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Abstract

In the multiple testing context, a challenging problem is the estimation of the proportion π0 of
true-null hypotheses. A large number of estimators of this quantity rely on identifiability assumptions
that either appear to be violated on real data, or may be at least relaxed. Under independence, we
propose an estimator π̂0 based on density estimation using both histograms and cross-validation.
Due to the strong connection between the false discovery rate (FDR) and π0, many multiple testing
procedures (MTP) designed to control the FDR may be improved by introducing an estimator of π0.
We provide an example of such an improvement (plug-in MTP) based on the procedure of Benjamini
and Hochberg. Asymptotic optimality results may be derived for both π̂0 and the resulting plug-in
procedure. The latter ensures the desired asymptotic control of the FDR, while it is more powerful
than the BH-procedure.
Finally, we compare our estimator of π0 with other widespread estimators in a wide range of simu-
lations. We obtain better results than other tested methods in terms of mean square error (MSE)
of the proposed estimator. Finally, both asymptotic optimality results and the interest in tightly
estimating π0 are confirmed (empirically) by results obtained with the plug-in MTP.

Keywords: multiple testing, false discovery rate, density estimation, histograms, cross-validation

Introduction

Multiple testing problems arise as soon as several hypotheses are tested simultaneously. Like in test
theory, we are concerned with the control of type-I errors we may commit in falsely rejecting any tested
hypothesis. Post-genomics, astrophysics or neuroimaging are typical areas in which multiple testing
problems are encountered. For all these domains, the number of tests may be of the order of several
thousands. Suppose we are testing each of m hypotheses at level 0 < α < 1, the probability of at least
one false positive (e.g. false rejection) may equal mα in the worst case. A possible way to cope with this
is to use the Bonferroni procedure ([8]), which consists in testing each hypothesis at level α/m. However,
this method is known to be drastically conservative.
Since we may be more interested in controlling the proportion of false positives among rejections rather
than the total number of false positives itself, Benjamini and Hochberg [3] introduced the false discovery
rate (FDR), defined by

FDR = E

[
FP

1 ∨ R

]
,

where a∨b = max(a, b), FP denotes the number of false positives and R is the total number of rejections.
A large part of the literature is devoted to the building of multiple testing procedures (MTP) that upper
bound FDR as tightly as possible ([4, 5]). For instance, that of Benjamini and Hochberg (BH-procedure)
[3] ensures the following inequality under independence

FDR ≤ π0α ≤ α,
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where π0 denotes the unknown proportion of true null hypotheses, while α is the actual level at which
we want to control the FDR. Since π0 is unknown, the BH-procedure suffers some loss in power, which
is all the more deep as π0 is small. A natural idea to overcome this drawback is the computation of an
accurate π0 estimator, which would be plugged in the procedure. Thus π0 appears as a crucial quantity
that is to be estimated, hence the large amount of existing estimators. We refer to [15, 6] for reviews on
this topic. The randomness of this estimation needs to be taken into account in the assessment of the
procedure performance ([11, 24]).
In many of quite recent papers about multiple testing (see [6, 9, 10, 11]), a two-component mixture
density is used to describe the behaviour of p-values associated with the m tested hypotheses. As usual
for mixture models, we need an assumption that ensures the identifiability of the model parameters.
Thus, most of π0 estimators rely on the strong assumption that there are only p-values following a
uniform distribution on [0, 1] in a neighbourhood of 1. However, Pounds et al. [17] recently observed the
violation of this key assumption. They pointed out that some p-values associated with induced genes
may be artificially sent near to 1, for example when a one-sided test is performed while the non-tested
alternative is true. To overcome this difficulty, we propose to estimate the density of p-values by some
non-regular histograms, providing a new estimator of π0 that remains reliable in the Pounds’ framework
thanks to a relaxed ”identifiability assumption”.
In the context of density estimation with the quadratic loss and histograms, asymptotic considerations
have been used by Scott ([22]) for instance. A drawback of this approach relies on regularity assumptions
made on the unknown distribution. Some AIC-type penalized criteria as in Barron et al. [1] could
be applied as well. However, such an approach depends on some unknown constants that have to be
calibrated at the price of an intensive simulation step (see [16] in the regression framework). As it
is both regularity-assumption free and computationally cheap, we address the problem by means of
cross-validation, first introduced in this context by Rudemo ([18]). More precisely, the leave-p-out cross-
validation (LPO) is successfully applied following a strategy exposed in Celisse et al. [7]. Unlike Schweder
and Spjøtvoll’s estimator of π0 ([21]), ours is fully adaptive thanks to the LPO-based approach, e.g. it
does not depend on any user-specified parameter.
The paper is organized as follows. In Section 1, we present a cross-validation based estimator of π0

(denoted by π̂0). Our main assumptions are specified and a description of the whole π0 estimation
procedure is given. Section 2 is devoted to asymptotic results such as consistency of π̂0. Then we propose
a plug-in multiple testing procedure (plug-in MTP), based on the same idea as that of Genovese et al.
[11]. It is compared to the BH-procedure in terms of power and its asymptotic control of the FDR
is derived. Section 3 is devoted to the assessment of our π0 estimation procedure in a wide range of
simulations. A comparison with other existing and widespread methods is carried out.The influence of
the π0 estimation on the power of the plug-in MTP is inferred as well. This study results in almost overall
improved estimations of the proposed method.

1 Estimation of the proportion of true null hypotheses

1.1 Mixture model

Let P1, . . . , Pm be m i.i.d. random variables following a density g on [0, 1]. P1, . . . , Pm denote the p-
values associated with the m tested hypotheses. Taking into account the two populations of (H0 and
H1) hypotheses, we assume ([6, 9, 11]) that g may be written as

∀x ∈ [0, 1], g(x) = π0f0(x) + (1 − π0)f1(x),

where f0 (resp. f1) denotes the density of H0 (resp. H1) p-values, that is p-values corresponding to true
null (resp. false null) hypotheses. π0 is the unknown proportion of true null hypotheses. Moreover, we
assume that f0 is continuous, which ensures that f0 = 1: H0 p-values follow the uniforme distribution
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U([0, 1]). Subsequently, the above mixture becomes

∀x ∈ [0, 1], g(x) = π0 + (1 − π0)f1(x), (1)

where both π0 and f1 remain to be estimated.
Most of existing π0 estimators rely on a sufficient condition which ensures the identifiability of π0. This
assumption may be expressed as follows

∃λ∗ ∈]0, 1]/ ∀i ∈ {1, . . . , m}, Pi ∈ [λ∗, 1] ⇒ Pi ∼ U([λ∗, 1]). (A)

