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We propose two types of correlation-based blind source separation (BSS) methods, i.e.
a time-domain approach and extensions which use time-frequency (TF) signal represen-
tations and thus apply to much more general conditions. Our basic TF methods only
require each source to be isolated in a tiny TF area, i.e. they set very limited constraints
on the source sparsity and overlap, unlike various previously reported TF-BSS methods.
Our approaches consist in identifying the columns of the (scaled permuted) mixing matrix
in TF areas where these methods detect that a source is isolated. Both the detection
and identification stages of these approaches use local correlation parameters of the TF
transforms of the observed signals. Two such Linear Instantaneous TIme-Frequency
CORRelation-based BSS methods are proposed, using Centered or Non-Centered TF
transforms. These methods, which are resp. called LI-TIFCORR-C and LI-TIFCORR-
NC, are especially suited to non-stationary sources. We derive their performance from
many tests performed with mixtures of speech signals. This demonstrates that their
output SIRs have a low sensitivity to the values of their TF parameters and are quite
high, i.e. typically 60 to 80 dB, while the SIRs of all tested classical methods range
about from 0 to 40 dB. We also extend these approaches to achieve partial BSS for
underdetermined mixtures and to operate when some sources are not isolated in any TF
area.
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1 Introduction

Blind source separation (BSS) methods aim at restoring a set of unknown source signals
from a set of observed signals which are mixtures of these source signals [1]-[3]. Most of the
approaches that have been developed to this end concern linear instantaneous mixtures
and are based on Independent Component Analysis (ICA). They assume the sources to
be random stationary statistically independent signals, and they recombine the observed
signals so as to obtain statistically independent output signals. The latter signals are then
equal to the sources, up to some indeterminacies and under some conditions (especially,
at most one source may be Gaussian for such methods to be applicable if no additional
constraints are set on the sources).

In addition to ICA, a few other general concepts have been used for achieving BSS.
This includes the class of approaches based on time-frequency (TF) analysis, which is the
main framework considered in this paper. TF tools have been used in various ways in the
BSS methods reported so far, as may be seen e.g. in [4]-[11]. Among the trends which
emerge from these papers, the following ones should especially be mentioned. A first set of
methods is composed of approaches based on ratios of TF transforms of observed signals
[4]-[6]. Some of these methods require the sources to have no overlap in the TF domain [4],
which is quite restrictive. On the contrary, only slight differences in the TF representations
of the sources are required by the type of methods that we introduced and extended in
[5]-[6]. Another general concept that has been proposed for achieving BSS consists in
exploiting the sparsity of the sources in an adequate representation of these signals. The
representation used in some of these approaches is based on a TF transform of the signals.
This yields a second set of time-frequency BSS methods, which especially contains the
approaches proposed in [7]. This second set of methods has some relationships with the
above-mentioned first set, in the sense that the different constraints on the TF overlap
between sources in the first set of methods may be considered as various conditions on the
degree of sparsity of these transformed sources. All the approaches presented in the papers
[4]- [7] which compose the above two sets use the same TF transform, i.e. the Short-Time
Fourier Transform (STFT), which is a linear transform. On the contrary, other approaches
use quadratic TF transforms (see e.g. [8]-[11]), thus forming a third set of methods.
This set especially includes time-frequency BSS methods which are significantly related to
classical BSS approaches, as they consist of TF adaptations of previously developed joint-
diagonalization methods, with subsequent modifications. It should be noted that, unlike
classical ICA-based BSS methods, TF-based BSS approaches are intrinsically well-suited
to non-stationary signals (and set no restrictions on the gaussianity of the sources). They
are therefore e.g. especially attractive for speech sources.

This first part of our paper mainly describes original linear time-frequency BSS ap-
proaches applicable to linear instantaneous mixtures. These approaches use STFTs, like
the above-mentioned two sets of linear methods, but they rely on other types of parame-
ters, which are based on the local correlations of the observed signals in the TF domain.
Before describing these time-frequency BSS methods, we present a purely temporal version
of such approaches, which only applies to more restrictive conditions, as shown below.

The remainder of this first part of our paper is therefore organized as follows. In Section
2 we define the first configuration, based on determined linear instantaneous mixtures, that
we consider and the resulting goal of our investigation. We then present the associated
temporal BSS method in Section 3 and we introduce its TF extensions in Section 4. Section
5 is devoted to the versions of these approaches intended for more complex configurations,
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especially underdetermined mixtures. Section 6 reports on a detailed analysis of the
experimental performance achieved by all our temporal and TF approaches for artificial
mixtures of real speech sources. It also contains a comparison to the performance of
various BSS methods from the literature and of a somewhat related TF approach that
we proposed in a previous paper. Section 7 contains a discussion of the features of the
proposed methods, as compared to classical BSS approaches. This section also presents the
conclusions drawn from this first part of our overall investigation and outline extensions
of the proposed methods. In addition, specific topics are detailed in the appendices.

2 Problem statement

Let us first introduce the features of the considered configuration which apply to the BSS
approaches proposed in Sections 3 and 4. We assume that N unknown, possibly complex-
valued, source signals sj(t) are mixed in a linear instantaneous way, thus providing a set
of N observed signals xi(t). In other words, as in most papers dealing with BSS, we
consider determined mixtures, i.e. the number of sources is here assumed to be known
and equal to the number of available observations (the case when they are different will
then be addressed in Section 5). In various applications, these N observations xi(t) are
respectively provided by N sensors. The source-observation relationship reads in matrix
form

x(t) = As(t), (1)

where s(t) = [s1(t) . . . sN (t)]T and x(t) = [x1(t) . . . xN (t)]T and where A is a NxN un-
known, supposedly constant and invertible, mixing matrix. Its coefficients aij may be
complex-valued and are assumed to be nonzero.

BSS would then ideally consist in deriving an estimate Â of A, so as to then determine
the output vector

y(t) = Â−1x(t) (2)

= Â−1As(t). (3)

Each component yj(t) of this vector y(t) would then be equal to the source signal having
the same index, i.e. to sj(t) (up to estimation errors). It is well known however that this
can only be achieved up to two types of indeterminacies, which resp. concern the order
and scale factors with which the source signals appear in the output vector y(t). We now
provide a specific description of this phenomenon, which is intended for the BSS methods
that we will introduce in the next sections. Any of the mixed signals corresponding to the
matrix form (1) reads explicitly

xi(t) =
N∑

j=1

aijsj(t) i = 1 . . . N. (4)

However, it may also be expressed in a different way, by applying two transforms to
it. The first one consists in changing the order in which the terms, resp. associated to
sources s1(t) . . . sN(t), appear in the sum in (4). This is achieved by applying an arbitrary
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permutation σ(.) to the indices j in this sum2. The above mixed signal then reads

xi(t) =
N∑

j=1

ai,σ(j)sσ(j)(t) i = 1 . . . N. (5)

The second transform concerns the scales of the considered signals. It consists in expressing
the contributions of each permuted source signal sσ(j)(t) with respect to the contribution
of this signal in the first mixed signal3. The latter contribution is equal to a1,σ(j)sσ(j)(t),
so that we rewrite (5) as

xi(t) =
N∑

j=1

ai,σ(j)

a1,σ(j)
a1,σ(j)sσ(j)(t) i = 1 . . . N. (6)

We therefore introduce the notations

s′j(t) = a1,σ(j)sσ(j)(t) j = 1 . . . N (7)

bij =
ai,σ(j)

a1,σ(j)
i, j = 1 . . . N, (8)

where s′j(t) are the scaled permuted source signals and bij are the corresponding scaled
permuted mixing coefficients. Eq. (6) then reads

xi(t) =
N∑

j=1

bijs
′

j(t) i = 1 . . . N, (9)

or in matrix form
x(t) = Bs′(t), (10)

where s′(t) = [s′1(t) . . . s′N (t)]T and the scaled permuted mixing matrix B consists of the
above coefficients bij . Note that all the coefficients b1j, with j = 1 . . . N, are equal to 1
due to (8). These coefficients form the first row of B.

