be a strategy over
A1 ⊗ · · · ⊗ An (B. Then rl(σ) and p(σ) are strategies and, if n ≥ 1, ll(σ) is a strategy.

Proof. We can proceed as follows:
• The history-free set of plays σ over A inductively generated by a partial function nextσ :

ε ∈ σ

sm · nextσ(m) ∈ σ if s ∈ σ and sm · nextσ(m) ∈ PA

is always a strategy: it is non-empty, it contains only even-length plays in PA, it is even-prefix-
closed, and it is deterministic since nextσ is a function.
As a consequence, dA, wA, nA and cA are strategies.

• The lifting constructions rl(σ) and ll(σ) on strategies are coming from those given in [8,
Chapter 3] which induce a structure of strong monad. For example:

ll(σ) = ↓A1 ⊗ A2 ⊗ · · · ⊗ An
str
−−→ ↓(A1 ⊗ · · · ⊗ An)

[σ]
−−→ B

where str is the strength of the monad (or the identity if n = 1).
• p(σ) is a strategy as given in the literature [2, 8].

�

7

3.5 Properties of Strategies

We give here a list of the key properties we need about the constructions given above.
• If σ : A0 (A and τ : A(B then σ; rl(τ) = rl(σ; τ).
• If σ : A0 (A and τ : A ⊗ B(C then (σ ⊗ id↓B); llB(τ) = llB((σ ⊗ idB); τ).
• If σ : A0 (A, δ : B0 (B and τ : A ⊗ B (C then (rl(σ) ⊗ δ); ll(τ) = (σ ⊗ δ); τ (in the

particular case where τ does not contain any move in A, this is equal to δ; τ).
• If σ : A ⊗ B(↓C, δ : D0 (D and τ : C ⊗ D(E then (ll(σ) ⊗ δ); ll(τ) = ll((σ ⊗ δ); ll(τ)).
• If σ : A1 ⊗ · · · ⊗ An (A and τ : A ⊗ An+1 ⊗ · · · ⊗ Am (B then (p(σ) ⊗ id#An+1 ⊗ · · · ⊗

id#Am
);p(τ) = p((σ ⊗ idAn+1 ⊗ · · · ⊗ idAm

); τ).
• If σ : A1 ⊗ · · · ⊗An (B then p(σ);dB = (dA1 ⊗ · · · ⊗ dAn

); σ (and p(σ);wB = (wA1 ⊗ · · · ⊗
wAn

); σ).
• If σ : A1 ⊗ · · · ⊗ An (B then pl(σ); cB = (cA1 ⊗ · · · ⊗ cAn

); l(pl(σ)) ⊗ pl(σ) (up to some
permutation in the second composition turning ↓!A1 ⊗ !A1 ⊗· · · ⊗↓!An ⊗ !An into ↓!A1 ⊗· · ·⊗
↓!An ⊗ !A1 ⊗ · · · ⊗ !An).

• If σ : A1 ⊗ · · · ⊗ An (B then pl(σ);nB = (nA1 ⊗ · · · ⊗ nAn
); l(pl(pl(σ))).

3.6 Interpretation of Proofs

We define the strategy JπK interpreting a proof π.
The multiplicative rules are interpreted according to the symmetric monoidal closed structure

of the category of games and strategies. The interpretation of the exponential rules is based on
the constructions described above.
• Weakening: if σ is a strategy over Γ(B, it is also a strategy over A ⊗ Γ(B and we can

build (w↓A ⊗ idΓ); ll(σ) as a strategy over !A ⊗ Γ(B.
• Contraction: if σ is a strategy over !A ⊗ !A ⊗ Γ (B, we can build (cA ⊗ idΓ); ll(σ) as a

strategy over !A ⊗ Γ(B.
• Promotion: if σ is a strategy over A1 ⊗ · · · ⊗An (B, we can build pl(σ) as a strategy over

!A1 ⊗ · · · ⊗ !An (!B.
• Dereliction: if σ is a strategy over A ⊗ Γ(B, we can build (d↓A ⊗ idΓ); ll(σ) as a strategy

over !A ⊗ Γ(B.
• Digging: if σ is a strategy over !!A⊗Γ(B, we can build (nA ⊗ idΓ); ll(σ) as a strategy over

!A ⊗ Γ(B.

Theorem 1 (Soundness) If π ρ then JπK = JρK.

Proof. The multiplicative steps are given by the SMCC structure. The permutations of formulas
are handled by the symmetry of the SMCC structure. Since the key properties are given in the
previous section, we consider only a few cases:
• Contraction: If σ : A1 ⊗ · · · ⊗ An (B and τ : !B ⊗ !B ⊗ Γ(C, we have:

(pl(σ) ⊗ idΓ); ((cB ⊗ idΓ); ll(τ))

= ((pl(σ); cB) ⊗ idΓ); ll(τ)

= (((cA1
⊗ · · · ⊗ cAn

); l(pl(σ)) ⊗ pl(σ)) ⊗ idΓ); ll(τ)

= ((cA1
⊗ · · · ⊗ cAn

) ⊗ idΓ); (l(pl(σ)) ⊗ pl(σ) ⊗ idΓ); ll(τ)

= (cA1
⊗ · · · ⊗ cAn

⊗ idΓ); (ll!A1
(. . . ll!An

((rl(pl(σ)) ⊗ pl(σ) ⊗ idΓ); ll(τ))))

= (cA1
⊗ · · · ⊗ cAn

⊗ idΓ); (ll!A1
(. . . ll!An

((pl(σ) ⊗ pl(σ) ⊗ idΓ); τ)))

= (cA1
⊗ · · · ⊗ cAn−1

⊗ id!An
⊗ idΓ); (id↓!A1

⊗ id!A1
⊗ · · · ⊗ id↓!An−1

⊗ id!An−1
⊗ cAn

⊗ idΓ);

(ll!A1
(. . . ll!An

((pl(σ) ⊗ pl(σ) ⊗ idΓ); τ)))

= (cA1
⊗ · · · ⊗ cAn−1

⊗ id!An
⊗ idΓ);

(ll!A1
(. . . ll!An−1

((id!A1⊗!A1
⊗ · · · ⊗ id!An−1⊗!An−1

⊗ cAn
⊗ idΓ); ll!An

((pl(σ) ⊗ pl(σ) ⊗ idΓ); τ))))

= (cA1
⊗ id!A2

⊗ · · · ⊗ id!An−1
⊗ idΓ);

(ll!A1
(. . . (id!A1⊗!A1

⊗ · · · ⊗ id!An−1⊗!An−1
⊗ cAn

⊗ idΓ); ll!An
((pl(σ) ⊗ pl(σ) ⊗ idΓ); τ)))