(A) is therefore at the origin of Schweder and Spjøtvoll’s estimator ([21]), further studied by Storey
([24, 25]). It depends on a cut-off λ ∈ [0, 1] from which only H0 p-values are observed. This estimation
procedure is further detailed in Section 3. The same idea underlies the adaptive Benjamini and Hochberg
step-up procedure described in [4], based on the slope of the cumulative distribution function of p-values.
If we assume λ∗ = 1 (that is f1(1) = 0), Grenander [12] and Storey et al. [26] choose ĝ(1) to estimate
π0, where ĝ denotes the estimator of g. Genovese et al. [11] use (1−G(t))/(1− t), t ∈ (0, 1) as an upper
bound of π0, which becomes (for t large enough) an estimator as soon as (A) is true.
However, this assumption may be strongly violated as noticed by Pounds et al. [17]. This point is detailed
in Section 3.2. Following this remark, we propose the milder assumption (A′):

∃Λ∗ = [λ∗, µ∗] ⊂ (0, 1]/ ∀i ∈ {1, . . . , m}, Pi ∈ Λ∗ ⇒ Pi ∼ U(Λ∗). (A′)

While it is a generalization of (A), this assumption remains true in Pounds’ framework as we will see
in Section 3.2 . Scheid et al. [19] proposed a procedure named Twilight, which consists in a penalized
criterion and provides, as a by-product, an estimation of π0. Since this procedure does not rely on
assumption (A), it should be taken as a reference competitor in the simulation study (Section 3) with
respect to our proposed estimators.

1.2 A leave-p-out based density estimator

If g satisfies (A’), any ”good estimator” of this density on Λ∗ would provide an estimate of π0. Since g
is constant on the whole interval Λ∗, we adopt histogram estimators. Note that we do not really care
about the rather poor approximation properties of histograms outside of Λ∗ as our goal is essentially the
estimation of Λ∗ and of the restriction of g to Λ∗, denoted by g|Λ∗ in the sequel.
For a given sample of observations P1, . . . , Pm and a partition of [0, 1] in D ∈ N∗ intervals I = (Ik)k=1,...,D

of respective length ωk = |Ik|, the histogram ŝω is defined by

∀x ∈ [0, 1], ŝω(x) =

D∑

k=1

mk

m ωk

1IIk
(x),

where mk = ♯{i ∈ [[ 1, m ]] : Pi ∈ Ik}.
If we denote by S the collection of histograms we consider, the ”best estimator” among S is defined in
terms of the quadratic risk:

s̃ = Argmin
s∈S

Eg

[
||g − s||22

]
,

= Argmin
s∈S

{
Eg

[
||s||22

]
− 2

∫

[0,1]

s(x)g(x) dx

}
, (2)

where the expectation is taken with respect to the unknown g. According to (2), we define R by

R(s) = Eg

[
||s||22

]
− 2

∫

[0,1]

s(x)g(x) dx. (3)

3



In (3) we notice that R still depends on g that is unknown. To get rid of this, we use a cross-validation
estimator of R that will achieve the best trade-off between bias and variance. Following ([13]), we know
that leave-one-out (LOO) estimators may suffer from some high level variability. For this reason we
prefer the use of leave-p-out (LPO), keeping in mind that the choice of the parameter p will enable the
control of the bias-variance trade-off.
At this stage, we refer to Celisse et al. [7] for an exhaustive presentation the leave-p-out (LPO) based
strategy. Hereafter, we remind the reader what LPO cross-validation consists in and then, give the main
steps of the reasoning. First of all, it is based on the same idea as the well-known leave-one-out (see
[13] for an introduction) to which it reduces for p = 1. For a given p ∈ [[ 1, m − 1 ]] , let split the sample
P1, . . . , Pm into two subsets of respective size m − p and p. The first one, called training set, is devoted
to the computation of the histogram estimator whereas the second one (the test set) is used to assess
the behaviour of the preceding estimator. These two steps have to be repeated

(
m
p

)
times, which is the

number of different subsets of cardinality p among {P1, . . . , Pm}.

Closed formula of the LPO risk This outlined description of the LPO leads to the following closed
formula for the LPO risk estimator of R(ŝω) (see [7]): For any partition I = (Ik)k=1,...,D of [0, 1] in D
intervals of length ωk = |Ik| and p ∈ [[ 1, m − 1 ]] ,

R̂p(ω) =
2m − p

(m − 1)(m − p)

D∑

k=1

mk

mωk

− m(m − p + 1)

(m − 1)(m − p)

D∑

k=1

1

ωk

(mk

m

)2

, (4)

where mk = ♯{i ∈ [[ 1, m ]] : Pi ∈ Ik}, k = 1, . . . , D. As it may be evaluated with a computational
complexity of only O (m log m), (4) means that we have a very efficient estimator of the quadratic risk
R(ŝω). Now, we propose a strategy for the choice of p that relies on the minimization of the mean square

error criterion (MSE) of our LPO estimator of the risk. Indeed among {R̂p(ŝω) : p ∈ [[ 1, m − 1 ]] }, we
would like to choose the estimator that achieves the best bias-variance trade-off. This goal is reached
by means of the MSE criterion, defined as the sum of the square bias and the variance of the LPO risk
estimator. Thanks to (4), closed formulas for both the bias (5) and the variance (6) of LPO risk estimator
may be derived. We recall here these expressions that come from [7].

Bias and variance of the LPO risk estimator Let ω correspond to a D−partition (Ik)k of [0, 1]
and for any k ∈ {1, . . . , D}, αk = Pr[P1 ∈ Ik] such that α = (α1, . . . , αD) ∈ [0, 1]D.
Then for any p ∈ [[ 1, m − 1 ]] ,

Bp(ω) = Bp(α, ω) =
p

m(m − p)

D∑

k=1

αk(1 − αk)

ωk

, (5)

Vp(ω) = Vp(α, ω) =
p2ϕ2(m, α, ω) + p ϕ1(m, α, ω) + ϕ0(m, α, ω)

[m(m − 1)(m − p)]2
, (6)
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where

∀(i, j) ∈ {1, . . . , 3} × {1, 2}, si,j =
D∑

k=1

αi
k/ωj

k,

ϕ2(m, α, ω) = 2m(m − 1)
[
(m − 2)(s2,1 + s1,1 − s3,2) − ms2,2 − (2m − 3)s2

2,1

]
,

ϕ1(m, α, ω) = −2m(m − 1)(3m + 1) [(m − 2)(s2,1 − s3,2) − ms2,2] +

2m(m − 1)
[
2(m + 1)(2m − 3)s2

2,1 + (−3m2 + 3m + 4)s1,1

]
,

ϕ0(m, α, ω) = 4m(m − 1)(m + 1) [(m − 2)(s2,1 − s3,2) − ms2,2] −
2m(m − 1)

[
(m2 + 2m + 1)(2m − 3)s2

2,1 + (2m3 − 4m − 2)s1,1

]
+

m(m − 1)2(s1,2 − s2
1,1) .