The mixing equation (10) thus obtained is the same as the initial mixture expression (1),
except that the mixed signals are now expressed with respect to the scaled permuted source
signals s′j(t). The discussion at the beginning of this section may then be reinterpreted as

follows: assume that we succeed in deriving an estimate B̂ of B. Then, by computing the
output vector

y′(t) = B̂−1x(t) (11)

= B̂−1Bs′(t), (12)

all components y′

j(t) of this vector are resp. equal to s′j(t) (up to estimation errors), i.e.
to the contributions of the permuted sources in the first mixed signal.

The BSS problem may therefore be solved by first estimating the above matrix B (with
an arbitrary permutation function σ(.)) and then computing the corresponding vector y ′(t)
of separated source signals. Two types of BSS methods based on this principle are resp.
proposed in Sections 3 and 4.

2This includes, as a specific case, the situation when σ(.) is the identity function, i.e. when no permu-
tation is actually performed.

3The same principle may of course be applied to any other mixed signal instead.
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3 Proposed standard temporal approach

3.1 Assumptions and definitions

In this section, we consider random signals and introduce a statistical temporal BSS
approach. We first present the only assumptions that we make with respect to the sources
in this approach, and the associated definitions.

Definition 1: a source is said to be ”isolated” in a time area if only this source (among
all considered mixed sources) has a nonzero variance in this time area.

This definition corresponds to the theoretical point of view. From a practical point
of view, this means that the variances of all other sources are negligible with respect to
the variance of the source that is isolated. Each considered time area may be restricted
to a single time t from a theoretical point of view, as we use a statistical approach in
this section. In practice, the statistical parameters of the signals are estimated over time
windows, and each considered time area then consists of such a window.

Definition 2: a source is said to be ”accessible” in the time domain if there exist at
least one time area where it is isolated.

Assumption 1: each source is accessible in the time domain.
Assumption 1 has the following consequence on the statistical properties of the ran-

dom source signals to be processed by the BSS method introduced below. Consider the
(theoretical) variance at time t of any source sj(t), i.e.

σ2
sj

(t) = E{|sj(t) − E{sj(t)}|
2} (13)

where E{.} stands for expectation. Due to Assumption 1, σ2
sj

(t) is equal to zero at some
times t, i.e. times when another source is isolated. Moreover, it is non-zero for other
times, otherwise the signal sj(t) would have zero variance at any time, which is excluded
from the considered BSS configurations. Therefore, the statistical parameter σ2

sj
(t) of any

source signal sj(t) is time-dependent, so that these source signals are non-stationary4.
The condition in Assumption 1 and the resulting non-stationarity requirements may be

considered as quite restrictive. It should be clear that this only corresponds to the first
stage of our overall approach, where this assumption makes it possible to design a simple
BSS method in this specific situation. In the TF extension of our approach presented in
Section 4, we will show how to replace the above assumption by a much less stringent
constraint, thus avoiding non-stationarity requirements.

Assumption 2: the sources are mutually uncorrelated.
Note that we do not require the complete independence of the sources, as the approach

introduced below only uses their second-order statistics.
For the sake of simplicity, the notations s(t) and x(t) introduced above directly refer

to the centered5 version of the signals in this section.

4The above comments correspond to the theoretical definition of the stationarity of random signals,
based on their statistical properties, which are especially defined by the expected values associated to these
signals. Now consider practical implementations of the proposed approach, based on a single realization
of these random processes. The above discussion then results in the following practical requirements. The
source signals are requested to be long-term non-stationary, but they should also be short-term stationary
in order to make it possible to estimate correctly the statistical parameters of these signals over short
time windows of the available realization. The above constraints on sources should then be interpreted
accordingly. Especially, the practical version of Definition 1 means that a source is isolated in a short time
window if the sample variances of all other sources, obtained by time averaging over this window, are zero
(or negligible).

5Centering is here handled as usually in BSS investigations, i.e: i) first, in the theoretical analysis
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3.2 Temporal BSS method

In this section, we derive a BSS method by taking advantage of the above Assumption 1,
i.e. of the fact that there exist time areas where each source is isolated. Such areas should
first be detected, so as to operate inside them. As all observed signals are proportional
in any such area, an appealing approach for detecting these areas consists in checking the
cross-correlation coefficients ρx1xi

(t) between the observed signals x1(t) and xi(t), which
are defined as6

ρx1xi
(t) =

E{x1(t)x
∗

i (t)}√
E{x1(t)x

∗

1(t)}E{xi(t)x
∗

i (t)}
∀ i, 2 ≤ i ≤ N, (14)

where the superscript ∗ denotes the complex conjugate. More precisely, we show in Ap-
pendix A that a necessary and sufficient condition for a source to be isolated at time t
is

|ρx1xi
(t)| = 1 ∀ i, 2 ≤ i ≤ N. (15)

Now consider such an area where a source is isolated, say sk(t). The observed signals (4)
then become restricted to

xi(t) = aiksk(t) i = 1 . . . N. (16)

Other correlation-based parameters associated to these observed signals then make it
possible to identify part of the matrix B. More precisely, when (16) is met,

E{xi(t)x
∗

1(t)}

E{x1(t)x∗

1(t)}
=

aik

a1k

i = 2 . . . N. (17)

Comparing this expression to (8) shows that the set of such correlation parameters asso-
ciated to the same single-source time area and to all observations indexed by i identifies
one of the columns of B (the first row of B consists of 1, as explained above). By repeat-
edly performing such column identifications for time areas associated to all sources, we
eventually identify the overall matrix B, which completes the proposed approach.

The BSS method thus introduced may be summarized as follows (see corresponding
pseudo-code in Fig. 1). It contains 3 stages:

1. The detection stage consists in detecting the time areas where a source is isolated.
This stage therefore operates as follows. For each time t (or practical time window),
we compute the mean7 |ρx1xi

(t)| of |ρx1xi
(t)| over all i, with 2 ≤ i ≤ N . We then

order all times t according to decreasing values of |ρx1xi
(t)|. The first times in this

ordered list are then considered as the ”best” single-source time areas.

which corresponds to the current section, either the sources are initially assumed to be zero-mean, or their
means are assumed to be known and the corresponding centered versions of the signals are considered,
and then ii) in practice, centering is performed independently for each considered time window, where
the considered signals are assumed to be short-term stationary, by subtracting from the signals the mean
estimates computed on these time windows.

6Again, in practical implementations of this BSS method, these cross-correlation coefficients are esti-
mated by replacing in (14) the expectations E{.} by temporal averages over the considered windows, for
the considered signal realization, based on ergodicity assumptions.

7Appendix B explains why the mean of |ρx1xi
(t)| over i is preferred to its minimum in this approach

and in its subsequent TF extensions.
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2. The identification stage consists in identifying the columns of B. This is achieved by
successively using as follows each of the first and subsequent time areas in the above-
defined ordered list. The identification parameters on the left-hand side of (17) yield
an estimated column of B. This column is kept only if its distance with respect
to all previously identified columns is above a user-defined threshold, showing that
the considered time area does not contain the same source as previous areas in the
ordered list. The identification procedure ends when the number of columns of B
thus kept becomes equal to the specified number N of sources to be separated (this
is theoretically guaranteed to occur because all sources are assumed to be accessible
in the considered data).

