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Introduction

In the automotive industry, evaluating the emitted noise is an important step during units dimensioning or during the vehicle design cycle as vehicles have to respect the European legislation concerning noise. Moreover, acoustics have become an important choice criteria when buying a car. To achieve this, two main methods exist that is Finite Element Methods ( [START_REF] Ihlenburg | Finite Element Analysis of Acoustic Scattering[END_REF], [START_REF] -P. Morand | Interactions fluides-structures[END_REF], [START_REF]Sysnoise 5.0 Theoretical Manual[END_REF], [START_REF]Theory reference of Ansys[END_REF]) and Boundary Element Methods ( [START_REF]Sysnoise 5.0 Theoretical Manual[END_REF], [START_REF]Boundary Element Methods in Acoustics[END_REF], [START_REF] Hamdi | Mthodes de discrtisation par lments finis et lments finis de frontire[END_REF]). When dealing with radiation problems, Boundary Elements are usually employed. Since they may induce singularity problem, they are not really easy to use whereas Finite Elements are. They are well adapted to bounded media as this is impossible to discretize the infinity into finte cells.

The idea developped in this paper is to take advantage of both methods. The presented method is inspired from the Substructure Deletion Method is described. The SDM was first presented by Dasgupta in the late 70's [START_REF] Dasgupta | Foundation impedance matrix by substructure deletion[END_REF], and developped in Civil Engineering [START_REF] Dasgupta | Third engineering mechanics division specialty conference[END_REF], [START_REF] Betti | Analysis of embedded foundations by substructure deletion method[END_REF], [START_REF] De Mesquita Neto | A boundary element implementation of the substructure deletion method[END_REF]. In order to investigate the dynamic response of a building embedded foundation under seismic loading, the non-excavated soil impedance matrix is first calculated. Then the embedment region composed of the same material as the soil is studied. At last the impedance matrices are combined according to the continuity and equilibrium assumptions to obtain the impedance matrix of the embedded foundation.

Theoretical formulation of the method 2.1 General formulation of a radiation problem in acoustics

A complex vibrating structure, as shown in Fig. 1, is considered. The acoustical radiation problem is governed by the Helmholtz equation and conditions on the finite and infinite boundaries (cf Eq. 1).

Ω ∂Ω c,1 1 ∂Ω c,2 1 ∂Ω c,3 1 ∂Ω a,1 2 ∂Ω a,2 2 ∂Ω a,3 2 Figure 1: General radiation problem presentation                ∆p + k 2 p = 0 in Ω ∂p ∂n = q v on ∂Ω| v p = q p on ∂Ω| p kp - ∂p ∂r = O(r) Sommerfeld condition at infinity (1) 
In this article, only Neumann and Sommerfeld conditions will be considered as shown on the equation ( 1), that is to say the normal velocities resulting from a frequency response of the structure are assumed to be known.

         ∆p + k 2 p = 0 in Ω ∂p ∂n = q on ∂Ω kp - ∂p ∂r = O(r) Sommerfeld condition at infinity (2) 
After having multiplied the Helmholtz equation by a test function δ p , the weak formulation (or integral formulation) can be derived by applying the Green-Gauss theorem.

b(p, δp) = (q, δp) L 2 (Ω) , ∀δp regular test function in Ω

Where:

     b(p, δp) = -k 2 Ω δp p dV + Ω ∇δp ∇p dV (q, δp) L 2 (Ω) = ∂Ω δp ∂p ∂n dS
The function b is a sesquilinear form whereas (•, •) is a linear operator.

As it will be demonstrated in the next paragraphs, whatever Finite Element or Boundary Element methods are used for the discretization, the integration leads to the following discretized equation:

p = A ∂p ∂n (4) 
The present method aims at calculating the admittance matrix A.
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Figure 2: Global problem division into two subdomains

As in elastodynamics, this is achieved by dividing the Ω u domain into two domains as illustrated in Fig. 2, where Ω 2 is an unbounded domain and Ω 1 a bounded domain. The weak formulation (cf Eq. 3) can then be decomposed on these two domains and the integral equation (Eq. 3) of the complex problem (Fig. 1) becomes:

b(p 1 , δp) + b(p 2 , δp) = (q 1 , δp) L 2 (∂Ω 1 )) + (q 2 , δp) L 2 (Ω 2 )) , ∀δp ∈ H 1 (Ω 1 ) ∪ H 1 (Ω 2 ) (5) 
The most suitable discretization method is then chosen for each type of problem.