Plug-in estimators may be obtained from the preceding quantities by just replacing αk with α̂k = mk/m
in the expressions. Following our idea about the choice of p, we define for each (partition) ω the best
theoretical value p∗ as the minimum location of the MSE criterion:

p∗ = Argmin
p∈ [[ 1,m−1 ]]

MSE(p) = Argmin
p

{
Bp(ω)2 + Vp(ω)

}
. (7)

The main point is that this minimization problem has an explicit solution named p∗
R
, as stated by Theorem

3.1 in [7]. For the sake of clarity, we recall the MSE expression:

Minimum location expression With the same notations as for the bias and the variance, we obtain
for any x ∈ R,

MSE(x) =
x2[ϕ3(m, α, ω) + ϕ2(m, α, ω)] + xϕ1(m, α, ω) + ϕ0(m, α, ω)

[m(m − 1)(m − x)]
2 ,

where ϕ3(m, α, ω) = (m − 1)2(s1,1 − s2,1)
2.

Thus, we define our best choice p̂ for the parameter p by

p̂ =

∣∣∣∣
k (p̂R) , if p̂R ∈ [1, m − 1]
1, otherwise

, (8)

where k(x) denotes the closest integer near to x and p̂R has the same definition as p∗
R
, but with α̂ instead

of α in the expression.
Remark: There may be a real interest in choosing adaptively the parameter p, rather than fixing p = 1.
Indeed in the regression framework for instance, Shao [23] and Yang [28] underline that the simple and
widespread LOO may be sub-optimal with respect to LPO with a larger p. In the linear regression set-up,
Shao even shows that p/m → 1 as m → +∞ is necessary to get consistency in selection.

1.3 Estimation procedure of π0

1.3.1 Collection of non-regular histograms

We now precise the specific collection of histograms we will consider. For given integers Nmin < Nmax,
we build a regular grid of [0, 1] in N intervals (of length 1/N) with N ∈ [[ Nmin, Nmax ]] . For a couple of
integers 0 ≤ k < ℓ ≤ N , we define a unique histogram made of first k regular columns of width 1/N ,
then a wide central column of length (ℓ − k)/N and finally N − ℓ thin regular columns of width 1/N.
An example of such an histogram is given in Figure 1. The collection S of the histograms we consider is
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Figure 1: Example of non-regular histogram in S. There are k = 7 regular columns from 0 to λ = k/N ,
a wide central column from λ to µ = ℓ/N , and N − ℓ = 7 regular column of width 1/N from µ to 1.

defined by

S =
⋃

N∈ [[ Nmin,Nmax ]]

SN ,

where

∀N, SN = {ŝω : wk+1 = (ℓ − k)/N, wi = 1/N for i 6= k + 1, 0 ≤ k < ℓ ≤ N} .

Provided (A′) is fulfilled, we expect for each N a selected histogram with its wide central interval [λ, µ]
close to Λ∗. The comparison of all these histograms (one per value of N) enables to relax the dependence
of each selected histogram on the grid width 1/N.

1.3.2 Estimation procedure

Following the idea at the beginning of Section 1.2, π̂0 will consist of the height of the selected histogram
on its central interval [λ, µ]. More precisely, we propose the following estimation procedure for π0.

For each partition (represented here by the vector ω), we compute p̂ (ω) = Argminp M̂SE(p, ω), where

M̂SE denotes the MSE estimator obtained by plugging mk/m in place of αk in expressions of (7). The
best (in terms of the bias-variance trade-off) LPO estimator of the quadratic risk R(ŝω) is therefore

R̂p̂(ω)(ω). Then we choose the histogram that reaches the minimum of the latter criterion over S. From

this histogram, we finally get both the interval [λ̂, µ̂], which estimates Λ∗, and

π̂0 = π̂0(λ̂, µ̂)
def
=

♯
{
i : Pi ∈

[
λ̂, µ̂

]}

m(µ̂ − λ̂ )
·

These steps are outlined hereafter
Procedure:

1. For each partition denoted by ω, define p̂ (ω) = Argminp M̂SE(p, ω).

2. Find the best partition ω̂ = Argminω R̂p̂(ω)(ω).

3. From ω̂, get (λ̂, µ̂).
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4. Compute the estimator π̂0 =
♯{i: Pi∈[λ̂,µ̂]}

m(µ̂−λ̂ )
·

2 Asymptotic results

2.1 Pointwise convergence of LPO risk estimator

Lemma 2.1. Following the notations in Section 1.2, for any p ∈ {1, m − 1} and ω, we have

MSE(p, ω) = Om→+∞ (1/m) ,

Moreover if s2,2 + s3,2 − s1,1 − s2,1 6= 0,

p̂(ω)/m
a.s.−−−−−→

m→+∞
ℓ∞(ω),

where ℓ∞(ω) ∈ [0, 1].

Proof.

1. We see that

ϕ3 + ϕ2 = 2m3[s2,1 + s1,1 − s3,2 − s2,2 − 2s2
2,1] + o(m3),

ϕ1 = 2m4[3s3,2 + 3s2,2 − 3s2,1 + 4s2
2,1 − 3s1,1] + o(m4),

ϕ0 = −4m5[s2
2,1 + s1,1] + o(m5).

Thus for any p ∈ {1, . . . , m − 1} and partition of size vector ω ∈ [0, 1]D we have

MSE(p, ω) = Om→+∞

(
1

m

)
·

2. Simple calculations lead to

p∗
R
(ω)

m
−−−−−→
m→+∞

3(s2,1 − s3,2 − s2,2) + 7s1,1

s1,1 + s2,1 − s2,2 − s3,2
= ℓ(α, ω).

As for any k α̂k
a.s.−−−−−→

m→+∞
αk, the continuous mapping theorem implies the almost surely convergence.

Finally, the result follows by setting ℓ̂(ω) = ℓ(α̂, ω) and ℓ∞(ω) = 1I{ℓ(α,ω)∈[0,1]}ℓ(α, ω).

Proposition 2.1. For any given ω, define p̂(ω) as in Section 1.2 and L̂p(ω) = R̂p(ω)+||g||22. If ℓ∞(ω) 6= 1,
we have

L̂(ω)
def
= L̂p̂(ω)

P−−−−−→
m→+∞

L(ω)
def
= ||g − sω||22.

Remark: Note that the assumption on ℓ∞ does seem rather natural. It means that the test set must be
(at most) of the same size as the training set (p̂/(n − p̂) = OP (1)). Moreover, ℓ∞(ω) = 1 if and only if
s2,1 − s2,2 − s3,2 = −3 s1,1, that holds for very specific densities.

Proof. The first part of Lemma 2.1 implies that R̂p(ω)−R(ŝω)
P−−−−−→

m→+∞
0. Combined with R(ŝω) −−−−→

m→∞

L(ω) − ||g||22, it yields that for any fixed p,

L̂p(ω)
P−−−−−→

m→+∞
L(ω).

Finally, the result follows from both the continuous mapping theorem and the assumption on ℓ∞.
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2.2 Consistency of π̂0

We first emphasize that for a given N ∈ {Nmin, . . . , Nmax} any histogram in SN is associated with a
given partition of [0, 1] that may be uniquely represented by (N, λ, µ). We give now the first lemma of
the consistency proof.