3. The combination stage consists in recombining the mixed signals according to (11),
in order to obtain the extracted source signals.

This approach for Linear Instantaneous mixtures is thus a TEMPoral CORRelation-
based BSS method, using the Centered version of the signals8. We therefore call it ”LI-
TEMPCORR-C”. This method is the basic version of the kind of temporal approaches
that we propose in this paper. Various modified versions may then be derived from
it. Especially, a possibly more robust version of its identification stage consists in first
keeping the identified columns corresponding to all available single-source areas, and then
clustering them, so as to eventually derive a better estimate of each column of B (e.g.
as an average of all its identified occurences). Such clustering-based extensions of our
approach may also be used to remove heuristic aspects of its basic version, especially by
avoiding the user-defined distance threshold involved in the above identification stage.

4 Proposed standard time-frequency approaches

4.1 Motivations and basic principles

The approach that we introduced in the previous section is attractive because of its sim-
plicity. It may be considered to be of limited practical applicability however, because it
assumes all sources to be isolated in associated time areas, which is a restrictive condition.
But it opens the way to much more powerful methods if we now take into account the TF
distributions of the signals, instead of their plain time distributions considered up to this
point. Indeed, the TF extension of the above approach may be briefly defined as follows.
Assume that each source is isolated in a TF area. Based on the above presentation, one
may then expect the columns of B to be identifiable in such areas, thus allowing one to
eventually perform BSS.

The remainder of this section presents this approach in a more formal way. We would
like to stress that the resulting methods only request each source to be isolated in a very
small bounded TF area, e.g. corresponding to a very limited set of adjacent time windows
and one associated frequency. In other words, the proposed time-frequency BSS methods
then only request that, for each source, there exist (at least) one very limited set of
adjacent time windows and one associated frequency where all other sources are inactive.
On the contrary, our temporal approach is based on Assumption 1, so that it requires
that, for each source, there exist a time window where all other sources are inactive at
all frequencies, which is a much more restrictive requirement. This is the reason why

8The influence of observation noise on the method obtained at this stage is presented in Appendix C.

8



the TF versions of the proposed approach have a much broader scope of application than
its above temporal version. For instance, mixtures of continuous speech signals meet the
assumption considered in this section, because most of the energy of these signals over
successive time windows is concentrated in a few bounded time-varying frequency regions,
corresponding to formants.

It should also be noted that the considered TF tool, which will now be presented, is
originally defined for deterministic signals. This paper uses it in such a framework and
concerns two cases i.e: i) either the sources to be separated are deterministic or ii) they
are random processes, but in the latter case only a single realization of these processes is
considered (this is what is actually available in practice). The following description then
concerns this single, deterministic, realization and the tools and properties that we use
only require such a realization.

4.2 Time-frequency tool

Many TF representations have been proposed over the last fifty years and are e.g. pre-
sented in [12]-[13]. We here use the short-time Fourier transform (STFT), especially
because it yields low computional load thanks to FFT algorithms and it does not in-
troduce interference terms (unlike some other TF transforms, such as the Wigner-Ville
distribution), thus keeping the linear instantaneous mixing structure when applied to the
considered observed signals.

The STFT of a time-domain signal v(t′) is obtained by first multiplying that signal by
a shifted windowing function h∗(t′− t), centered around time t. This yields the windowed
signal v(t′)h∗(t′ − t). This signal depends on two time variables, i.e. the selected time t
where the local spectrum of v(t′) is analyzed and the varying time t′. The STFT of v(t′)
is then defined as the Fourier transform of the above windowed signal, i.e

V (t, ω) =

∫ +∞

−∞

v(t′)h∗(t′ − t)e−jωt′dt′. (18)

V (t, ω) is then the contribution of the considered signal v(t′) in the part of the TF plane
corresponding to: i) the short time window centered around t and ii) the angular frequency
ω.

4.3 Assumptions and definitions

The first TF method introduced below in Section 4.4 uses the same assumptions and
definitions as in Section 3.1, except that: i) we here eventually use a deterministic frame-
work, as explained above, and ii) the temporal concepts considered in Section 3.1 are here
replaced by their TF version, i.e:

Definition 1-TF: a source is said to be ”isolated” in a TF area if only this source (among
all considered mixed sources) has a nonzero variance in this TF area.

Definition 2-TF: a source is said to be ”accessible” in the TF domain if there exist at
least one TF area where it is isolated.

Assumption 1-TF: each source is accessible in the TF domain.
The TF areas considered in the following practical time-frequency BSS methods are

”analysis zones” defined as follows. Each value of a STFT corresponds to a single ”TF
point”, associated to a single angular frequency ω and to a complete time window defined
by the selected analysis time t and by the considered finite-length windowing function
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h∗(.), as explained in Section 4.2. The BSS methods that we propose below then use
means associated to these STFTs, computed over ”analysis zones” which consist of TF
points. An analysis zone may have any shape in the TF domain. In this first part of
our paper, we focus on the case when it forms a ”temporal line”, i.e. when all its points
correspond to the same frequency ω and to adjacent (possibly overlapping) time windows.
The latter windows are resp. associated to a discrete set of L analysis times tp, with
p = 1 . . . L. This set is denoted as T hereafter. Each analysis zone is then specified in
terms of the couple (T, ω), which completely defines the part of the TF domain associated
to this analysis zone.

TF analysis is of interest for ”non-stationary” signals, i.e. signals whose frequency
contents vary over successive time windows. The time-frequency BSS methods presented
below apply to such signals, but we would like to stress that they are also suited to
various stationary signals (unlike our previous temporal approach). Indeed, assume that
the frequency contents of the considered source signals are constant over time, but that
these signals do not fully overlap in the frequency domain, so that each of them is isolated
at one frequency at least. Then our major assumption, i.e. Assumption 1-TF, is met
so that the time-frequency BSS methods introduced below apply (provided their other
assumptions are also met).

The BSS method presented below in Section 4.4 then uses the following parameters,
associated to the above-defined analysis zones. For any time-domain signal v(t ′), the mean
of its TF transform V (t, ω) over the considered analysis zone is

V (T, ω) =
1

L

L∑

p=1

V (tp, ω). (19)

Similarly, for any couple of signals v1(t
′) and v2(t

′), whose TF transforms are denoted
V1(t, ω) and V2(t, ω), the cross-correlation of the centered versions of the TF transforms
of these signals over the considered analysis zone may be measured: i) either by the TF
local non-normalized covariance parameter

Cv1v2(T, ω) =
1

L

L∑

p=1

[V1(tp, ω) − V1(T, ω)][V2(tp, ω) − V2(T, ω)]∗ (20)

or ii) by the corresponding covariance coefficient

cv1v2(T, ω) =
Cv1v2(T, ω)√

Cv1v1(T, ω)Cv2v2(T, ω)
. (21)

The source uncorrelation assumption of Section 3 is then replaced by:
Assumption 2-TF: over each analysis zone (T, ω), the (centered) TF transforms of the

sources are uncorrelated, i.e: Csisj
(T, ω) = 0, ∀ i 6= j.