8

• Promotion-promotion: If σ : A1 ⊗ · · · ⊗ An (B and τ : B ⊗ B1 ⊗ · · · ⊗ Bm ` C, we have:

(pl(σ) ⊗ id!B1⊗···⊗!Bm
);pl(τ) = p((l(σ) ⊗ id↓B1⊗···⊗↓Bm

); l(τ))

= p(llA1
(. . . llAn

((rl(σ) ⊗ id↓B1⊗···⊗↓Bm
); l(τ))))

= p(llA1
(. . . llAn

((rl(σ) ⊗ id↓B1⊗···⊗↓Bm
); llB(llB1

(. . . llBm
(rl(τ)))))))

= p(llA1
(. . . llAn

((σ ⊗ id↓B1⊗···⊗↓Bm
); llB1

(. . . llBm
(rl(τ))))))

= p(llA1
(. . . llAn

(llB1
(. . . llBm

((σ ⊗ idB1⊗···⊗Bm
); rl(τ))))))

= p(llA1
(. . . llAn

(llB1
(. . . llBm

(rl((σ ⊗ idB1⊗···⊗Bm
); τ))))))

= pl((σ ⊗ idB1⊗···⊗Bm
); τ)

�

We extend the interpretation to the formula U and to pseudo-rules. The pseudo-rule a is
interpreted by the strategy {ε, XO ·XP}. If σ is the interpretation of the premise of an application
of the pseudo-rule w, its conclusion is interpreted by {ε}∪{m·XO | ∃ms ∈ σ}∪{m·XO·XP·s | ms ∈
σ}. XO denotes αO if X = α and q if X = U. XP denotes αP if X = α and a if X = U.

If σ is the interpretation of a (pseudo)-proof, then σ is total.

4 Realizability

In order to prove properties of the strategies interpreting proofs, we are going to define a notion
of realizability between strategies and formulas.

The relations “σ P-realizes A”, σ P A, (with σ strategy over A) and “τ O-realizes A”, τ O A,
(with τ strategy over A(U) are defined in a mutually recursive way by induction on A:
• σ P α if σ = {ε, αO · αP}
• τ O α if τ = {ε, q · αO, q · αO · αP · a}
• σ P

U if σ = {ε, q · a}
• τ O

U if τ = idU

• σ P A ⊗ B if σA
P A and σB

P B with σA = {sA | s ∈ σ}. (We ask in particular that σA

and σB are strategies over A and B, respectively.)
• τ O A ⊗ B if for any σ P A, σ; τ O B and for any σ P B, σ; τ O A. (Using that, up to

the curryfication isomorphisms, τ can also be seen as a strategy over A ((B (U) or over
B((A(U).)

• σ P A(B if for any δ P A, δ; σ P B and for any τ O B, σ; τ O A
• τ O A(B if τA

P A and τB(U
O B

• σ P !A if for any exponential signature t, σ�t
P A with σ�t = {s�t | s ∈ σ} and s�t is

obtained from st by replacing any move (t, m) by m and by then erasing the initial open and
close moves if they appear (we ask in particular that σ�t is a strategy over A for any t).

• τ O !A if τ contains the play q · (e, open) or the play q · (f, open).

Lemma 1 If σ1
P A(B and σ2

P B(C then σ1; σ2
P A(C.

Proof. If δ P A then δ; (σ1; σ2) = (δ; σ1); σ2
P C. If τ O C then (σ1; σ2); τ = σ1; (σ2; τ) O

A. �

We now give an adequacy property relating proofs, strategies and realizability.

Proposition 3 For every proof π, the strategy JπK P-realizes the conclusion of π.

Proof. A first remark is that if σ P A then σ contains a non-empty play and if τ O A then
τ contains a play with a move in A (by induction on A). We now do the proof by induction on
π.
• Axiom: JπK = idA thus if δ P A then δ; JπK = δ P A and if τ O A, JπK; τ = τ O A.
• Cut: if σ1

P Γ (A and σ2
P A ((∆ (B), if δ P Γ, we have δ; (σ1; σ2) = (δ; σ1); σ2

with δ; σ1
P A thus δ; (σ1; σ2)

P ∆(B. If τ O ∆(B, we have (σ1; σ2); τ = σ1; (σ2; τ)
with σ2; τ

O A thus (σ1; σ2); τ
O Γ.

9

• Right tensor: if σ1
P Γ (A and σ2

P ∆ (B, and if δ P Γ ⊗ ∆ then δΓ
P Γ and

δ∆
P ∆ so that δΓ; σ1

P A and δ∆; σ2
P B, and finally δ; (σ1⊗σ2)

P A⊗B. If τ O A⊗B,
δ1

P Γ and δ2
P ∆, we have: (δ1 ⊗ id∆); (σ1 ⊗ σ2); τ = (δ1; σ1) ⊗ σ2; τ = σ2; ((δ1; σ1); τ),

but δ1; σ1
P A thus (δ1; σ1); τ

O B and (δ1 ⊗ id∆); (σ1 ⊗ σ2); τ
O ∆. In a similar way

(idΓ ⊗ δ2); (σ1 ⊗ σ2); τ
O Γ.

• Left tensor: the interpretation of the conclusion of the rule is the same as the interpretation
of the premise.

• Right implication: If σ P (Γ ⊗ A)(B and σ′ is obtained from σ by curryfication, assume
δ1

P Γ and δ2
P A then δ1; (δ2; σ

′) = (δ1 ⊗ δ2); σ
P B. If τ O A (B, τB

O B thus
σ; τB

O Γ ⊗ A. Since τA
P A we have τA; (σ; τB) O Γ and finally σ′; τ O Γ.

• Left implication: If σ1
P Γ(A and σ2

P (∆⊗B)(C (with σ′ : Γ⊗∆ ⊗ (A(B)(C
obtained by decurryfication from σ1 (σ′

2 where σ′
2 : B((∆(C) by curryfication of σ2) and

if δ P Γ⊗∆⊗ (A(B) then δ; σ′ = (δΓ; σ1); δA(B ; (δ∆; σ′′
2) P C (with σ′′

2 : ∆((B(C)
by curryfication of σ2), using σ′′

2
P ∆ ((B (C) coming from the Right implication

case. If τ O C, δ1
P Γ, δ2

P ∆ and δ3
P A (B then (δ1 ⊗ δ2); (σ

′; τ) = (δ1; σ1) (
(δ2; (σ2; τ)) O A (B since δ1; σ1

P A and δ2; σ2; τ
O B. Moreover (δ2 ⊗ δ3); (σ

′; τ) =
σ1; δ3; ((δ2; σ2); τ) O ∆ and (δ1 ⊗ δ3); (σ

′; τ) = (δ1; σ1); δ3; (σ2; τ) O ∆.
• Weakening: if σ P Γ(B (with σ′ obtained from σ by interpreting the weakening rule) and

if δ P Γ ⊗ !A then δΓ
P Γ and δ!A

P !A so that (δ!A)f
P A. Since δ!A is thus containing

the play (f, open) · (f, close), we can deduce δ; σ′ = (δΓ ⊗ δ!A); σ′ = δΓ; σ P B. If τ O B,
δ1