Lemma 2.2. For λ∗ 6= µ∗ ∈ [0, 1], let s be a constant density on [λ∗, µ∗]. Suppose Nmin such that for any
Nmin ≤ N, it exists a partition (N, λ, µ) satisfying 0 < µ−λ ≤ µ∗−λ∗. For a given N, let ωN represent the
partition (N, λN , µN ) with λN = ⌈Nλ∗⌉/N and µN = ⌊Nµ∗⌋/N. Define sω as the orthogonal projection
of s onto piecewise constant functions built from the partition associated with ω. If the dimension of a
partition is its number of pieces, then ωN is the partition with the smallest dimension satisfying

ωN ∈ Argmin
ω

||s − sω||22.

Proof. For symmetry reasons, we deal with partitions, for a given N, made of regular columns of width
1/N from 0 to λ and only one column from λ to 1 (e.g. we set µ = 1). In the sequel, I(N) denotes the
partition associated with ωN .

1. Suppose that it exists ω0 such that s = sω0 . Then ||s − sωN
||22 = 0 and ωN ∈ Argminω ||s − sω||22.

2. Otherwise, s does not equal to any sω.

(a) If λ∗ = k/N, then λN = λ∗. Any subdivision I of I(N) satisfies ||s − sω||22 = ||s − sωN
||22,

where ω corresponds to I. Now, let FI be the set of piecewise constant functions built from

a partition I. For any partition I = (Ik)k such that ∀k, I
(N)
ℓ ⊂ Ik for a given ℓ, then

FI ⊂ FI(N) . Thus ||s − sω||22 = ||s − sωN
||22 + ||sωN

− sω||22, since sωN
− sω ∈ FI(N) . Therefore,

ωN ∈ Argminω ||s − sω||22.
(b) If λ∗ 6∈ {1/N, . . . , 1}. As before, any subdivision of I(N) will have the same bias, whereas it is

larger for any partition containing I(N). So, ωN ∈ Argminω ||s − sω||22.

Lemma 2.3. With the same notations as before, we define L(ω) = ||s−sω||22. Let L̂ be a random process

indexed by the set of partitions Ω such that L̂(ω′)
P−−−−−→

m→+∞
L(ω′), for any ω′ ∈ Ω. If ω̂ ∈ Argminω L̂(ω),

then
L̂(ω̂)

P−−−−−→
m→+∞

min{L(ω) : ω ∈ Ω}.

Proof. Set Γ ⊂ Ω such that ∀ω ∈ Γ, L(ω) = minω′∈Ω L(ω′) and define δ = minω 6=ω′∈Γ |L(ω) − L(ω′)|/2.
For |Ω| = k and |Γ| = ℓ, we have the ordered quantities L(ω1) = · · · = L(ωk) < L(ωk+1) ≤ · · · ≤ L(ωℓ).

Set ǫ > 0. For each ωi, it exists mi (large enough) such that for m ≥ mi, |L̂(ωi)− L(ωi)| < ǫ, with high

probability. For mmax = maxi mi, we get maxω∈Ω |L̂(ω) − L(ω)| < ǫ in probability. Thanks to the latter
inequality and by definition of ω̂,

L(ω̂) < L̂(ω̂) + ǫ ≤ L̂(ω) + ǫ < L(ω) + 2ǫ, in Probability

for any ω ∈ Ω \ Γ. Hence, we obtain

L(ω̂) < min
ω∈Ω\Γ

L(ω) = L(ωk+1), in Probability.

Thus, ω̂ ∈ Γ with high probability and the result follows.
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Theorem 2.1. For 0 ≤ λ∗ < µ∗ ≤ 1, let s : [0, 1] 7→ [0, 1] be a constant function on [λ∗, µ∗] such
that s is not constant on any interval I with [λ∗, µ∗]  I (if it exists). Suppose Nmin such that for any
Nmin ≤ N ≤ Nmax, it exists a partition (N, λ, µ) satisfying 0 < µ − λ ≤ µ∗ − λ∗. Set Ω = ∪NΩN , where
ΩN denotes the partitions associated with SN . If π̂0 is the estimator described in Section 1.3.2 selected
from Ω, then

π̂0
P−−−−−→

m→+∞
π0.

Proof. For ǫ > 0 and Nmin ≤ N ≤ Nmax,

Pr [ |π0 − π̂0| > ǫ] = Pr

[∣∣∣∣∣ s
(

λ∗ + µ∗

2

)
− ŝω̂

(
λ̂ + µ̂

2

)∣∣∣∣∣ > ǫ

]
,

≤ Pr
[

[λ̂, µ̂] 6⊂ [λ∗, µ∗]
]

+ Pr
[
||sω̂ − ŝω̂| |22,[λ̂,µ̂]

> ǫ2(µ̂ − λ̂)
]
,

≤ Pr [ |L(ω̂) − L(ωN )| > δ] + Pr

[
sup

ω
||sω − ŝω| |22 > ǫ2/Nmax

]
,

for some δ > 0 (|| · ||2,[λ̂,µ̂] denotes the quadratic norm restricted to [λ̂, µ̂]). As the cardinality of the set

of partitions is finite (Nmax does not depend on m),

Pr

[
sup

ω
||sω − ŝω| |22 > ǫ2/Nmax

]
−−−−−→
m→+∞

0.

We use the following inequality |L(ω̂) − L(ωN)| − |L(ω̂) − L̂(ω̂)| ≤ |L̂(ω̂) − L(ωN)| and the uniform

convergence in probability of L̂ − L over Ω (|Ω| < +∞) to get

Pr [ |L(ω̂) − L(ωN)| > δ] ≤ Pr
[
|L̂(ω̂) − L(ωN)| > δ′

]
,

for some δ′ > 0. The result comes from both Lemma 2.2 and Lemma 2.3.

2.3 Asymptotic optimality of the plug-in MTP

The following is inspired by both [11] and [25]. In the sequel, we will remind some of their results to
state the link. First of all for any θ ∈ [0, 1], set

∀t ∈ (0, 1], Qθ(t) =
θ t

G(t)
and Q̂θ(t) =

θ t

Ĝ(t)
,

where G (resp. Ĝ) denotes the (empirical) cumulative distribution function of p-values. Let define the

threshold Tα(θ) = T (α, θ, Ĝ) = sup{t ∈ (0, 1) : Q̂θ(t) ≤ α}. Now we are in position to define our plug-in
procedure:

Definition 2.1 (Plug-in MTP). Reject all hypotheses with p-values less than or equal to the threshold
Tα(π̂0).

Storey et al. [25] established the equivalence between the BH-procedure and the procedure consisting
in rejecting hypotheses associated with p-values less than or equal to the threshold Tα(1), named the
step-up Tα(1) procedure. We may slightly extend Lemma 1 and Lemma 2 in [25] by using similar proofs,
so that they are omitted here.

Lemma 2.4. With the same notations as before, we have

9



(i) the step-up procedure Tα(π̂0(0, 1)) = Tα(1) is equivalent to the BH-procedure in that they both reject
the same hypotheses,

(ii) the step-up procedure Tα(π̂0(λ̂, µ̂)) is equivalent to the BH-procedure with m replaced by π̂0(λ̂, µ̂).