4.4 Time-frequency BSS method: centered version

The BSS method which results from the above principles is a TF adaptation of the overall
temporal approach that we presented in Section 3.2. It is therefore composed of the same 3
stages as the latter approach, adapted to the TF context however, and therefore preceded
by a pre-processing stage, i.e:

10



1. The pre-processing stage consists in deriving the STFTs Xi(t, ω) of the mixed signals,
according to (18).

2. The detection stage aims at finding single-source TF analysis zones. It is based on
the following property, shown in Appendix A: a necessary and sufficient condition
for a source to be isolated in a TF analysis zone (T, ω) is

|cx1xi
(T, ω)| = 1 ∀ i, 2 ≤ i ≤ N. (22)

This stage therefore operates as follows. For each analysis zone, we compute the
mean |cx1xi

(T, ω)| of |cx1xi
(T, ω)| over all i, with 2 ≤ i ≤ N . We then order all

analysis zones according to decreasing values of |cx1xi
(T, ω)|. The first zones in this

ordered list are then considered as the ”best” single-source zones9.

3. The identification stage consists in identifying the columns of B in single-source
analysis zones. This is based on the same approach as in the temporal BSS method,
except that the identification parameter in (17) is here replaced by

Ii(T, ω) =
Cxix1(T, ω)

Cx1x1(T, ω)
i = 2 . . . N, (23)

which is equal to aik/a1k when source sk(t) is isolated in the considered TF analysis
zone, as shown in Appendix E.

4. In the combination stage, we eventually recombine the mixed signals according to
(11), in order to obtain the extracted source signals.

This approach for Linear Instantaneous mixtures is therefore a TIme-Frequency
CORRelation-based BSS method, which uses the Centered version of the STFTs of the
signals. We therefore call it ”LI-TIFCORR-C” in the remainder of this paper. This ap-
proach may then be extended in the same way as the temporal version of this method,
e.g. using clustering techniques, as explained in Section 3.2.

4.5 Time-frequency BSS method: non-centered version

The extension of our initial temporal BSS method to TF concepts led in a natural way
to the above LI-TIFCORR-C method. A slightly simpler version of the latter method
may also be obtained by replacing the centered versions of the parameters by plain, i.e.
non-centered, parameters in all the assumptions and definitions of Section 4.3 and in
the description of this BSS method provided in Section 4.4. Especially, the covariance
parameter Cv1v2(T, ω) defined in (20) is here replaced by the TF local non-centered non-
normalized correlation parameter

Rv1v2(T, ω) =
1

L

L∑

p=1

V1(tp, ω)V ∗

2 (tp, ω), (24)

so that the covariance coefficient cv1v2(T, ω) defined in (21) is replaced by the correlation
coefficient

rv1v2(T, ω) =
Rv1v2(T, ω)√

Rv1v1(T, ω)Rv2v2(T, ω)
. (25)

9Modified versions of this approach are defined in Appendix D.
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This type of parameter is used instead of cv1v2(T, ω) in the detection stage defined in
Section 4.4, especially in its condition (22) used for detecting single-source analysis zones
(the validity of the resulting condition may be shown by means of the non-centered version
of the proof provided in Appendix A). Similarly, in the identification stage defined in
Section 4.4, the non-normalized covariance parameters used in (23) are here replaced by
their non-centered version, so that the identification parameter here becomes

Ii(T, ω) =
Rxix1(T, ω)

Rx1x1(T, ω)
i = 2 . . . N. (26)

This parameter is again equal to aik/a1k when source sk(t) is isolated in the considered
TF analysis zone (this may be shown by means of the non-centered version of the proof
provided in Appendix E.). This method for Linear Instantaneous mixtures, based on the
CORRelation of Non-Centered TIme-Frequency transforms, is called ”LI-TIFCORR-NC”
hereafter.

4.6 Relationship between the LI-TIFCORR and LI-TIFROM methods

4.6.1 Principles of LI-TIFROM

The overall structure used in both versions of the LI-TIFCORR approach has some sim-
ilarities with the LI-TIFROM time-frequency BSS approach that we proposed in [5]-[6],
i.e. it is composed of the same stages. However, these two types of approaches use com-
pletely different parameters in the two stages which are the core of such methods, i.e. the
detection and identification stages. More precisely, the LI-TIFROM approach operates as
follows:

1. Its pre-processing stage consists in deriving the STFTs Xi(t, ω) of the mixed signals,
according to (18).

2. The detection stage then derives single-source analysis zones as the zones where the
variances of ratios of STFTs of observations take the lowest values. More precisely,
for each TF point (t, ω), we first compute the ratio of observations10

β(t, ω) =
X2(t, ω)

X1(t, ω)
. (27)

We then derive the mean and variance of β(t, ω) over each analysis zone, i.e.

β(T, ω) =
1

L

L∑

p=1

β(tp, ω) (28)

var[β](T, ω) =
1

L

L∑

p=1

|β(tp, ω) − β(T, ω)|2. (29)

We then order all analysis zones according to increasing values of var[β](T, ω). The
first zones in this ordered list are then considered as the ”best” single-source zones.

10We may use either the ratio defined in (27) or its inverse. We here consider the ratio in (27) because
this yields the version of LI-TIFROM which is the most similar to the above description of LI-TIFCORR.
The inverse ratio is used in [5]-[6]. In [6], we also explain why a simple version of the detection stage,
which only uses a single couple of observations, is most often acceptable (although it may not be optimal).
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3. The identification stage consists in identifying the columns of B in the first single-
source analysis zones of the above list. The entries of B are set to the means on
these analysis zones of ratios Xi(t, ω)/X1(t, ω) of STFTs of observations, where these
means are defined in the same way as in (28). The same method as in Subsection
3.2 is used for deciding which of these identified columns of B are kept.

4. In the combination stage, we eventually recombine the mixed signals according to
(11), in order to obtain the extracted source signals.

Comparing the steps of this method to those of LI-TIFCORR-C, which were detailed in
Subsection 4.4, therefore confirms that the main algorithms used in these two types of
methods are based on completely different parameters.

As the detection and identification stages are independent one from the other in any
of the LI-TIFCORR and LI-TIFROM approaches, we may also derive mixed approaches
by using the detection method of one of these two types of BSS approaches and the
identification stage of the other type of approaches.

4.6.2 Limitation of LI-TIFROM

The detailed tests that we performed to compare the performance of the LI-TIFCORR
and LI-TIFROM methods revealed a limitation of the latter approach. We here provide a
theorerical analysis of this phenomenon, while the corresponding experimental results are
presented below in Section 6.5. For the sake of clarity, we first consider a configuration
involving 2 mixtures of 2 sources, with a symmetrical mixing matrix

A =

[
1 p
p 1

]
, (30)

where p is a mixing parameter, whose influence is analyzed hereafter. The parameter of
LI-TIFROM for detecting single-source analysis zones, that we defined in (27), here reads

β(t, ω) =
pS1(t, ω) + S2(t, ω)

S1(t, ω) + pS2(t, ω)
. (31)

First consider an ideal analysis zone, i.e. a TF zone where either S1(t, ω) or S2(t, ω) is
strictly zero everywhere. Eq. (31) then shows that β(t, ω) is constant in this zone. Its
variance over this zone is then strictly zero and this is precisely the property which is
used in LI-TIFROM to detect single-source analysis zones. For ideal analysis zones, LI-
TIFROM therefore yields the same behavior for the two sources, S1(t, ω) and S2(t, ω). But,
let us now consider a real single-source analysis zone associated to a source Si(t, ω), i.e. a
zone where Si(t, ω) is prominent but which also contains slight pollution from the other
source Sj(t, ω), with Sj(t, ω) � Si(t, ω). We may expect the behavior of LI-TIFROM in
this zone to be possibly different depending whether the prominent source in this zone
is S1(t, ω) or S2(t, ω), because S1(t, ω) and S2(t, ω) play different roles in the parameter
β(t, ω) as shown by (31). More precisely, let us consider the case when p is significantly
lower than 1 and analyze the contributions of each source in β(t, ω):

• From the point of view of S1(t, ω), β(t, ω) contains the ratio of a small component
and of a large component.