P Γ and δ2
P !A then δ1; (σ

′; τ) plays (f, open) as first move in !A since τ plays in B, and
δ2; (σ

′; τ) = σ; τ O Γ.
• Contraction: if σ P Γ⊗ !A⊗ !A(B (with σ′ obtained from σ by interpreting the contraction

rule) and if δ P Γ ⊗ !A then δΓ
P Γ and δ!A

P !A so that we can define δ1 P !A and
δ2 P !A (by δ1 = {(t1, m1) · · · (t2n, m2n) | (l(t1), m1) · · · (l(t2n), m2n) ∈ δ}, and similarly with
r for δ2) with δ; σ′ = (δΓ ⊗ δ1 ⊗ δ2); σ P B. If τ O B, δ1

P Γ and δ2
P !A (allowing us

to define, as above, δ1
2

P !A and δ2
2

P !A) then δ1; (σ
′; τ) plays (f, open) as first move in !A

since τ plays in B, and δ2; (σ
′; τ) = (δ1

2 ⊗ δ2
2); σ; τ O Γ.

• Dereliction: if σ P Γ ⊗ A (B (with σ′ obtained from σ by interpreting the dereliction
rule) and if δ P Γ ⊗ !A then δΓ

P Γ and δ!A
P !A so that (δ!A)e

P A and δ; σ′ =
(δΓ ⊗ (δ!A)e); σ

P B. If τ O B, δ1
P Γ and δ2

P !A then δ1; (σ
′; τ) plays (e, open) as first

move in !A since τ plays in B, and δ2; (σ
′; τ) = (δ2)�e; σ; τ O Γ.

• Digging: if σ P Γ ⊗ !!A (B (with σ′ obtained from σ by interpreting the digging rule)
and if δ P Γ ⊗ !A then δΓ

P Γ and δ!A
P !A so that we can define δ′ P !!A (by

δ′ = {(t1, (s1, m1)) · · · (t2n, (s2n, m2n)) | (n(t1, s1), m1) · · · (n(t2n, s2n), m2n) ∈ δ}) with δ; σ′ =
(δΓ⊗δ′); σ P B. If τ O B, δ1

P Γ and δ2
P !A (allowing us to define, as above, δ′2

P !!A)
then δ1; (σ

′; τ) plays (f, open) as first move in !A since τ plays in B, and δ2; (σ
′; τ) = δ′2; σ; τ O

Γ.
• Promotion: if σ P A1⊗· · ·⊗An (B (with σ′ obtained from σ by interpreting the promotion

rule) and if δi
P !Ai (1 ≤ i ≤ n), for any exponential signature t we have δi�t

P Ai thus
((δ1 ⊗ · · · ⊗ δn); σ′)�t = (δ1�t ⊗ · · · ⊗ δn�t); σ

P B. If τ O !B and δi
P !Ai (1 ≤ i ≤ n), for

any 1 ≤ i ≤ n, (δ1 ⊗ · · ·⊗ δi−1 ⊗ id!Ai
⊗ δi+1 ⊗ · · ·⊗ δn); σ′; τ plays (t, open) with t = e or t = f

as first move in !Ai since τ plays such a (t, open) as first move in !B and each δi contains the
play (t, open) · (t, close).

• Pseudo-rule a: σ P X by definition.
• Pseudo rule w: if σ P Γ (B (with σ′ obtained from σ by interpreting the w pseudo-rule)

and if δ P Γ⊗X then δΓ
P Γ and δX

P X . Since δX is thus containing the play XO ·XP,
we can deduce δ; σ′ = (δΓ ⊗ δX); σ′ = δΓ; σ P B. If τ O B, δ1

P Γ and δ2
P X then

δ1; (σ
′; τ) contains XO · XP and δ2; (σ

′; τ) = σ; τ O Γ.
�

As a consequence, JTAAK P A(U thus JTAAK O A (since idU
O

U).
A complete set of moves for any game A is a subset of MA defined by induction on the structure

of A:

10

• If A = α, the only complete set of moves for A is {αP, αO}.
• If A = B ⊗ C or A = B (C, CB is a complete set of moves for B and CC is a complete set

of moves for C, then CA = CB + CC is a complete set of moves for A.
• If A = !B, then any subset of MA containing the move (e, close) or the move (f, close) is a

complete set of move for A.

Proposition 4 If σ P-realizes A, τ O-realizes A and σ; τ is total, then the maximal sequence in
σ ‖ τ (seen as a set of moves of A) is complete.

Proof. By induction on A:
• If A = α, then σ = {ε, αO · αP} and τ = {ε, q · αO, q · αO · αP · a}. As a consequence, σ ‖ τ is a

complete set of moves.
• If A = B ⊗ C, then

σ ‖ τ = (σB ⊗ σC) ‖ τ ⊇ σB ‖ σC ; τ.

But both σC ; τ O B and σB
P B. By IH, σ ‖ τ contains a complete set of moves for B.

Symmetrically:
σ ‖ τ = (σB ⊗ σC) ‖ τ ⊇ σC ‖ σB ; τ.

Moreover, σB ; τ O C and σC
P C. By IH, σ ‖ τ contains a complete set of moves for C.

• If A = B(C, then
σ ‖ τ ⊇ τB ; σ ‖ τC(U.

But τB
P B, which implies τB ; σ P C. Moreover, τC(U

O C and, by IH, σ ‖ τ contains a
complete set of moves for C. Symmetrically:

σ ‖ τ ⊇ τB ‖ σ; τC(U

from which it follows that σ ‖ τ contains a complete set of moves for B.
• If A = !B, σ; τ 6= {ε} entails that σ ‖ τ is not empty thus contains the move (t, open) (with

t = e or t = f) played by (player in) τ in A. Then it also contains the move (t, close) played by
(player in) σ and it is a complete set of moves. Notice we haven’t used the IH here.

This concludes the proof. �

5 Complexity

In this Section, we show how to instrument games with slots, in the same vein as in Ghica’s
framework [7]. The idea is simple: slots are used by the player to communicate some quantitative
properties of the underlying proof to the opponent. But while in Ghica’s work slots are produced
in correspondence with any potential redex, here the player raises a slot in correspondence with
boxes, i.e. instances of the promotion rule. In Ghica’s slot games, the complexity of a program
can be read out of any complete play in its interpretation, while here the process of measuring
the complexity of proofs is internalized through the notion of time analyzer (see Section 2): the
complexity of π (with conclusion A) is simply the number of slots produced in the interaction
between JπK and JTAAK. Notice that the definition of TAA only depends on the formula A.