Thus, we observe that the introduction of π̂0 (supplementary information) in our procedure entails the
rejection of at least as much hypotheses as the BH-procedure (Tα in nonincreasing). Hence our plug-in
procedure should be more powerful, provided it controls the FDR at the required level α.
We settle this question now, at least asymptotically, thanks to a slight generalization of Theorem 5.2 in
[11] to the case where G is not necessarily concave (see the ”U-shape” framework described in Section 3.2
for instance). For t ∈ [0, 1], let define FP (t) (resp. R(t)) as the number of H0 (resp. the total number
of) p-values lower than or equal to t and set Γ(t) = FP (t)/(R(t) ∨ 1). Thus,

∀t ∈ [0, 1], FDR(t) = E [Γ(t)] .

Theorem 2.2. For any δ > 0 and α ∈ [0, π0[, define π̂δ
0 = π̂0 + δ. Assume that the density f of H1

p-values is differentiable and is nonincreasing on [0, λ∗], vanishes on [λ∗, µ∗] and is nondecreasing on
[µ∗, 1]. Then

(i) Qπ0 is increasing on Iα = Q−1
π0

([0, α]),

(ii) E
[
Γ(Tα(π̂δ

0))
]
≤ α + o(1).

Remarks:
Note that the only interesting choice of α actually lies in [0, π0). If α ≥ π0, then FDR(t) ≤ α is satisfied
in the non-desirable case where all hypotheses are rejected.
A sufficient condition on G for the increase of Qπ0 , is that G were continuously differentiable and
G′(t) < G(t)/t, ∀t ∈ (0, 1]. Thus, G may be nondecreasing (not necessarily concave) and Qπ0 may
increase yet.

To prove Theorem 2.2, we first need a useful lemma, the technical proof of which is deferred to
Appendix.

Lemma 2.5. With the above notations, for any α ∈ (0, 1], T (α, ·, Ĝ) : [0, 1] 7→ [0, 1] is continuous
a.s. . Moreover for any θ ∈ [0, 1], G 7→ T (α, θ, G) is continuous on B+([0, 1]), the set of positive bounded
functions on [0, 1], endowed with the || · ||∞.

Proof. (Theorem 2.2)

(i) As f is differentiable and nonincreasing, G is concave on [0, µ∗] and Qπ0 increases on this interval.
Following the above remarks, Qπ0 is still increasing provided G′(t) < G(t)/t for t ∈ [µ∗, 1]. Thus
provided G′(t) < G(t)/t, ∀t ∈ [µ∗, 1], Q increases on [µ∗, 1]. Otherwise, there exists t0 ∈ [µ∗, 1]
such that G′(t0) = G(t0)/t0. Then, the increase of f ensures that G(x)/x ≤ G′(x), ∀x ≥ t0. Hence,
Qπ0 is nonincreasing on [t0, 1]. Finally since Q(π0) = 1, Qπ0 is increasing on Iα.

(ii) Rewrite first the difference

Γ
(
T (α, π̂δ

0 , Ĝ)
)
− α = Γ

(
T (α, π̂δ

0, Ĝ)
)
− Qπ0

(
T (α, π̂δ

0, Ĝ)
)

+ Qπ0

(
T (α, π̂δ

0, Ĝ)
)
− Qπ0

(
T (α, πδ

0 , Ĝ)
)

(9)

+ Qπ0

(
T (α, πδ

0, Ĝ)
)
− Qπ0

(
T (α, πδ

0, G)
)

(10)

+ Qπ0

(
T (α, πδ

0, G)
)
− α. (11)
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Set η > 0 such that 2η < T (α, πδ
0 , G). Note that

Γ
(
T (α, π̂δ

0 , Ĝ)
)
− Qπ0

(
T (α, π̂δ

0 , Ĝ)
)
≤ 1√

m
||√m (Γ − Qπ0) ||∞,[η,1] + 1I{T (α,π̂δ

0,Ĝ)≤η}.

Thus thanks to Lemma 2.5,

P
[
T (α, π̂δ

0, Ĝ) ≤ η
]

≤ P
[
T (α, πδ

0 , G) ≤ η + oP (1)
]
−−−−−→
m→+∞

0.

Besides, both Theorem 4.4 of [11] and Prohorov’s theorem ([27]) imply that

E

[
1√
m
||√m (Γ − Qπ0) ||∞,[η,1]

]
= o(1).

Hence E
[
Γ
(
T (α, π̂δ

0 , Ĝ)
)
− Qπ0

(
T (α, π̂δ

0, Ĝ)
)]

= o(1).

Thanks to Lemma 2.5, the uniform continuity of Qπ0 combined with the convergence in probability
of π̂δ

0 ensure that the expectation of (9) is of the order of o(1).
Since T (α, πδ

0, G) = sup{t : Qπ0(t) ≤ απ0/πδ
0}, β = π0/πδ

0 < 1 and Qπ0 is a one-to-one mapping
on I, we get Qπ0

(
T (α, πδ

0 , G)
)

= Qπ0

(
Q−1

π0
(αβ)

)
= αβ . Thus,

Qπ0

(
T (α, πδ

0, Ĝ)
)
− Qπ0

(
T (α, πδ

0, G)
)

= Qπ0

(
T (αβ, π0, Ĝ)

)
− αβ ,

Theorem 5.1 ([11]) applied with αβ instead of α and t0 = Q−1
π0

(αβ) entails that the expectation of
(10) is o(1) as well.
Finally, (11) is equal to (β − 1)α < 0.

3 Simulations and Discussion

3.1 Comparison in the usual framework (µ = 1)

By ”usual framework”, we mean that the unknown f1 in the mixture (1) is a decreasing density satisfying
assumption (A): it vanishes on an interval [λ∗, 1] with λ∗ possibly equal to 1. In this framework,

π̂0 =
♯{i/ Pi ∈ [λ̂, 1]}

m (1 − λ̂ )
·

Except λ̂, this general expression was introduced by Schweder et al. [21]. Their estimator

π̂SS
0 (λ) =

♯{i/ Pi ∈ [λ, 1]}
m (1 − λ )

,

is based on (A) and strongly depends on the parameter λ ∈ [0, 1] that is supposed to be given, but
totally unknown in practice. A crucial issue ([15]) is precisely the determination of an ’optimal’ λ.
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Table 1: Results for the two simulation conditions (λ∗, s) = (0.2, 4) and (λ∗, s) = (0.4, 6). The LPO and
LOO based methods are compared to the Schweder and Spjøtvoll estimator, π̂St

0 computed with λ = 0.5.
(All displayed quantities are multiplied by 100.)