• On the contrary, from the point of view of S2(t, ω), β(t, ω) contains the ratio of a
large component and of a small component.
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The parameter β(t, ω) is therefore not symmetrical with respect to the two sources. Beyond
this qualitative approach, this phenomenon and its consequences may be analyzed in a
more formal way as follows. First consider a real single-source analysis zone associated
to S1(t, ω), i.e. a zone where S2(t, ω) � S1(t, ω). From the point of view of these source
signals, the ”single-source quality” of this analysis zone may be measured at each of its
TF points (t, ω) by the parameter

ε1 =
S2(t, ω)

S1(t, ω)
(32)

with ε1 � 1. Simple manipulations of (31) then yield the following first-order expansion
of β(t, ω) with respect to ε1 for any value of p:

β(t, ω) ' p

(
1 +

1 − p2

p
ε1

)
. (33)

The first-order term in (33) is responsible for the variations of β(t, ω) over the considered
analysis zone. Due to (33), the variance of β(t, ω) in the analysis zone (T, ω) reads as
follows, up to a first-order approximation:

var[β](T, ω)S1 = p2

(
1 − p2

p

)2

var[ε1](T, ω)S1 , (34)

where the subscripts S1 mean that these expressions apply to a single-source analysis zone
associated to S1(t, ω), and where var[ε1](T, ω)S1 is defined as in (29) and measures the
overall intrinsic ”single-source quality” of this analysis zone.

A symmetrical investigation may then be performed for a real single-source analysis
zone associated to S2(t, ω), i.e. a zone where S1(t, ω) � S2(t, ω). From the point of view
of these source signals, the quality of this analysis zone may first be measured at each TF
point (t, ω) by the parameter now defined as

ε2 =
S1(t, ω)

S2(t, ω)
(35)

with ε2 � 1. The same manipulations as above here yield, up to a first-order approxima-
tion,

var[β](T, ω)S2 =
1

p2

(
1 − p2

p

)2

var[ε2](T, ω)S2 . (36)

These results may be interpreted as follows. Consider two real single-source analy-
sis zones, respectively associated to S1(t, ω) and S2(t, ω), which have the same intrinsic
”single-source quality”, i.e. which are such that

var[ε1](T, ω)S1 = var[ε2](T, ω)S2 . (37)

Then, despite the symmetry of this configuration with respect to the two sources, Eq.
(34) and (36) show that the principles used in the LI-TIFROM approach entail different
behaviors for this method in these two analysis zones. More precisely, when p 6= 1, the
detection parameter β(t, ω) does not have the same variance in these two analysis zones.
Moreover,

var[β](T, ω)S2

var[β](T, ω)S1

=
1

p4
, (38)
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so that this discrepancy increases drastically when p becomes e.g. much lower than 1. In
that case, β(t, ω) has a much higher variance in the single-source analysis zones associated
to S2(t, ω) than in those associated to S1(t, ω). This then has a major influence on the
contents of the ordered list of analysis zones created in the detection stage of LI-TIFROM
and on its use then performed in the identification stage: in the latter stage, LI-TIFROM
first takes into account the analysis zones which are situated at the beginning of the
ordered list and which correspond to low variance of β(t, ω). It is thus very likely to
identify accurately various representatives of the column of the (scaled permuted) mixing
matrix corresponding to S1(t, ω). By checking the distances between these successive
tentative columns, it only keeps one representative of the column associated to S1(t, ω).
LI-TIFROM then proceeds by progressively climbing up the list of analysis zones ordered
according to increasing values of the variance of β(t, ω). This list contains good-quality
zones associated to S2(t, ω), i.e. zones where the pollution from S1(t, ω) has low magnitude
and where LI-TIFROM would be able to identify accurately the column of the mixing
matrix associated to S2(t, ω). However, when p � 1, β(t, ω) has very high variances in
these analysis zones as shown above, so that these zones are situated very high in the
ordered list. Therefore, while LI-TIFROM is climbing in that list, there is a risk that it
first performs a poor detection and identification, because it first encounters a zone: i)
which has a lower variance than the above-mentioned good-quality zones associated to
S2(t, ω) and ii) which yields a mixing matrix column far enough from the one which was
previously obtained for S1(t, ω), so that this new column is also kept. When this situation
occurs, LI-TIFROM yields poor separation quality. This theoretical analysis is validated
in Section 6.5 by means of experimental tests.

As shown above, this drawback of the LI-TIFROM method results from its asymmet-
rical behavior with respect to the different sources, depending on the mixture coefficients.
While we focused on the specific mixing configuration defined by (30) up to this point, the
qualitative analysis that we provided at the beginning of this Section 4.6.2 may now be
extended as follows to any mixing conditions. The asymmetry of LI-TIFROM is inherent
in its detection parameter: β(t, ω) defined in (27) takes into account in different ways the
observed signals (i.e. X2(t, ω) appears in its numerator, while X1(t, ω) appears in its de-
nominator) and since the latter signals themselves depend in different ways on the sources,
depending on mixture coefficients (e.g. in (31), when p < 1, S1(t, ω) is more prominent in
X1(t, ω) while S2(t, ω) is more prominent in X2(t, ω)), the parameter β(t, ω) then depends
on the sources in different ways. This interpretation is of major importance because, on

the contrary, the detection parameters of the LI-TIFCORR methods that we introduced
in this paper are based on the moduli of the covariance or correlation coefficients defined
in (21) and (25). Unlike β(t, ω), these moduli of covariance and correlation coefficients
are symmetrical with respect to the observed signals for which they are computed, so that
the LI-TIFCORR methods are not expected to lead to the drawback that we exhibited
above for LI-TIFROM. Indeed, in Section 6 we present tests with low mixture coefficients
(i.e. p much lower than 1) where the LI-TIFCORR methods yield very good results while
LI-TIFROM fails. The detection stages introduced in this paper are therefore a major
advantage as compared to the approach that we previously proposed in [5]-[6].

15



5 Extensions of proposed time-frequency and temporal ap-

proaches

Up to now we only considered the configuration based on the following assumptions:

1. the number P of observations is equal to the number N of sources,

2. all sources are ”accessible” (in the above-defined senses).

The proposed BSS methods may be extended beyond this ”standard” configuration as
follows. Their first extensions concern the situations when the number P of observations
is different from the number N of sources. The overdetermined case, i.e. P > N , is
known to be handled easily in the framework of BSS and is therefore briefly described in
Appendix F. On the contrary, the underdetermined case, i.e. P < N is a tougher problem.
Classical methods then fail to achieve BSS, i.e. their output signals are mixtures of all
N sources [17]-[18]. The solution to this problem that we introduced in [17]-[18] is based
on our partial BSS concept, which may be briefly defined as follows (more details about
our motivations for introducing this approach may be found in [17]-[18]). We focus on
P of the N mixed sources, considered as the signals of interest, while the other (N − P )
sources are considered as ”noise”. We then aim at building a partial BSS system, such
that each of its output signals contains a contribution from only one of the sources of
interest, plus contributions from the noise sources. We thus achieve the partial BSS of the
P sources of interest. Whereas classical BSS methods do not achieve such partial BSS, we
introduced in [17]-[18] several statistical methods, based on our general differential BSS
concept, which solve this problem.