The symbol • is a special symbol called a slot. In the new setting, the set of moves for A, will
be the usual MA, while the notion of a play should be slightly changed. Given a game A and a
sequence s in (MA∪{•})∗, we denote by s◦ the sequence in M∗

A obtained by deleting any occurrence
of • in s. Analogously, given any subset σ of (MA ∪ {•})∗, σ◦ will denote {s◦ | s ∈ σ} ⊆ M∗

A.
A play-with-costs for A is a sequence s in (MA ∪{•})∗ such that s◦ ∈ PA, whenever s = r •mq

it holds that λA(m) = P and the last symbol in s (if any) is a move in MA. A strategy-with-costs
for the game A is a set σ of plays-with-costs for A such that σ◦ is a strategy (in the usual sense)
for A and, moreover, σ is slot-deterministic: if sm •k n ∈ σ and sm •h n ∈ σ, then k = h.

Composition of strategies-with-costs needs to be defined in a slightly different way than the
one of usual strategies. In particular, we need two different notions of projections: first of all, if
s ∈ (MA ∪MB ∪ {•})∗, we can construct sAX (where X ⊆ {P, O}) by extracting from s any move

11

m ∈ MA together with the slots immediately before any such m provided λA(m) ∈ X . But we can
even construct sA• , by only considering the slots which precede moves in MA but not the moves
themselves. Given strategies-with-costs σ over A (B and τ over B (C, we can first define
σ ‖ τ as follows:

σ ‖ τ = {s ∈ (MA ∪ MB ∪ MC ∪ {•})∗ | sAP,O,BP ∈ σ ∧ sBO,CP,O ∈ τ}.

The composition of σ and τ , denoted σ; τ is now simply

σ; τ = {sAP,O,B•,CP,O | s ∈ σ ‖ τ}.

In other words, we forget the moves in MB , but we keep all the slots produced by them.

Proposition 5 If σ is a strategy-with-costs over A (B and τ is a strategy-with-costs over
B(C, then σ; τ is a strategy-with-costs over A(C.

The strategy constructions we have seen so far can be turned into strategy-with-costs con-
structions. In the basic strategies, slots come into play only in rl(σ): in particular, rli(σ) =
{ε} ∪ {open↓A · •i · close↓A · s | s ∈ σ}. This way, the interpretation JπKi of any proof π is
parametrized on a natural number i.

We are in a position to define the complexity C(π) of any proof π. First, consider the shape
of any non-trivial play-with-costs s in a strategy-with-costs σ for U: it must have the following
shape q •i a. But observe that this play is the only non-trivial play-with-costs in σ, due to (slot)
determinacy. The integer i is called the complexity of σ, denoted C(σ). This way we can define the
complexity C(π) of any proof π with conclusion A as simply the complexity of π when composed
with the time analyzer: C(JπK1; JTAAK0). The complexity of π is defined for every π because
JπK; JTAAK P -realizes U (by Proposition 3) and, as a consequence, contains a non-empty play.
Given any play-with-costs s, C(s) is simply the number of occurrences of • in s.

5.1 Dynamics Under Exposed Cuts

In this Section, we will prove some lemmas about the preservation of semantics when cuts are
exposed as in the [·] construction (see Section 2). With JπKeca we denote the (unique) maximal
(wrt the prefix order) sequence in ι ‖ (JπK1

ec
; JTABK0), where [π] :!k1(A1 (A1), . . . , !

kn(An (

An), Γ ` C, JπKi
ec

= J[π]Ki, ι = J!k1 idA1 ⊗· · ·⊗!knidAn
K0 and B =

⊗
Γ(C. !kidA is the strategy

over !k(A (A) obtained by applying k times the interpretation of the promotion rule (with an
empty context) to the identity strategy. We are interested in studying how JπKeca evolves during
cut elimination for any proof π : Γ ` C. This will lead us to full abstraction. Indeed:

Remark 1 Please notice that the strategy from which we obtain the complexity of π is

τ = JπK1; JTABK0 = (ι; JπK1
ec

); JTABK0 = ι; (JπK1
ec

; JTABK0).

This implies that JπKeca contains exactly C(π) slots and, moreover, it contains a complete set of
moves for D = !k1(A1 (A1) ⊗ · · · ⊗!kn(An (An). This, in particular, is a consequence of
Proposition 4, since ι P D, (JπK1

ec
; JTABK0) O D and their composition is total.

The cut-elimination relation can be thought of as the union of nine reduction relations
x

where x ranges over the set R = {T ,X ,⊗,(, C,D,N ,W , !−!}. They correspond to commuting,
axiom, tensor, linear arrow, contraction, dereliction, digging, weakening and promotion-promotion

cut-elimination steps. If X ⊆ R or x ∈ R, then
X
 and

x
 have the obvious meaning. We can

consider a reduction relation that postpones !−!-cuts at the very end of the computation. The

resulting reduction relation is denoted with ↪→. Again,
X
↪→ and

x
↪→ (where x ∈ R and X ⊆ R) have

their natural meaning.
We need to analyze how JρKeca differs from JπKeca if π

x
 ρ. Clearly, this crucially depends on

x ∈ R, since cuts are exposed in [π] and [ρ].

12

Lemma 2 (Commuting steps) If π
T
 ρ, then JπKeca = JρKeca .

Proof. Trivial. �

Lemma 3 (Axiom) If π
X
 ρ, then C(JπKeca) = C(JρKeca).

Proof. We only consider the case where the cut reduced in π is the last rule of π. The other cases
can be reduced to this one by an easy induction. Moreover, we assume that the right premise of
the cut under consideration is the conclusion of an axiom (the other case is similar). π is the proof

σ1 : ∆1 ` B1 . . . σn : ∆n ` Bn

ϑ(Γ) ` A A ` A

ς(Γ) ` A
U

and ρ is simply
σ1 : ∆1 ` B1 . . . σn : ∆n ` Bn

ς(Γ) ` A

Moreover, [π] is

[σ1] : Ψ1, ∆1 ` B1 . . . [σn] : Ψn, ∆n ` Bn

Φ, ϑ(Γ) ` A A ` A

Φ, [A(A], ς(Γ) ` A
L(

and [ρ] is
[σ1] : Ψ1, ∆1 ` B1 . . . [σn] : Ψn, ∆n ` Bn

Φ, ς(Γ) ` A

Observe that:

[π] : Φ1, [A1 (A2]x−A, Γ1 ` A

[ρ] : Φ1, Γ1 ` A

Now, consider the maximal sequence JρKeca in ι ‖ (JρK1
ec

; JTADK0) where D is the conclusion of π,
and the maximal sequence JπKeca in ι ‖ (JπK1

ec
; JTADK0). The following equation holds:

JρKeca = JπKeca{·/mA1mA2 , ·/mA2mA1}

Notice, however, that any slot in JπKeca is preserved. This includes, in particular, slots coming
from any of the σi. �

Lemma 4 (Tensor) If π
⊗
 ρ, then JπKeca = JρKeca .

