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Abstract
In the automotive industry, like in other transport industries, predicting noise during design cycle is a nec-
essary step. Well-known methods exist to answer this issue in low frequency domain. Among these, Fi-
nite Element Methods, adapted to closed domains, are quite easy to implement whereas Boundary Element
Methods are more adapted to infinite domains, but may induce singularity problems. In this article, a new
method based on the well-known elastodynamics Substructure Deletion Methodis presented. Analogies be-
tween acoustical and seismic problems are made to transpose the method. It consists in dividing a complex
unbounded problem into two easier ones to solve finite and infinite problems. Instead of considering a geo-
metrically complex structure, a prismatic bounding volume is first studied. Then aclassical Finite Element
computation is performed on the volume left between the box and the considered structure. The advantage
of this technique is that when testing and comparing several geometries contained in such a box, only one
boundary element calculation is needed. Efficiency of this method is discussed in the present document.

1 Introduction

In the automotive industry, evaluating the emitted noise is an important step duringunits dimensioning
or during the vehicle design cycle as vehicles have to respect the European legislation concerning noise.
Moreover, acoustics have become an important choice criteria when buying a car. To achieve this, two main
methods exist that is Finite Element Methods ([1], [2], [3], [4]) and Boundary Element Methods ([3], [5],
[6]). When dealing with radiation problems, Boundary Elements are usually employed. Since they may
induce singularity problem, they are not really easy to use whereas Finite Elements are. They are well
adapted to bounded media as this is impossible to discretize the infinity into finte cells.

The idea developped in this paper is to take advantage of both methods. The presented method is inspired
from the Substructure Deletion Method is described. The SDM was first presented by Dasgupta in the late
70’s [7], and developped in Civil Engineering [8], [9], [10]. In order to investigate the dynamic response
of a building embedded foundation under seismic loading, the non-excavated soil impedance matrix is first
calculated. Then the embedment region composed of the same material as the soil is studied. At last the
impedance matrices are combined according to the continuity and equilibrium assumptions to obtain the
impedance matrix of the embedded foundation.
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2 Theoretical formulation of the method

2.1 General formulation of a radiation problem in acoustics

A complex vibrating structure, as shown in Fig. 1, is considered. The acoustical radiation problem is
governed by the Helmholtz equation and conditions on the finite and infinite boundaries (cf Eq. 1).
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Figure 1: General radiation problem presentation































∆p + k2p = 0 in Ω
∂p

∂n
= qv on∂Ω|v

p = qp on∂Ω|p

kp −
∂p

∂r
= O(r) Sommerfeld condition at infinity

(1)

In this article, only Neumann and Sommerfeld conditions will be considered as shown on the equation (1),
that is to say the normal velocities resulting from a frequency response ofthe structure are assumed to be
known.



















∆p + k2p = 0 in Ω
∂p

∂n
= q on∂Ω

kp −
∂p

∂r
= O(r) Sommerfeld condition at infinity

(2)

After having multiplied the Helmholtz equation by a test functionδp, the weak formulation (or integral
formulation) can be derived by applying the Green-Gauss theorem.

b(p, δp) = (q, δp)L2(Ω), ∀δp regular test function inΩ (3)



Where:










b(p, δp) = −k2
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Ω
δp p dV +

∫∫∫

Ω
∇δp∇p dV

(q, δp)L2(Ω) =

∫∫
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δp

∂p

∂n
dS

The functionb is a sesquilinear form whereas(·, ·) is a linear operator.

As it will be demonstrated in the next paragraphs, whatever Finite Element orBoundary Element methods
are used for the discretization, the integration leads to the following discretized equation:

p = A
∂p

∂n
(4)

The present method aims at calculating the admittance matrixA.
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Figure 2: Global problem division into two subdomains

As in elastodynamics, this is achieved by dividing theΩu domain into two domains as illustrated in Fig. 2,
whereΩ2 is an unbounded domain andΩ1 a bounded domain. The weak formulation (cf Eq. 3) can then
be decomposed on these two domains and the integral equation (Eq. 3) of thecomplex problem (Fig. 1)
becomes:

b(p1, δp) + b(p2, δp) = (q1, δp)L2(∂Ω1)) + (q2, δp)L2(Ω2)), ∀δp ∈ H1(Ω1) ∪ H1(Ω2) (5)

The most suitable discretization method is then chosen for each type of problem.