An attractive feature of the time-frequency and temporal BSS methods that we propose
in the current paper is that they also make it possible to achieve partial BSS in a very
natural way, as will now be shown. When applying any of the proposed methods to P
mixtures of N supposedly accessible sources, with P < N , we first obtain an estimate of
the scaled permuted matrix B in the same way as in the case when P = N , except that this
matrix is here rectangular, i.e. composed of N columns which each contain P elements.
Let us then select P sources as the sources of interest and keep the corresponding P
columns of the estimated matrix B. We thus obtain a square sub-matrix B ′ of the mixing
matrix B. The observed signals may then be considered as mixtures of the P sources of
interest associated to the mixing sub-matrix B ′, plus ”noise” composed of contributions
from the other (N − P ) sources. Let us then transfer these observed signals through the
inverse of this square sub-matrix B ′, as in (11). We thus obtain output signals which
separate each of the P sources of interest from the other sources of interest, i.e. output
signals which each contain a contribution from only one of the P sources of interest, plus
again ”noise” consisting of contributions from the other (N −P ) sources. In other words,
we thus achieve the above-defined partial separation of the selected P sources. Note that
we may thus choose arbitrarily which subset of P sources, among the initial N sources, is
to be separated. This is an additional advantage with respect to the statistical differential
methods that we proposed in [17]-[18] because, in the latter methods, (non-)stationarity
constraints on the sources impose which of these sources may be separated.

The second extension of our LI-TIFCORR methods concerns the case when only part of
the sources are accessible (the same extension may also be developed for LI-TEMPCORR-
C). The basic version of this type of extension may be defined as follows, with P = N just
for the sake of simplicity. Assume that at least one of the sources, say sk(t), is accessible.
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The above LI-TIFCORR methods then make it possible to estimate the corresponding
column of the scaled permuted mixing matrix B, say column j. This estimated column
consists of elements b̂ij which are estimates of

bij =
aik

a1k

i = 1 . . . N, (39)

as shown by (8). Therefore, if we now compute a modified version of each mixed signal
xi(t), with i = 2 . . . N , according to

x′

i(t) = xi(t) − b̂ijx1(t) i = 2 . . . N, (40)

eq. (4) and (39) show that we obtain N −1 signals which do not contain any contributions
from source sk(t) (up to errors due to the estimation of bij). The key point is then that,
even if some sources were not accessible from the initial set of N mixed sources, at least
one of them may become accessible from the new set of N − 1 mixed sources involved
in the modified mixed signals x′

i(t). This depends on the TF distributions of all sources
and happens if some sources were initially hidden, i.e. they were not isolated in any TF
analysis zone when considering the initial set of N sources, but they are isolated in at
least one zone when considering the set of N − 1 sources which remains after cancelling
the contributions from source sk(t) in all mixed signals. If at least one source is accessible
from this new set of N − 1 mixed sources, the same procedure may be applied again.
This recursive procedure ends when (no more sources are accessible, or when) the number
of recombined signals is thus decreased down to one, and this signal contains a single
source. This procedure thus succeeds in extracting this source, although not all sources
were initially accessible. This procedure may then be applied again, by selecting other
sources sk(t) at each step of its recursion in order to extract other sources.

More advanced versions of this type of procedure may also be defined in order to cancel,
at each intermediate stage of the recursion, the contributions from all the sources which
are accessible at that stage. This is illustrated in the experimental tests presented in
Section 6.6, where the first stage of the recursion removes the only source which is initially
accessible and thus reveals the other two sources, which are then both extracted in the
second stage of the recursion. Again, the main feature of these advanced recursive versions
is their ability to separate all sources in situations when not all these sources are initially
accessible but they progressively become accessible at each stage of the procedure, thanks
to the previous suppression of the contributions of other sources from the observed mixed
signals.

6 Experimental results

6.1 Performance of proposed TF methods for a fixed mixing matrix

In Sections 6.1 and 6.2, we present a large number of tests performed in the following
conditions:

• we start from various real English speech signals sampled at 20 kHz,

• we derive various artificial linear instantaneous mixtures of these sources,

• we process these mixed signals with the main BSS methods proposed in this paper,
i.e. the standard version of LI-TIFCORR-C and LI-TIFCORR-NC that we defined
in Section 4.
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The performance achieved in each test is measured by the overall Signal to Interference
Ratio (SIR) associated to the outputs of the considered BSS system (denoted SIRout

hereafter) and/or by the SIR Improvement achieved by this system (denoted SIRI below).
These parameters are defined in Appendix G, together with the input SIR associated to
the processed mixed signals (denoted SIRin hereafter).

In our first series of tests, the mixing matrix was set to

A1 =

[
1 0.9
0.8 1

]
. (41)

SIRin was equal to 1.4 dB in all these tests (which is in agreement with Eq. (85) in
Appendix G). Moreover, the two performance parameters, i.e. SIRout and SIRI, are
linked by the following relationship

(SIRI)dB = (SIRout)dB − (SIRin)dB (42)

as demonstrated in Eq. (78) of Appendix G. They here only differ by the constant value
of SIRin, i.e. 1.4 dB. Only one of them is therefore considered hereafter, i.e. SIRout.

Each test was performed with two sources, corresponding to one of the following sets:

• Set 1: same male speaker.

• Set 2: different male speakers.

• Set 3: same female speaker.

• Set 4: different female speakers.

• Set 5: one male speaker and one female speaker.

• Set 6: different male speakers.

All these sources consist of 2.5 seconds of continuous speech, except those in Set 6, which
last 5 seconds and contain silences. The signals in Set 2 correspond to a 2.5-second window
extracted from the signals in Set 6. All these sources were first centered and scaled so
that their highest absolute value is equal to 1.

The test results reported here were obtained by independently varying several param-
eters of the LI-TIFCORR-C and LI-TIFCORR-NC methods as follows:

• The number of samples in each time window was geometrically varied from 128 to
1024 samples, with a step size equal to 2.

• The number of such windows per analysis zone was successively set to 8, 10 or 12.

• The overlap between time windows was successively set to 50%, 75% and 90%.

As a result of these parameter values, the size of the analysis zones was varied from 219
to 6656 samples, i.e. about 11 to 330 ms. The other parameters of these BSS methods
were constant in these tests, i.e:

• The windowing function h∗(.) used in STFT computations was a Hanning window.

• The temporal overlap between successive analysis zones was set to 50% of their time
windows.
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• The distance between two identified columns of the matrix B was measured by the
highest absolute difference between elements of these vectors which have the same
index, i.e. using l∞ norm. The distance threshold for accepting a new column of
B was set to 0.15 (at this stage, this value was selected because it resulted in good
performance in a preliminary set of tests; an automated method for assigning this
threshold is preferable, as discussed in the conclusion of this paper).

For each considered BSS method, 216 tests were first performed in the above-defined
conditions. Both methods succeeded in identifying all columns of the matrix B, and
therefore in separating the considered sources, in all tests. The corresponding results are
provided in Table 1. This table shows that both BSS methods yield high performance,
i.e. depending on the considered set of sources their mean SIRout over all BSS method
parameters range from 57.9 to 72.1 dB. The standard deviation of SIRout is acceptable,
i.e. between 4.9 and 8.1 dB (except for the first set of sources, for which is it equal to 11.7
or 11.8 dB depending on the considered BSS method, but this set is more difficult than
in practical applications, since it corresponds to two signals from the same speaker which
may therefore have a stronger frequency overlap). The minimum SIRout is equal to 38.3
dB over all these tests (except for the first set of sources, for which it is equal to 31.0 dB).
The maximum SIRout over all tests is 96.4 dB.