Proof. We only consider the case where the cut reduced in π is the last rule of π. The other cases
can be reduced to this one by an easy induction. With this hypothesis, π is the proof

σ1 : Ω1 ` B σ2 : Ω2 ` C

$(Ω1, Ω2) ` B ⊗ C

θ : ∆, B, C ` A

∆, B ⊗ C ` A

Γ ` A
U

and ρ is simply

σ1 : Ω1 ` B

σ2 : Ω2 ` C θ : ∆, B, C ` A

Ω2, ∆, B ` A
U

Γ ` A
U

Moreover, [π] is

[σ1] : Ψ1, Ω1 ` B [σ2] : Ψ2, Ω2 ` C

Ψ1, Ψ2, $(Ω1, Ω2) ` B ⊗ C

[θ] : Ξ, ∆, B, C ` A

Ξ, ∆, B ⊗ C ` A

Ψ1, Ψ2, [B ⊗ C (B ⊗ C], Ξ, Γ ` A
L(

13

and [ρ] is

[σ1] : Ψ1, Ω1 ` B

[σ2] : Ψ2, Ω2 ` C [θ] : Ξ, ∆, B, C ` A

Ψ2, [C (C], Ξ, Ω2, ∆, B ` A
L(

Ψ1, [B(B], Ψ2, [C (C], Ξ, Γ ` A
L(

Now, consider JρKeca . We can clearly find the same sequence in ι′ ‖ (JπK1
ec

; JTADK0). �

Lemma 5 (Linear Arrow) If π
(
 ρ, then JπKeca = JρKeca .

Proof. We only consider the case where the cut reduced in π is the last rule of π. The other cases
can be reduced to this one by an easy induction. With this hypothesis, π is the proof

θ : ∆, B ` C

∆ ` B(C

σ1 : Ω1 ` B σ2, Ω2, C ` A

$(Ω1, Ω2), B (C ` A

Γ ` A
U

and ρ is simply

σ1 : Ω1 ` B

θ : ∆, B ` C σ2 : Ω2, C ` A

∆, Ω2, B ` A
U

Γ ` A
U

Moreover, [π] is
θ : Ψ, ∆, B ` C

Ψ, ∆ ` B(C

σ1 : Ξ1, Ω1 ` B σ2 : Ξ2, Ω2, C ` A

Ξ1, Ξ2, $(Ω1, Ω2), B (C ` A

Ψ, [(B(C)((B (C)], Ξ1, Ξ2, Γ ` A
L(

and [ρ] is

σ1 : Ξ1, Ω1 ` B

θ : Ψ, ∆, B ` C σ2 : Ξ2, Ω2, C ` A

Ψ, [C (C], Ξ2, ∆, Ω2, B ` A
L(

Ξ1, [B(B], Ψ, [C (C], Ξ2, Γ ` A
L(

Now, consider JρKeca . We can clearly find the same sequence in ι′ ‖ (JπK1
ec

; JTADK0), which is
clearly maximal. �

Lemma 6 (Dereliction) If π
D
 ρ, then C(JπKeca) = C(JρKeca) + 1.

Proof. We only consider the case where the cut reduced in π is the last rule in π. The other cases
can be reduced to this one by an easy induction. With this hypothesis, π is

σ : D1, . . . , Dm ` B

ς(!D1, . . . , !Dm) ` !B
P!

θ : Γ, B ` C

ϑ(Γ), !B ` C
D!

$(!D1, . . . , !Dm, Γ) ` C
U

and ρ is
σ : D1, . . . , Dm ` B θ : Γ, B ` C

Γ, D1, . . . , Dm ` C
U

!Dm, Γ, D1, . . . , Dm−1 ` C
D!

...

D!

!D2, . . . , !Dm, Γ, D1 ` C
D!

$(!D1, . . . , !Dm, Γ) ` C
D!

Moreover, [π] is

[σ] : [A1], . . . , [An], D1, . . . , Dm ` B

[!A1], . . . , [!An], ς(!D1, . . . , !Dm) ` !B
P!

[θ] : Φ, Γ, B ` C

Φ, ϑ(Γ), !B ` C
D!

[!A1], . . . , [!An], [!B(!B], Φ, $(!D1, . . . , !Dm, Γ) ` C
L(

14

and [ρ] is
[σ] : [A1], . . . , [An], D1, . . . , Dm ` B [θ] : Φ, Γ, B ` C

[A1], . . . , [An], [B(B], Φ, Γ, D1, . . . , Dm ` C
L(

[A1], . . . , [An], [B(B], Φ, !Dm, Γ, D1, . . . , Dm−1 ` C
D!

...

D!

[A1], . . . , [An], [B(B], Φ, !D2, . . . , !Dm, Γ, D1 ` C
D!

[A1], . . . , [An], [B (B], Φ, $(!D1, . . . , !Dm, Γ) ` C
D!

Observe that:

[π] : [!A1], . . . , [!An], [!B1 (!B2]P!−D!
, Φ1, Γ1 ` C

[ρ] : [A1], . . . , [An], [B1 (B2], Φ1, Γ1 ` C

Now, consider ι ‖ (JρK1
ec

; JTAEK) and ι′ ‖ (JπK1
ec

; JTAEK), where E is the conclusion of ρ and π. It
is easy to realize that JρKeca can be simulated by the JπKeca , in such a way that

JρKeca = JπKeca{mBi
/(e, mBi

), ·/ •a (e, µ)!Bi
, mAi

/(e, mAi
), ·/ •b (e, µ)!Ai

}

where µ is a metavariable for either open or close. Observe that a = 1 when µ = close and i = 1
(a promotion in π raises a slot), a = 0 otherwise and b = 0 (ι does not raise any slot). But there
is exactly one (e, close)!B1 in JπKeca : at most one for obvious reasons (the same move is not played
twice), at least one from Proposition 4 (since strategies interpreting (pseudo)proofs are total).
The thesis easily follows. �

Lemma 7 (Contraction) If π
C
 ρ, then C(JπKeca) = C(JρKeca) + 1.

Proof. We only consider the case where the cut reduced in π is the last rule of π. The other cases
can be reduced to this one by an easy induction. With this hypothesis, π is

σ : D1, . . . , Dm ` B

ς(!D1, . . . , !Dm) ` !B
P!

θ : Γ, !B, !B ` C

ϑ(Γ), !B ` C
C

$(!D1, . . . , !Dm, Γ) ` C
U

and ρ is

σ : D1, . . . , Dm ` B

ς(!D1, . . . , !Dm) ` !B
P!