π0 = 0.9 λ∗ = 0.2, s = 4 λ∗ = 0.4, s = 6

Method Bias Std MSE Bias Std MSE
LPO 0.39 2.5 6.41 10−2 0.56 2.8 8.00 10−2

LOO 0.46 2.3 5.52 10−2 0.61 2.7 7.66 10−2

π̂St
0 -0.15 3.2 9.94 10−2 0.24 3.1 9.58 10−2

3.1.1 A potential gain in choosing λ

In 2002, Storey [24] studied further this estimator and even proposed ([26]) the systematic value λ = 0.5
as a quite good choice. In the following, we show that even if assumption (A) is satisfied for λ∗ = 0.2 or
0.4, there is a real potential gain in choosing λ in an adaptive way.
In the following simulations, the unknown density f1 in the mixture (1) is a beta density on [λ∗, 1] with
parameter s:

f1(t) = s/λ∗(1 − t/λ∗)s−1 1I[0,λ∗](t),

where (λ∗, s) ∈ {(0.2, 4), (0.4, 6)} . The beta distribution is all the more sharp in the neighbourhood of 0
as s is large. The proportion π0 is equal to 0.9, the sample size m = 1000 while n = 500 repetitions have
been made. There does not seem to be any strong sensitivity to the choice of Nmax (data not shown
here), as long as Nmax is obviously not too small. Until the end of the paper, Nmin = 1 and Nmax = 100.
Table 1 shows the simulation results for the leave-p-out (LPO) and the leave-one-out (LOO) based
estimators of π0, compared to that of Schweder and Spjøtvoll for λ = 0.5 denoted by π̂St

0 . We see that
in both cases, LPO is less biased than LOO but slightly more variable, which leads to a higher value for
the MSE. This larger variability may be due to the supplementary randomness induced by the choice of
λ̂. Both LPO and LOO seem a bit conservative unlike π̂St

0 , which is however a little less biased. We say
that an estimator of π0 is conservative as soon as it upperbounds π0 on average. The main conclusion
is that the MSE of LPO (and LOO) is always lower than that of π̂St

0 , even if the assumption (A) is
satisfied (λ = 0.5 > λ∗). An adaptive choice of λ may provide a more accurate estimation of π0, which
is all the more important as m grows.

3.1.2 Comparison when λ∗ = 1

We consider now the general (more difficult) case when (A) is only satisfied for λ∗ = 1. Thus, f1 is a
beta density of parameter s : f1(t) = s(1 − t)s−1, t ∈ [0, 1], with s ∈ {5, 10, 25, 50}. The sample size
m = 1000 and π0 ∈ {0.5, 0.7, 0.9, 0.95}. Each condition has been repeated n = 500 times. We detail below
four of the different methods that have been compared in this framework.

Smoother and Bootstrap

In [26], the authors proposed a method consisting in first computing the Schweder and Spjøtvoll estimator
on a regular grid of [0, 1] and then adjusting a cubic spline. The final estimator of π0 is the resulting
function evaluated at 1. This procedure is called Smoother.
The Bootstrap method was introduced in [25]. Authors define the optimal value of λ as the minimizer
of the MSE of their π0 estimator. Since this quantity is unknown, they use an estimation based on
bootstrap. They also need to compute π̂0(λ) for values of λ on a preliminary grid of [0, 1].
These methods are available as options of the qvalue function in the R-package qvalue [26].
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Adaptive Benjamini-Hochberg procedure
In the sequel, this procedure is denoted by ABH and we refer to [4] for a detailed description. In outline,
the method relies on the idea that the plot of p-values versus their ranks should be (nearly) linear for large
enough p-values (likely H0 p-values). The inverse of the resulting slope provides a plausible estimator
based on assumption (A).
The ABH procedure may be applied through the function pval.estimate.eta0 in package fdrtool with the
option method= ”adaptive” http://cran.r-project.org/src/contrib/

Descriptions/fdrtool.html.

Twilight

In their article, Scheid et al. [19] proposed a penalized criterion based on assumption (A’). This is a sum
of the Kolmogorov-Smirnov score and a penalty term. The whole criterion is expected to provide the
widest possible set of H0 hypotheses. How the penalty term balances against the Kolmogorov-Smirnov
score depends on a constant C that is to be determined. To do so, the authors propose to use bootstrap
combined with Wilcoxon tests. Besides, this procedure is iterative and strongly depends on the length of
the data, which could be a serious drawback with increasing data sets.
The function twilight is available in package twilight [20].

Results
As in the preceding simulation study, LPO and LOO refer to the proposed methods. Figure 2 illustrates
the performances for all the methods but ABH, for which results are quite poor with respect to other
methods (see Table 2). We notice that both StSm and StBoot have systematically larger MSE than the
three remaining approaches. Our methods give quite similar results to each other in this framework.
Twilight, LPO and LOO furnish nearly the same MSE values in the most difficult case s = 5, when
π0 > 0.5. Except for π0 = 0.5 and s = 5, LPO and LOO all the more outperform upon Twilight as the
proportion raises. The better performance of Twilight in this set-up may be due to the classical difference
between cross-validation and penalized criteria. Indeed in the context of supervised classification for
instance, Kearns et al. [14] and Bartlett et al. [2] show that cross-validation is used to providing good
results, provided the noise level of the signal is not too high. Otherwise, penalized criteria (like Twilight)
outperform upon cross-validation. In the present context, s = 5 means that H1 p-values are spread on a
large part of [0, 1] and not only concentrated in a neighbourhood of 0, while π0 = 0.5 indicates a larger
number of H1 p-values in the distribution tail of the Beta density. Thus this situation may be held
as the counterpart of the noisy case in supervised classification. Nevertheless, LPO and LOO always
outperform Twilight when π0 > 0.5. They are even uniformly better than Twilight for π0 = 0.95, that
is for small proportions of H1 hypotheses.

3.2 Comparison in the U-shape case

The ’U-shape case’ refers to the phenomenon underlined by Pounds et al. [17] on a real data set made of
Affymetrix ’pooled’ present-absent p-values (one p-value per probe set). We explore the behaviour of the
preceding methods applied to p-values with similar distributions. In our simulation design, the sample is
m = 1000, while π0 ∈ {0.25, 0.5, 0.7, 0.8, 0.9} and n = 200 repetitions of each condition have been made.
Typically, the U-shape case appears when one-sided tests are made whereas the non-tested alternative
is true. For example, suppose the test statistics are distributed as a three-component gaussian mixture
model

π0 N (0, 2.5 10−2) +
1 − π0

2

[
N (a, θ2) + N (b, ν2)

]
, (12)

where a < 0, b > 0 and θ, ν > 0, corresponding to respectively non-induced, under-expressed and over-
expressed genes. We want to test whether genes are over-expressed, that is H0 : ’the mean equals 0”
versus H1 : ’the mean is positive’. A test statistic drawn from N (a, θ2) (under-expressed gene) is more
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Figure 2: Graphs of the MSE of the π0 estimator versus log s, where s is the parameter of the Beta
density. Each graph is devoted to a given proportion, from 0.5 to 0.95 . StSm denotes the MSE obtained
for Smoother, StBoot that of Bootstrap while Twil states for Twilight.