The LI-TIFCORR-NC method yields a slightly better mean SIRout than the LI-
TIFCORR-C version for all sets of sources, except for Set 6. It also provides a slightly
better average SIRout over all sets of sources, i.e. 65.0 vs. 64.0 dB.

A more detailed analysis of the results of the above tests is provided in Appendix H. It
especially shows that the performance of the proposed BSS methods has a low sensitivity
with respect to the values of their parameters. The preferred parameter values which
result from these tests are: analysis zones consisting of 10 STFT windows, with 256 (or
128) samples per window and 75% overlap. The resulting SIRout are then around 75 to 80
dB, as shown in Appendix H. This proves that both methods estimate the scaled possibly
permuted mixing matrix B very accurately.

While all above results were derived by using the performance criteria that we defined
in Appendix G, a variety of other criteria have also been proposed in the literature and
may be used instead. This e.g. includes the SIR and SDR criteria defined in [19]. We
provide in Table 2 the values of the latter criteria corresponding to part of the tests that
we reported above, so that a reader more familiar with the latter criteria has an example
of the correspondence between them and the criteria that we consider in this paper.

Still considering highly mixed sources, we also checked the applicability of the above
methods to a higher number of sources. This investigation is presented in Appendix I. It
confirms the main results that we reported above for two sources.

6.2 Performance of proposed TF methods vs. mixing matrix

Our second series of tests in the above-defined conditions aimed at investigating the influ-
ence of the mixing matrix on the performance of the proposed TF methods. In addition
to the above matrix A1, we therefore used symmetrical matrices defined as

[
1 p
p 1

]
, (43)

where we successively considered differents real values for the cross-coupling term p, in
order to vary the mixture ratio and therefore the SIRin associated to the observed signals
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xi(t). More precisely, the matrix form defined in (43) results in

SIRin =
1

p2
(44)

as shown by Eq. (85) in Appendix G. The values that we considered for p are: p = 0.1, 0.5,
0.9. The corresponding mixing matrices are resp. denoted A2, A3, A4, and the associated
SIRin are provided in Table 3.

For the sake of simplicity, we only performed these tests for a single set of sources.
We selected the above-defined ”Set 2” of sources, which corresponds to a difficult but
realistic situation, as explained in Section 6.1 and Appendix H. The parameters of the
BSS methods were varied in the same way as in Section 6.1.

Each proposed time-frequency BSS method was thus tested in 144 configurations. Each
of these methods succeeded in identifying B in all tests. Unlike in Section 6.1, SIR in is
varied in the tests considered here. Eq. (42) then shows that the correspondence between
SIRout and SIRI is not fixed. The values of both parameters are therefore provided
in Table 3. Among these two parameters, the performance of the BSS methods should
preferably be assessed in terms of their output behavior, defined by SIRout. Table 3 then
shows that the performance of both considered BSS systems has a low sensitivity to the
mixing matrix A in the considered range of p, i.e. SIRout roughly ranges from 60 to 65
dB in all cases, which is quite good11. Eq. (42) then entails that, on the contrary, SIRI
significantly varies with A, which is confirmed by Table 3. Here again, LI-TIFCORR-NC
slightly outperforms LI-TIFCORR-C in all cases.

6.3 Performance of proposed temporal method

We also checked the performance of the LI-TEMPCORR-C method for the same source
signals and mixing matrix as in the above first series of tests. The parameters of this
BSS method were selected as follows. The number of samples in each times window was
geometrically varied from 256 to 4096. The overlap between these windows was succes-
sively set to 50%, 75% and 90%. The resulting global performance over both parameters
is shown in Table 4 and confirms our expectations. First of all, the mean SIRout achieved
by our temporal approach is significantly lower than with our two TF extended methods
(51.3 dB vs. 64.0 and 65.0 dB). More importantly, this temporal approach identifies the
mixing matrix with much lower accuracy in a significant number of configurations. This
is reflected both in the much higher standard deviation of its SIRout (20.8 dB vs. 8.9 and
8.6 dB) and in its very low minimum SIRout, i.e. 3.5 dB (vs. 31.0 and 31.1 dB). More
precisely, if we first only consider the continuous speech sources, the minimum SIRout for
a given set of sources ranges from 3.5 to 14.7 dB, depending on the considered set.

It should also be noted that the only set of sources for which our temporal approach
does not yield lower performance than its TF extensions is Set 6: the mean of SIRout

11Table 3 shows that SIRout decreases when p is reduced. This was confirmed by additional tests, which
also showed that the performance of the proposed methods significantly degrades for very low values of
p. For example, when p = 0.01, the mean SIRout of LI-TIFCORR-C and LI-TIFCORR-NC over all tests
are respectively equal to 14.0 and 17.4 dB. This performance degradation may be due to the fact that: i)
the quality of single-source analysis zones and of the identification of the parameters ai,σ(j)/a1,σ(j) (see
(8)) then decreases, and ii) these identification parameters then cover a wide range, which may reduce the
performance of our current method for selecting which tentative columns of the mixing matrix are kept.
This phenomenon could therefore be investigated in more detail, in connection with the extensions of our
methods that we outline in this paper.
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is then 72.0 dB (vs. 72.1 and 71.6 dB for the TF methods), its standard deviation is
6.1 dB (vs. 6.8 and 7.2 dB) and its minimum is 60.4 dB (vs. 59.0 and 61.1 dB). This
is again in agreement with our above theoretical considerations: Set 6 is the only set of
sources consisting of discontinuous speech, where long silence phases therefore exist and
are exploited by LI-TEMPCORR-C to achieve high performance.

These tests therefore confirm for speech signals that, except in restrictive situations
involving discontinuous speech, our TF methods should be preferred to our basic temporal
approach in order to optimize performance.

6.4 Comparison to classical methods

We also compared the performance achieved by our TF methods and by various BSS
approaches available from the ICAlab software [14], still in the same conditions as above.
The results thus obtained are shown in Table 5. While the SIRout provided by all classical
methods range about from 0 to 40 dB, they are higher than 60 dB for our TF methods
(and even around 70 dB for their above-defined optimum parameters, when averageing
SIRout over all sets of sources). For speech signals, our approaches based on single-source
analysis zones therefore highly outperform all methods available in the ICAlab software
(including various correlation-based approaches, and including the SONS method, which
is also explicitly intended for non-stationary signals, since its name stands for ”Second
Order Nonstationary Source Separation”). Note that, for discontinuous speech (i.e. Set
6 of sources), our LI-TEMPCORR-C method also highly outperforms all methods in the
ICAlab software.

6.5 Comparison to LI-TIFROM

We then compared the performance achieved by our LI-TIFCORR methods and by the
LI-TIFROM approach that we defined in Subsection 4.6. To this end, we first applied the
latter approach to a single mixing matrix, in the same conditions as in Subsection 6.1.
The corresponding results are provided in Table 6. This table shows that the LI-TIFROM
approach yields lower performance than the LI-TIFCORR methods in these conditions:

1. Its mean SIRout is a bit lower i) for almost all sets of sources (this may be compared
in detail in Tables 1 and 6) and ii) when averaged over all sets of sources (i.e. 61.0
dB vs. 64.0 dB for LI-TIFCORR-C and 65.0 dB for LI-TIFCORR-NC).