D1, . . . , Dm ` B

ς(!D1, . . . , !Dm) ` !B
P! θ : Γ, !B, !B ` C

ς(!D1, . . . , !Dm), Γ, !B ` C
U

Γ, !D1, !D1, . . . , !Dm, !Dm ` C
U

!Dm, Γ, !D1, !D1, . . . , !Dm−1, !Dm−1 ` C
C

...

C

$(!D1, . . . , !Dm, Γ) ` C
C

Moreover, [π] is

[σ] : [A1], . . . , [An], D1, . . . , Dm ` B

[!A1], . . . , [!An], ς(!D1, . . . , !Dm) ` !B
P!

[θ] : Φ, Γ, !B, !B ` C

Φ, ϑ(Γ), !B ` C
C

[!A1], . . . , [!An], [!B(!B], Φ, $(!D1, . . . , !Dm, Γ) ` C
L(

and [ρ] is

[σ :] : [A1], . . . , [An],D1, . . . ,Dm ` B

[!A1], . . . , [!An], ς(!D1, . . . , !Dm) ` !B
P!

[σ] : [A1], . . . , [An],D1, . . . ,Dm ` B

[!A1], . . . , [!An], ς(!D1, . . . , !Dm) ` !B
P! [θ] : Φ,Γ, !B, !B ` C

[!A1], . . . , [!An], [!B(!B],Φ, ς(!D1, . . . , !Dm), Γ, !B ` C
L(

[!A1], . . . , [!An], [!B(!B], [!A1], . . . , [!An], [!B(!B],Φ,Γ, !D1, !D1, . . . , !Dm, !Dm ` C
L(

[!A1], . . . , [!An], [!B(!B], [!A1], . . . , [!An], [!B(!B], Φ, !Dm, Γ, !D1, !D1, . . . , !Dm−1, !Dm−1 ` C
C

...

C

[!A1], . . . , [!An], [!B(!B], [!A1], . . . , [!An], [!B(!B], Φ,$(!D1, . . . , !Dm, Γ) ` C
C

15

Observe that:

[π] : [!A1], . . . , [!An], [!B1 (!B2]P!−C!
, Φ1, Γ1 ` C

[ρ] : [!A1
1], . . . , [!A

1
n], [!B1

1 (!B1
2], [!A2

1], . . . , [!A
2
n], [!B2

1 (!B2
2], Φ1, Γ1 ` C

Now, consider ι ‖ (JρK1
ec

; JTAEK) and ι′ ‖ (JπK1
ec

; JTAEK), where E is the conclusion of ρ and π. It
is easy to realize that JρKeca can be simulated by the JπKeca , in such a way that

JρKeca = JπKeca{·/ •a (f, µ)!Bi
, (t, m!B1

i
)/(l(t), m!Bi

), (t, m!B2
i
)/(r(t), m!Bi

),

·/ •b (f, µ)!Ai
, (t, m!A1

i
)/(l(t), m!Ai

), (t, m!A2
i
)/(r(t), m!Ai

)}

where µ is a metavariable for either open or close. Observe that a = 1 when µ = close and i = 1
(a promotion in π raises a slot), a = 0 otherwise and b = 0 (ι does not raise any slot). But there
is exactly one (f, close)!B1 in JπKeca : at most one for obvious reasons (the same move is not played
twice), at least one from Proposition 4 (since strategies interpreting (pseudo)proofs are total).
The thesis easily follows. �

Lemma 8 (Digging) If π
N
 ρ, then C(JπKeca) = C(JρKeca) + 1.

Proof. We only consider the case where the cut reduced in π is the last rule of π. The other cases
can be reduced to this one by an easy induction. With this hypothesis, π is

D1, . . . , Dm ` B

ς(!D1, . . . , !Dm) ` !B
P!

Γ, !!B ` C

ϑ(Γ), !B ` C
N!

$(!D1, . . . , !Dm, Γ) ` C
U

and ρ is
D1, . . . , Dm ` B

!D1, . . . , !Dm ` !B
P!

!!D1, . . . , !!Dm ` !!B
P! Γ, !!B ` C

Γ, !!D1, . . . , !!Dm ` C
U

!Dm, Γ, !!D1, . . . , !!Dm−1 ` C
N!

...

N!

!D2, . . . , !Dm, Γ, !!D1 ` C
N!

$(!D1, . . . , !Dm, Γ) ` C
N!

Moreover, [π] is

[A1], . . . , [An], D1, . . . , Dm ` B

[!A1], . . . , [!An], ς(!D1, . . . , !Dm) ` !B
P!

Φ, Γ, !!B ` C

Φ, ϑ(Γ), !B ` C
N!

[!A1], . . . , [!An], [!B(!B], Φ, $(!D1, . . . , !Dm, Γ) ` C
L(

and [ρ] is
[A1], . . . , [An], D1, . . . , Dm ` B

[!A1], . . . , [!An], !D1, . . . , !Dm ` !B
P!

[!!A1], . . . , [!!An], !!D1, . . . , !!Dm ` !!B
P! Φ, Γ, !!B ` C

[!!A1], . . . , [!!An], [!!B (!!B], Φ, Γ, !!D1, . . . , !!Dm ` C
L(

[!!A1], . . . , [!!An], [!!B(!!B], Φ, !Dm, Γ, !!D1, . . . , !!Dm−1 ` C
N!

...

N!

[!!A1], . . . , [!!An], [!!B(!!B], Φ, !D2, . . . , !Dm, Γ, !!D1 ` C
N!

[!!A1], . . . , [!!An], [!!B(!!B], Φ, $(!D1, . . . , !Dm, Γ) ` C
N!

16

Observe that:

[π] : [!A1], . . . , [!An], [!B1 (!B2]P!−N!
, Φ1, Γ1 ` C

[ρ] : [!!A1], . . . , [!!An], [!!B1 (!!B2], Φ1, Γ1 ` C

Now, consider ι ‖ (JρK1
ec

; JTAEK) and ι′ ‖ (JπK1
ec

; JTAEK), where E is the conclusion of ρ and π. It
is easy to realize that JρKeca can be simulated by the JπKeca , in such a way that

JρKeca = JπKeca{·/ •a (f, µ)!Bi
, (t, (s, mBi

))/(n(t, s), mBi
), (t, µ)!!Bi

/(p(t), µ)!Bi
,

·/ •b (f, µ)!Ai
, (t, (s, mAi

))/(n(t, s), mAi
), (t, µ)!!Ai

/(p(t), µ)!Ai
}

where µ is a metavariable for either open or close. Observe that a = 1 when µ = close and i = 1
(a promotion in π raises a slot), a = 0 otherwise and b = 0 (ι does not raise any slot). But there
is exactly one (f, close)!B1 in JπKeca : at most one for obvious reasons (the same move is not played
twice), at least one from Proposition 4 (since strategies interpreting (pseudo)proofs are total).
The thesis easily follows. �

Lemma 9 (Weakening) If π
W
 ρ, then C(JπKeca) = C(JρKeca) + 1.