likely to have a larger p-value than those under N (b, ν2), which correspond actually to over-expressed
genes. This phenomenon is clearly all the more deep as the gap between a and b is high and variances θ2

and ν2 are small. Note that a similar shape may be observed when test statistics are ill-chosen.
In order to mimic Pounds’ example, we use (12) with −a = b ∈ {1, 1.5} and θ = ν ∈ {0.5, 0.75}. As
they were quite similar, results in these different conditions are gathered in Table 3. Except LPO and
LOO for which this phenomenon is not so strong, any other method all the more overestimates π0 as
the proportion of p-values under the uniform distribution is small. In our framework, a growth in π0

entails an increase in the right part of the histogram near 1, which is responsible for the overestimation
(violation of assumption (A)). On the contrary when π0 = 0.9, the violation of assumption (A)) is
weaker and similar values of MSE are obtained for the competing approaches. In this set-up, LPO,
LOO and StBoot provide systematically the lowest MSE values. In comparison, it is somewhat surprising
that Twilight overestimates π0 so much, since it should have remained reliable under assumption (A’).
Despite the preceding simulation results, we observe a repeated overestimation, which means that the
criterion under-penalizes large sets of p-values. The involved penalty may have been designed for the
situation before (with only one peak near 0), whereas it may be no longer relevant in this framework.
This may be interpreted as a consequence of the higher adaptivity of cross-validation based methods over
penalized criteria. Finally it is worth noticing that both the bias and the MSE of LPO are systematically
lower than those of LOO, showing the interest of choosing p in an adaptive way.
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Table 2: Numerical results for different π0 estimators with s = 10 and π0 ∈ {0.5, 0.7, 0.9, 0.95}. Four
other methods are compared to LPO and LOO. StSm denotes Smoother, StBoot states for Bootstrap
and Twil for Twilight.(All displayed quantities are multiplied by 100.)

π0 0.5 0.7
Method Bias Std MSE Bias Std MSE

LPO 1.4 3.5 14.5 10−2 1.4 3.4 13.6 10−2

LOO 1.6 3.4 13.9 10−2 1.6 3.3 13.4 10−2

StSm -0.9 5.1 26.2 10−2 -0.9 6.0 36.2 10−2

StBoot -2.3 4.0 20.9 10−2 -3.3 4.7 33.3 10−2

Twil -1.0 3.6 14.0 10−2 -1.5 4.2 19.4 10−2

ABH 37.9 8.3 15.0 0.27 2.4 7.6

π0 0.9 0.95
Method Bias Std MSE Bias Std MSE

LPO 0.8 3.6 13.7 10−2 0.5 3.1 9.5 10−2

LOO 1.0 3.4 12.5 10−2 0.7 2.9 8.9 10−2

StSm -0.5 6.6 43.1 10−2 -1.0 5.5 30.8 10−2

StBoot -3.7 5.4 43.4 10−2 -3.7 5.1 39.6 10−2

Twil -1.6 4.4 21.8 10−2 -1.6 4.2 20.2 10−2

ABH 9.8 0.4 95.5 10−2 4.9 0.1 24.1 10−2

Table 3: Results of the U-shape case for the six compared methods for π0 ∈ {0.25, 0.5, 0.7, 0.8, 0.9}.(All
displayed quantities are multiplied by 100.)

π0 0.25 0.5 0.7

Method Bias Std MSE Bias Std MSE Bias Std MSE
LPO 5.5 6.2 0.7 5.5 5.2 0.6 5.3 4.4 0.5
LOO 6.2 5.7 0.7 6.8 5.7 0.8 6.6 4.8 0.7

St Sm 75.0 0 56.0 50.0 0 25.0 30.0 0 9.0
St Bo 43.2 3.2 18.7 28.9 2.2 8.4 17.4 1.6 3.0
Twil 73.2 2.5 53.6 47.5 3.0 22.6 27.4 2.3 8.0
ABH 45.5 5.4 21.0 31.4 4.2 10.0 19.8 3.1 4.0

π0 0.8 0.9

Method Bias Std MSE Bias Std MSE
LPO 5.3 4.1 0.4 4.2 2.7 0.2
LOO 6.4 4.1 0.6 4.7 2.5 0.3

St Sm 20.0 0 4.0 9.9 0.2 1.0
St Bo 11.6 1.3 1.0 5.4 1.6 0.3
Twil 17.5 1.8 3.0 8.0 1.3 0.7
ABH 13.8 2.3 2.0 7.4 1.3 0.6
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Table 4: Values of the empirical estimate of the FDR (%) for the LPO (F̂DRLPO), LOO (F̂DRLOO),

Twilight (F̂DRTwil), Benjamini-Hochberg (F̂DRBH) and Oracle (F̂DRBest) procedures. s denotes the
parameter of the Beta distribution used to generate the data.

s π0 F̂DRLPO F̂DRLOO F̂DRTwil F̂DRBH F̂DRBest

5 0.5 14.15 14.06 14.85 8.35 14.29
0.7 14.13 14.03 14.85 10.40 14.50
0.9 15.01 15.01 15.73 14.26 14.81
0.95 13.23 13.43 13.76 13.13 13.83

10 0.5 14.74 14.69 15.50 6.94 15.02
0.7 15.14 15.09 15.61 10.29 15.12
0.9 17.91 17.90 18.08 15.85 17.94
0.95 14.65 14.65 15.25 14.37 14.95

25 0.5 14.88 14.82 15.51 7.48 15.04
0.7 14.69 14.64 15.19 10.47 14.84
0.9 15.50 15.57 16.31 13.56 15.92
0.95 14.35 14.22 14.51 13.19 14.19

50 0.5 14.76 14.71 15.42 7.40 14.89
0.7 14.81 14.77 15.23 10.36 14.87
0.9 13.93 13.82 14.79 13.17 13.98
0.95 16.12 16.32 16.57 14.65 16.08

3.3 Power

Here, we study the influence of the estimation of π0 on the power of multiple testing procedures obtained
as described in Section 3.1.2 for various π0 estimators. The Twilight method is used for comparison,
in association with the Benjamini-Hochberg procedure ([3]). Our reference is what we call the Oracle
procedure, which consists in plugging the true value of π0 in the MTP procedure of Section 3.1.2. The
same simulations as in Section 3.1.2 are used for this study, which is carried out in two steps. In the
first one, we compare procedures in terms of their empirical FDR, in order to assess the expected
control for finite samples. Thus, we choose the level α = 0.15 at which we want to control the FDR
and then compute, for each of the n = 500 samples, the corresponding FDP in the terminology of
[11], e.g. the ratio of the number of falsely rejected hypotheses over the total number of rejections.

Finally, we get an estimator of the actual FDR: F̂DR by averaging the simulation results. Table 4 gives

results for the LPO and LOO based procedures F̂DRLPO, F̂DRLOO and also for Twilight (F̂DRTwil),

Benjamini-Hochberg (F̂DRBH) and Oracle procedures (F̂DRBest). In the second step, we check the
potential improvement in power enabled by the LPO-based MTP with respect to the BH-procedure. The
assessment of this point is made in terms of the expectation of the proportion of falsely non-rejected
hypotheses among true alternatives (named FNR here). This criterion is estimated by the average of
the preceding ratio computed from each sample. Table 5 displays the empirical FNR values, denoted

by F̂NRLPO, F̂NRLOO, F̂NRTwil, F̂NRBH and F̂NRBest respectively for the LPO, LOO, Twilight,
Benjamini-Hochberg and Oracle procedures. In both steps of this study, s denotes the parameter of the
Beta distribution that was used to simulate the data.