Exterior problem

A main advantage of Boundary Element methods is they are well adapted to infinite domain studies. Let's consider again the integral equation written on Eq. 3, substituting Ω with Ω 1 . After applying a second time Green theorem, the fundamental solution g, called Green function, is introduced. g is the exact solution of the following equation : ∆g + k 2 g = δ where δ is the dirac function,

Hence, the boundary integral equation is obtained:

c i p i = ∂Ω 1 ∂p ∂n • g dS - ∂Ω 1 p • ∂g ∂n dS with: c i =          1 P ∈ Ω 1 \∂Ω 1 1 2
P regular point on ∂Ω 1 solid angle 4π P singular point on ∂Ω 1

The discretization of this equation on ∂Ω 2 leads to :

G ∂p ∂n 1 = Hp 1 ⇔ -ρ f ω Gv n 1 = Hp
where the elementary matrices are such as:

             G α ij = Σ j ϕ α • g i dS H α ij = Hα ij + c i δ ij Hα ij = Σ j ϕ α • ∂g i ∂n dS (8) 
δ ij is the kronecker symbol.

Finally, the following expression is derived:

p 1 = A 1 v n1 (9) 

Interior problem

In this case, the use of finite elements avoids the difficulties due to singularities encountered with boundary elements. Moreover this discretization method is more adapted to bounded domains.

As in structural dynamics mass-like and stiffness-like matrices can be inferred from the variational formulation described by Eq. 3 by introducing suitable shape functions. As a consequence the interior problem is governed by:

K f -ω 2 M f p 2 = Fv n2 , with:                K f e = Ωe ∂N ∂n t ∂N ∂n dV M f e = 1 c 2 Ωe N N t dV F e = -ρ f ω ∂Ωe N n t N t dS n -t (10) 
To be compatible with the boundary integral formulation in Ω 2 , these matrices have to be reduced on the domain boundary degrees of freedom. An exact condensation or a Guyan reduction is proceeded to obtain the transformation matrix T such as:

M red = T t M f T K red = T t K f T
Hence a similar expression as equation ( 9) can be derived :

K r ed -ω 2 M r ed p 2 = Fv n2 ⇔ p 2 = A 2 v n1 (11) 

The Substructure Deletion Method

Since the FE and BE matrices have been calculated, only boundary conditions (given below Eq. 12) are lacking to solve the problem. These conditions guarantee the compatibility and equilibrium between the two problems described before.

           p b 1 = A b,b 1 v n b 1 + A b,c 1 v n c 1 p c 1 = A c,b 1 v n b 1 + A c,c 1 v n c 1 p a 2 = A a,a 2 v n a 2 + A a,b 2 v n b 2 p b 2 = A b,a 2 v n a 2 + A b,b 2 v n b 2
and

                     p b 1 = p b 2 v n b 1 + v n b 2 = 0 p a 2 = p a 3 v n a 2 = v n a 3 p c 1 = p c 3 v n c 1 = v n c 3 (12) 
This leads to the following expression of A = A 3 :

p 3 = A a,a 3 A a,c 3 A c,a 3 A c,c 3 v n3 (13) 
with

                 A a,a 3 = A a,a 2 -A a,b 2 A b,b 1 + A b,b 2 -1 A b,a 2 A a,c 3 = A a,b 2 A b,b 1 + A b,b 2 -1 A b,c 1 A c,a 3 = A c,b 1 A b,b 1 + A b,b 2 -1 A b,a 2 A c,c 3 = A c,c 1 -A c,b 1 A b,b 1 + A b,b 2 -1 A b,c 1 (14) 
3 Application and results 

Presentation of the studied models
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Figure 3 :

 3 Figure 3: Unbounded complex problems meshes

Figure 4 :Figure 5 : 2 ResultsFigures 7 ,

 4527 Figure 4: Bounded problems meshes

Figure 6 :

 6 Figure 6: Visualization points

Acknowledgements

The authors would like to thank Peter Juhl, Associate Professor in the University of Southern Denmark Physics Department, for the delivery of OpenBEM, open source matlab routines solving Boundary Integrals.

Even if some inaccuracies remains, qualitative behaviour is generally respected, and quantitative behaviour is satisfying for a use during preliminary architectural studies 

Conclusion

In this article, a new method has been described. It consists in dividing a complex radiation problem into two subproblems : a bounded one, solved thanks to Finite Elements, and a unbounded one studied here with Boundary Elements. The application on an academical two-dimensional example shows quite good agreement with reference BEM results. Since this method is to be used on simplified geometries during prospecting phase, the results may be accurate enough to compare several architectural concepts. More, as it is illustrated by the table 1, this method is adapted to optimization : the more numerous geometries to be tested, the more CPU time may be gained by using the Substructure Deletion Method.

At last, if the Substructure Deletion Method shows good results on an academical case, its accuracy on an industrial case remains to be demonstrated. If it is, this method should allow to conceive better and earlier.