Proof. We only consider the case where the cut reduced in π is the last rule of π. The other cases
can be reduced to this one by an easy induction. With this hypothesis, π is

D1, . . . , Dm ` B

ς(!D1, . . . , !Dm) ` !B
P!

Γ ` C
ϑ(Γ), !B ` C

W

$(!D1, . . . , !Dm, Γ) ` C
U

and ρ is
Γ ` C

!Dm, Γ ` C
W

...

W

!D2 . . . , !Dm, Γ ` C
W

$(!D1, . . . , !Dm, Γ) ` C
W

Moreover, [π] is

[A1], . . . , [An], D1, . . . , Dm ` B

[!A1], . . . , [!An], ς(!D1, . . . , !Dm) ` !B
P!

Φ, Γ ` C

Φ, ϑ(Γ), !B ` C
W

[!A1], . . . , [!An], [!B(!B], Φ, $(!D1, . . . , !Dm, Γ) ` C
L(

and [ρ] is
Φ, Γ ` C

Φ, !Dm, Γ ` C
W

...

W

Φ, !D2 . . . , !Dm, Γ ` C
W

Φ, $(!D1, . . . , !Dm, Γ) ` C
W

Observe that:

[π] : [!A1], . . . , [!An], [!B1 (!B2]P!−W!
, Φ1, Γ1,` C

[ρ] : Φ1, Γ1 ` C

Now, consider ι ‖ (JρK1
ec

; JTAEK) and ι′ ‖ (JπK1
ec

; JTAEK), where E is the conclusion of ρ and π. It
is easy to realize that JρKeca can be simulated by the JπKeca , in such a way that

JρKeca = JπKeca{·/ •a (f, µ)!Bi
, ·/ •b (f, µ)!Ai

}

17

where µ is a metavariable for either open or close. Observe that a = 1 when µ = close and i = 1
(a promotion in π raises a slot), a = 0 otherwise and b = 0 (ι does not raise any slot). But there
is exactly one (f, close)!B1 in JπKeca : at most one for obvious reasons (the same move is not played
twice), at least one from Proposition 4 (since strategies interpreting (pseudo)proofs are total).
The thesis easily follows. �

Lemma 10 (Box Commutation) If π
!−!
↪→ ρ, then C(JπKeca) = C(JρKeca) + 1.

Proof. We only consider the case where the cut reduced in π is the last rule of π. The other cases
can be reduced to this one by an easy induction. (Since we are considering the reduction relation
↪→, we can assume π to contain !−!-cuts, only.) With this hypothesis, π is

σ : A1, . . . , An ` B

ς(!A1, . . . , !An) ` !B
P!

θ : ϑ(B1, . . . , Bm, B) ` C

!B1, . . . , !Bm, !B ` !C
P!

$(!A1, . . . , !An, !B1, . . . , !Bm) ` !C
U

and ρ is
σ : A1, . . . , An ` B θ : ϕ(B1, . . . , Bm), B ` C

ϑ(B1, . . . , Bm, 〈A1, . . . , An〉) ` C
U

$(!A1, . . . , !An, !B1, . . . , !Bm) ` !C
P!

where ϑ(B1, . . . , Bm, 〈A1, . . . , An〉) is Bϑ−1(1), . . . , Bϑ−1(k−1), A1, . . . , An, Bϑ−1(k+1), . . . , Bϑ−1(m) if
ϑ(m + 1) = k. Moreover, [π] is

[σ] : Ψ1, A1, . . . , An ` B

!Ψ1, ς(!A1, . . . , !An) ` !B
P!

[θ] : Ψ2, ϑ(B1, . . . , Bm, B) ` C

!Ψ2, !B1, . . . , !Bm, !B ` !C
P!

!Ψ1, [!B(!B], !Ψ2, $(!A1, . . . , !An, !B1, . . . , !Bm) ` !C
L(

and [ρ] is
[σ] : Ψ1, A1, . . . , An ` B [θ] : Ψ2, ϕ(B1, . . . , Bm), B ` C

Ψ1, [B(B], Ψ2, ϑ(B1, . . . , Bm, 〈A1, . . . , An〉) ` C
L(

!Ψ1, [!(B (B)], !Ψ2, $(!A1, . . . , !An, !B1, . . . , !Bm) ` !C
P!

Observe that:

[π] : ς([!B1 (!B2]P!−P!
, Φ1), Γ1 ` C

[ρ] : ς([!(B1 (B2)], Φ1), Γ1 ` C

Now, consider ι ‖ (JρK1
ec

; JTAEK) and ι′ ‖ (JπK1
ec

; JTAEK), where E is the conclusion of ρ and π.
It is easy to realize that JρKeca can be simulated by the JπKeca , in such a way that JρKeca is a
permutation of

JπKeca{(t, open)!(B1(B2)/(t, open)!B2
(t, open!B1

), (t, close)!(B1(!B2)/ •a (s, close)!B1
(s, close)!B2

} (1)

where µ is a metavariable for either open or close. Observe that a = 1. Moreover, the only s
matching the pattern in (1) is f, since f is the only exponential signature played by JTAEK. But
there is exactly one occurrence of the sequence (s, close)!B1(s, close)!B2 in JπKeca : at most one
for obvious reasons (the same move is not played twice), at least one from Proposition 4 (since
strategies interpreting (pseudo)proofs are total). The thesis easily follows. �

5.2 Full Abstraction

We now have all the required material to state and prove our key result: full abstraction of the
game model with respect to the reduction length (Theorems 2 and 3).

Given a proof π and any reduction relation →, [π]→ and ||π||→ denote the maximum length
of a reduction sequence starting in π (under →) and the maximum size of any reduct of π (under
→), respectively. We note |π| the size of a proof π.

18

Lemma 11 For every proof π, [π] = [π]↪→ and ||π|| = ||π||↪→.

Proof. Whenever π
!−!
 ρ

x
 σ and x 6= !−!, there are θ1, . . . , θn (where n ≥ 1) such that

π
x1
 θ1

x2
 · · ·

xn
 θn

xn+1
 σ, and xi+1 = !−! whenever xi = !−!. For example, if π

!−!
 ρ

W
 σ and the

box erased in the second step is exactly the one created by the first step, then clearly π
W
 θ

W
 σ.

As a consequence, for any sequence π1 · · · πn there is another sequence ρ1 · · · ρm

such that π1 = ρ1, πn = ρm and m ≥ n. This proves the first claim. Now, observe that for any
1 ≤ i ≤ n there is j such that |ρj | ≥ |πi|: a simple case analysis suffices. This concludes the proof.
�

Proposition 6 If π
{C,D,N ,W,!−!}

↪→ ρ then C(π) = C(ρ) + 1.