In comparison to the Oracle procedure (with the true π0), Table 4 shows that the LPO procedure pro-
vides an actual value of the FDR that is almost always very close to the best possible one. Moreover in
nearly all conditions, LPO outperforms its LOO counterpart and remains a little bit conservative, e.g.
it furnishes a FDR that is lower or equal to the desired level α. This observation empirically confirms
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Table 5: Average proportion of falsely non-rejected hypotheses (%) for the LPO (F̂NRLPO), LOO

(F̂NRLOO), Twilight (F̂NRTwil), Benjamini-Hochberg (F̂NRBH) and Oracle (F̂NRBest) procedures.
s denotes the parameter of the Beta distribution used to generate the data.

s π0 F̂NRLPO F̂NRLOO F̂NRTwil F̂NRBH F̂NRBest

5 0.5 93.94 94.22 91.64 99.78 94.16
0.7 99.65 99.65 99.59 99.80 99.63
0.9 99.87 99.87 99.86 99.89 99.86
0.95 99.91 99.91 99.90 99.92 99.91

10 0.5 25.69 25.91 22.01 96.83 23.22
0.7 96.36 96.44 95.08 99.16 96.03
0.9 99.56 99.56 99.54 99.64 99.56
0.95 99.76 99.76 99.76 99.77 99.74

25 0.5 0.88 0.90 0.70 17.72 0.79
0.7 22.83 23.04 20.85 61.00 21.93
0.9 97.89 97.89 97.68 98.49 97.86
0.95 99.16 99.16 99.06 99.23 99.14

50 0.5 0.96 0.92 0.64 1.58 0.72
0.7 2.26 2.30 2.01 10.07 2.19
0.9 82.40 82.47 80.39 88.05 82.08
0.95 96.74 96.76 96.60 97.15 96.74

the result stated in Theorem 2.2. Besides as expected, the estimation of π0 entails a tighter control than
that of the BH-procedure where π̂0 = 1. Unlike the proposed methods, Twilight fails in controlling the

FDR at the desired level since F̂DRTwil is very often larger than F̂DRBest (the best reachable value),
and even larger than α. Subsequently, Twilight should not enter in the comparison of methods in terms
of power.
Table 5 enlightens that proportions of false negatives may be very high in most of the simulation condi-

tions, as shown by the Oracle procedure. Nevertheless, F̂NRLPO remains very close to the ideal one. As
a remark, note that the Twilight FNR estimates are also close to the Oracle values, but nearly always
lower. As suggested by FDR results, LOO is less powerful that LPO, whereas both of them outperform
by far the BH-procedure. Note that the proportion of false negatives strongly decreases when s grows,
which means that H1 p-values are more and more concentrated in the neighbourhood of 0. As the interval
on which assumption (A) is satisfied is wider, the problem becomes easier. Besides, we observe a fall in
power when π0 grows in general. Indeed for small proportion of true alternatives, the ”border” between
the two populations of p-values is more difficult to define as a large number of H1 p-values behave like
H0 ones. Finally note that very often, the LPO procedure shares (nearly) the same power as the Oracle
one.

3.4 Discussion

In this article, we propose a new estimator of the unknown proportion of true null hypotheses π0. It
relies on first the estimation of the common density of p-values by use of non-regular histograms of a
special type, and secondly on the leave-p-out cross-validation. The resulting estimator enables more
flexibility than numerous existing ones, since at least it is still convenient in the ”U-shape” case, without
any supplementary computational cost.
Our estimator may be linked with that of Schweder and Spjøtvoll for which almost only theoretical
results with λ fixed have been obtained by Storey. However unlike the latter, we provide a fully adaptive
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procedure that does not depend on any user-specified parameter. Thus, asymptotic optimality results
are here derived with λ = λ̂. They assert, for instance, that the asymptotic exact control of the FDR
with our plug-in MTP is reached.
Eventually, a wide range of simulations enlighten that the proposed π0 estimator realizes the best bias-
variance tradeoff among all tested estimates. Moreover, the proposed plug-in procedure is (empirically)
shown to provide the expected control on the FDR (for finite samples), while being a little more powerful
than its LOO counterpart. Moreover, the results in Section 3.2 confirm the interest in choosing adaptively
the parameter p rather than the usual p = 1 value. The LPO procedure is very often almost as powerful
as the best possible one of this type, obtained when π0 is known.

4 Appendix

Proof. (Lemma 2.5)

First, we show that T (α, ·, Ĝ) is right (resp. left) continuous on [0, 1) (resp. (0, 1]). As it is a similar
reasoning, we only deal with right continuity.

Let (ǫn)n ∈
(
R∗

+

)N∗

denote a sequence decreasing towards 0. For any θ ∈ (0, 1], set ∀n, rn = T (α, θ +

ǫn, Ĝ) a.s. . Then (rn)n is an almost surely convergent increasing sequence, upper bounded by T (α, θ, Ĝ).

To prove that T (α, θ, Ĝ) is its limit, we show that for any δ > 0, there exists ǫ > 0 satisfying T (α, θ +

ǫ, Ĝ) ≥ T (α, θ, Ĝ) − δ. Notice that there exists η > 0 s.t. T := T (α, θ, Ĝ) = sup{t ∈ [η, 1] : Q̂θ(t) ≤
α}. Then for 0 < δ < η, T − δ = sup

{
u ∈ [η − δ, 1 − δ] : θ(u+δ)

Ĝ(u+δ)
≤ α

}
. Provided δ is small enough,

Ĝ(u + δ) = Ĝ(u), ∀u. Hence, T − δ = sup
{

u ∈ [η − δ, 1 − δ] : θu

Ĝ(u)
+ θδ

Ĝ(u)
≤ α

}
, and T (α, θ + ǫ, Ĝ) =

sup
{
t ∈ [0, 1] : θt

Ĝ(t)
+ ǫt

Ĝ(t)
≤ α

}
. Thus, any 0 < ǫ < δθ provides the result.

For the second point, define G ∈ B+([0, 1]) and for any sequence (ǫn)n ∈
(
R∗

+

)N
decreasing towards 0, let

(Hn)n ∈ (B+([0, 1]))
N

denote a sequence of positive bounded functions satisfying ∀n, ||G − Hn||∞ ≤ ǫn.
Then for large enough n, we have

θt

G(t) − ǫn

≤ α ⇔ θt

G(t)
≤ α

(
1 − ǫn

G(t)

)
,

and α(1 − ǫn/||G||∞) ≤ α. Thus, rn = sup{t : θt/(G(t) + ǫn) ≤ α} denotes an increasing sequence
that is bounded by T (α, θ, G). Moreover as (ǫn)n decreases towards 0, rn is as close as we want to
T (α, θ, G). The same reasoning may be followed with r′n = sup{t : θt/(G(t)− ǫn) ≤ α}, which concludes
the proof.

References
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