2.2 Exterior problem

A main advantage of Boundary Element methods is they are well adapted to infinite domain studies. Let’s
consider again the integral equation written on Eq. 3, substitutingΩ with Ω1. After applying a second time
Green theorem, the fundamental solutiong, called Green function, is introduced.g is the exact solution of
the following equation :

∆g + k2g = δ whereδ is the dirac function, (6)



Hence, the boundary integral equation is obtained:
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P singular point on∂Ω1

(7)

The discretization of this equation on∂Ω2 leads to :

G
∂p

∂n1
= Hp1 ⇔ −ρfω Gvn1

= Hp

where the elementary matrices are such as:
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(8)

δij is the kronecker symbol.

Finally, the following expression is derived:

p1 = A1vn1 (9)

2.3 Interior problem

In this case, the use of finite elements avoids the difficulties due to singularities encountered with boundary
elements. Moreover this discretization method is more adapted to bounded domains.

As in structural dynamics mass-like and stiffness-like matrices can be inferred from the variational formula-
tion described by Eq. 3 by introducing suitable shape functions. As a consequence the interior problem is
governed by:

(

K
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f
)

p2 = Fvn2, with:































Kf
e =

∫∫∫

Ωe

[

∂N

∂n

]t [

∂N

∂n

]

dV

Mf
e =

1

c2

∫∫∫

Ωe

NN t dV

Fe = −ρfω

[
∫∫

∂Ωe

NntN t dS

]

n−t

(10)

To be compatible with the boundary integral formulation inΩ2, these matrices have to be reduced on the
domain boundary degrees of freedom. An exact condensation or a Guyan reduction is proceeded to obtain
the transformation matrixT such as:

Mred = T
t
M

f
T

Kred = T
t
K

f
T

Hence a similar expression as equation (9) can be derived :

[

Kred − ω2
Mred

]

p2 = Fvn2

⇔ p2 = A2vn1 (11)



2.4 The Substructure Deletion Method

Since the FE and BE matrices have been calculated, only boundary conditions (given below Eq. 12) are
lacking to solve the problem. These conditions guarantee the compatibility and equilibrium between the two
problems described before.
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This leads to the following expression ofA = A3:
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vn3 (13)

with
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3 Application and results

3.1 Presentation of the studied models

(a) First model : straight edge (b) Second model : curved edge

Figure 3: Unbounded complex problems meshes

The Substructure Deletion Method is applied here on two-dimensional examples. The different models are
presented on figure 3. These problems are divided into two subproblems respectively illustrated on figures 4
and 5. The same mesh is used to solve the two unbounded problems.



(a) First model : straight edge (b) Second model : curves edge

Figure 4: Bounded problems meshes

Figure 5: Common unbounded problem mesh

3.2 Results

Figures 7, 8 and 9 show the pressure level at different points on the wetted surface. Those points can be
located on figure 6. The results of only three representative nodes arepresented here.

SDM results are compared with BEM results. These were computed with the Matlab open source OpenBEM
routines. For all nodes, the Substructure Deletion Method shows a quite good agreement with BEM.
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Figure 6: Visualization points
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(b) Second model : curved edge

Figure 7: Sound Pressure Level at node 2
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(a) First model : straight edge
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(b) Second model : curved edge

Figure 8: Sound Pressure Level at node 9

Even if some inaccuracies remains, qualitative behaviour is generally respected, and quantitative behaviour
is satisfying for a use during preliminary architectural studies
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(a) First model : straight edge
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(b) Second model : curved edge

Figure 9: Sound Pressure Level at node 14



Number of
iterations

SDM (Matlab routines) BEM (Matlab routines)

CPU Time CPU Time

1
1 BEM computation : 2h30 1 BEM computation : 2h30
1 FEM and SDM computation : 3 min

Total : 2h33 Total : 2h30

10
1 BEM computation : 2h30 10 BEM computations : 102h30
10 FEM and SDM computations : 30
min

Total : 3h Total : 25h

Table 1: CPU Time depending on the number of iterations

4 Conclusion

In this article, a new method has been described. It consists in dividing a complex radiation problem into
two subproblems : a bounded one, solved thanks to Finite Elements, and a unbounded one studied here
with Boundary Elements. The application on an academical two-dimensional example shows quite good
agreement with reference BEM results. Since this method is to be used on simplified geometries during
prospecting phase, the results may be accurate enough to compare several architectural concepts. More, as
it is illustrated by the table 1, this method is adapted to optimization : the more numerous geometries to be
tested, the more CPU time may be gained by using the Substructure Deletion Method.

At last, if the Substructure Deletion Method shows good results on an academical case, its accuracy on an
industrial case remains to be demonstrated. If it is, this method should allow to conceive better and earlier.
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