Proof. From Remark 1, we know that C(π) = C(JπKeca). But by Lemmas 6, 7, 8, 9 we obtain
the thesis. �

Proposition 7 If π
{T ,X ,⊗,(}

↪→ ρ then C(π) = C(ρ).

Proof. We can proceed exactly as for Proposition 6. �

Lemma 12 If π is cut-free, then C(π) ≤ |π|.

Proof. An easy induction on π. �

Proposition 8 If π rewrites to ρ in n steps by the T rule, then |π| = |ρ| and n ≤ 2|π|2.

Proof. The equality |π| = |ρ| can be trivially verified whenever π
T
↪→ ρ. Now, for any proof π,

define |π|comm as the the sum, over all instances of the U rule inside π, of |σ|cut + |σ|+ |θ|, where σ
(respectively, θ) is the left (respectively, right) premise of the cut and |σ|cut is simply the number

of instances of the cut rule in σ. For obvious reasons, 0 ≤ |π|comm ≤ 2|π|2. Moreover, if π
T
↪→ ρ,

then |π|comm > |ρ|comm . For example, consider the following commutative reduction step:

π : Γ ` A

ρ : ∆, A ` B σ : Ω ` C

ς(∆, A, Ω) ` B ⊗ C
R⊗

θ : ϑ(Γ, ∆,Ω) ` B ⊗ C
U

π : Γ ` A ρ : ∆, A ` B

$(Γ, ∆) ` B
U

σ : Ω ` C

ξ : ϑ(Γ, ∆,Ω) ` B ⊗ C
R⊗

It is easy to see that |θ| = |ξ| but that |θ|comm > |ξ|comm . Indeed:

|π|cut + |π| + |ρ| + |σ| + 1 > |π|cut + |π| + |ρ|.

Another interesting case is the following:

π : Γ ` A ρ : ∆, A ` B

ς(Γ, ∆) ` B
U

σ : Ω, B ` C

θ : ϑ(Γ, ∆,Ω) ` C
U

π : Γ ` A

ρ : ∆, A ` B σ : Ω, B ` C

$(∆, Ω), A ` C
U

ξ : ϑ(Γ, ∆, Ω) ` C
U

Again, |θ| = |ξ| but |θ|comm > |ξ|comm . Other cases are similar. This concludes the proof. �

Theorem 2 For every proof π, C(π) ≤ [π] + ||π||

Proof. An easy consequence of Proposition 6, Proposition 7 and Lemma 12 �

Theorem 3 There is a polynomial p : N × N → N such that for every proof π, [π] , ||π|| ≤
p(C(π), |π|).

19

Proof. By Lemma 11, the thesis easily follows from [π]↪→, ||π||↪→ ≤ p(C(π), |π|). Our first task
will be to analyze the shape of any box you can find during the normalization of π by ↪→ up to
the point where you begin to fire !−! cuts. But it is easy to prove that any such box is just a
subproof of π, possibly endowed with n promotions rules (where n is less than the total number of
N! cuts fired during normalization). As a consequence, any such box has at most size |π| + C(π).
Now, we can easily bound ||π||↪→: at any C or N normalization step, the size of the underlying
proof increases by at most |π| + C(π) (but the complexity strictly decreases), while in any other
case the size decreases. As a consequence, ||π||↪→ ≤ C(π)(|π| + C(π)). Now, the total number of
non-commuting reduction steps is at most C(π) + C(π)(|π| + C(π)). Between any of them, there
are at most 2||π||2↪→ commuting steps. As a consequence:

[π]↪→ ≤ C(π) + C(π)(|π| + C(π)) + (C(π) + C(π)(|π| + C(π))) 2||π||2↪→
= (C(π) + C(π)(|π| + C(π))) (1 + 2||π||2↪→)

≤ (C(π) + C(π)(|π| + C(π))) (1 + 2(C(π)(|π| + C(π)))2).

This concludes the proof. �

6 Further Work

The main defect of our approach is the strong use of sequentiality information from sequent calculus
proofs in the game interpretation. The two main approaches to get rid of this sequentiality are
the use of non-deterministic strategies or of clusters of moves (when interpreting the promotion
rule). This way we would be able to directly interpret proof-nets. In a similar spirit, we have used
an exponential construction for games based on a grammar of exponential signatures, as usually
done with context semantics. This is known to lead to not-very-satisfactory properties for !: for
example, weakening is not neutral with respect to contraction, contraction is not commutative,
etc. However, an answer to this problem should easily come from the solution proposed in the
AJM setting with the notion of equivalence of strategies [2]. All these ingredients would probably
allow us to turn our game model into a true categorical model of intuitionistic linear logic.

Another weakness is the restriction to surface reduction. We think adaptations to head reduc-
tion or to reduction strategies leading to normal forms should be possible by modifying the time
analyzer in order to interactively access to “deeper” parts of proofs.

The notion of realizability we have introduced is tuned to reach the result we need, namely
Proposition 4. However, it seems possible to modify it in various ways and to use it for very
different applications in the more general context of game semantics.

Very recently, another proposal leading to similar observations but being based on relational
semantics has appeared [6]. Possible correspondences between our game-theoretical analysis and
the analysis done in [6] could come from works about projecting strategies into relations.

References

[1] Samson Abramsky. Semantics of interaction. In Peter Dybjer and Andrew Pitts, editors, Se-
mantics and Logics of Computation, Publications of the Newton Institute, pages 1–32. Cam-
bridge University Press, 1997.

[2] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF.
Information and Computation, 163(2):409–470, December 2000.

[3] Patrick Baillot. Approches dynamiques en sémantique de la logique linéaire : jeux et géométrie
de l’interaction. Thèse de doctorat, Université Aix-Marseille II, 1999.

[4] Patrick Baillot and Marco Pedicini. Elementary complexity and geometry of interaction. Fun-
damenta Informaticae, 45(1-2):1–31, 2001.

20

[5] Ugo Dal Lago. Context semantics, linear logic and computational complexity. In Proc. 21st
Symposium on Logic in Computer Science, pages 169–178. IEEE, 2006.

[6] Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic measure of
the execution time in linear logic. Technical Report 6441, INRIA, 2007.

[7] Dan Ghica. Slot games: A quantitative model of computation. In Proc. 32nd ACM Symposium
on Principles of Programming Languages, pages 85–97, 2005.

[8] Guy McCusker. Games and Full Abstraction for a Functional Metalanguage with Recursive
Types. Ph.D. thesis, Imperial College and University of London, 1996. Published in Springer-
Verlag’s Distinguished Dissertations in Computer Science series, 1998.

21