2. Its performance has a larger spread around the above mean values than LI-TIFCORR
for all sets of sources. This is reflected: i) in the significantly larger standard devi-
ations of its SIRout (i.e. 12.5 dB vs. 8.9 and 8.6 dB over all sets of sources, with
even larger discrepancies for some sets of sources, such as 14.4 dB vs. 7.7 and 7.6
dB for Set 2) and ii) in its much lower minimum values (17.3 dB vs. 31.0 and 31.1
dB over all sets of sources).

We then investigated the influence of the mixing matrix on the performance of LI-
TIFROM, using the same conditions as in Subsection 6.2. The corresponding results are
provided in Table 7. This table first confirms that the mean performance of LI-TIFROM
is somewhat lower than that of LI-TIFCORR when the mixing parameter is p is not
much lower than 1. Moreover, this table mainly shows that LI-TIFROM yields very bad
performance when p is low: for p = 0.1, the output SIR provided by this BSS method is
lower than the input SIR in the observed signals, i.e. LI-TIFROM degrades the signals,
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while the LI-TIFCORR methods still yield high SIRIs in this case (38.7 dB). This clearly
illustrates the drawback of LI-TIFROM that we analyzed above in Section 4.6.2.

6.6 Performance of extended TF methods

We here first illustrate the performance of our extended approach for underdetermined
mixtures, that we introduced in Section 5. To this end, we performed tests with three of
the speech sources defined in Section 6.1, that we mixed by means of the matrix

A =

[
1 0.9 0.7
0.8 1 1

]
. (45)

We varied in the same way as in Section 6.1 the number of samples in each time window, the
number of such windows per analysis zone, and the overlap between time windows. Table 8
contains the overall results thus obtained, and their variations with respect to the number
of samples in each time window. Since the considered mixture is underdetermined, the
sources cannot be extracted exactly but the proposed BSS method still aims at estimating
the scaled permuted matrix B, as explained above. The parameter used here to measure
performance therefore refers to the quality of the estimation of B and consists of the
Frobenius norm of the difference between the actual matrix B and its estimate B̂. Table
8 shows that the mean values of this Frobenius norm, as well as its standard deviations
and even its maximum values, are much lower than the entries of B. This demonstrates
the ability of the LI-TIFCORR-C method to identify accurately the mixing matrix in this
underdetermined configuration (the best accuracy is again especially obtained when the
STFT window size is set to 128 or 256 samples).

In addition, Table 9 shows the performance of the LI-TIFROM method in the same
conditions as above. Here again, the method proposed in this paper most often performs
better than our previous approach.

We eventually checked the performance of the recursive version of our approach in-
tended for inaccessible sources, that we defined in Section 5. To this end, we performed
tests with six sets of sources. Each of these sets contained three sources, which were mixed
according to the matrix

A =




1 0.9 0.92

0.93 1 0.93

0.92 0.9 1


 . (46)

Each set of sources consisted of two speech sources corresponding to one of the 6 sets
defined in Section 6.1, and of an artificial Gaussian independent identically distributed
(i.i.d) source signal. The latter signal was selected because it is present in all the TF
plane and thus makes the two speech signals inaccessible. On the contrary, there exist
zones of the TF plane where the contributions from both speech sources are negligible with
respect to that of the i.i.d source signal. The latter signal is therefore accessible thanks to
these zones. The proposed recursive LI-TIFCORR-C method then consists of two stages:

1. We first identify the only identifiable column of the scaled version of the mixing
matrix A. This column corresponds to the i.i.d source. We then derive 2 modified
mixed signals as explained in (40). These signals only contain the 2 speech sources.

2. We then apply the standard LI-TIFCORR-C method to these 2 mixtures of 2 sources,
where these 2 speech sources are now accessible, as in Section 6.1. We thus identify
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the corresponding scaled 2 × 2 mixing sub-matrix and we separate these 2 speech
sources12.

In these tests, we varied in the same way as in Section 6.1 the number of samples in each
time window, the number of such windows per analysis zone, and the overlap between time
windows. The results thus obtained for each set of sources and the global performance for
all sets are shown in Tables 10 and 11, which respectively correspond to the above-defined
two stages of the proposed recursive BSS method. We here measure the performance
achieved in each stage by means of the same type of parameters as in the above tests for
underdetermined mixtures: we compute the norm of the difference between the actual and
estimated values of the part of the scaled mixing matrix which is identified in the considered
stage of the recursion. Tables 10 and 11 show that these norms are almost always13

much lower than the entries of the corresponding parts of the scaled mixing matrix. This
demonstrates the ability of the recursive LI-TIFCORR-C method to accurately identify
the mixing matrix, and therefore to extract the sources, in this configuration where two
sources were inaccessible before they were revealed by the first stage of the recursion.

7 Discussion and conclusions

In this paper, we proposed two types of CORRelation-based BSS approaches for Linear
Instantaneous mixtures. The first approach operates in the TEMPoral domain, on the
Centered version of the signals, and is therefore called LI-TEMPCORR-C. It was intro-
duced in a statistical framework. It therefore compares as follows to the taxonomy of
statistical methods for BSS and ICA that may be defined in connection with [15]:

1. The most classical class in this taxonomy consists of methods intended for station-
ary, statistically independent, non-Gaussian, mainly i.i.d14, sources. These methods
are based on the fact that i.i.d signals cannot be separated by only resorting to their
second-order statistics. These approaches therefore take into account the assumed
independence of the sources beyond second order, either partly by means of some of
their higher-order cumulants or moments, or more completely e.g. by using infor-
mation theoretic criteria. As a consequence, these methods require the sources to
be non-Gaussian (expect possibly one of these sources).

12We may then also extract the i.i.d source signal by recombining the extracted 2 speech sources with
an initial mixture of all 3 sources, using an approach similar to (40).

13It may be noted that lower performance is achieved for Set 3 of sources but, again, this corresponds
to a more difficult situation than in real applications since: i) the considered two speech sources then
correspond to the same speaker and may therefore have a strong overlap in the TF domain and ii) in order
to clearly illustrate the performance of our recursive BSS method, we here intentionnally mixed the two
speech signals in Set 3 with an artificial source which covers all the TF domain, while in many speech
applications each source is only present in part of the TF domain, so that the first stage of the recursion
used to remove the accessible source then yields smaller residues of this source than here in the resulting
modified mixed signals subsequently processed in the second stage of the recursion.

Note on the contrary that Set 6 yields higher overall performance. This confirms the ability of this BSS
method to take advantage of realistic situations where some sources contain silences.

14These methods are applicable if the sources have a temporal structure (i.e. time correlation) and also if
they have no such structure, but anyway they do not exploit that structure. They are therefore especially
intended for i.i.d sources. This is to be constrasted with the second class of methods presented below,
which requires the source spectra to meet some constraints and which therefore does not apply to i.i.d
signals.
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Our temporal approach does not belong to that class, since it only uses the second-
order statistics of the source signals. It therefore does not require the sources to
be independent, but only uncorrelated. The additional constraint that it sets to be
able to separate these signals is Assumption 1, which requires the sources to be non-
stationary as explained above. Second-order BSS methods, which are also involved
in the other classes of classical methods to be described hereafter, have been claimed
in the literature to avoid the estimation accuracy problems of high-order methods.
This claim therefore also concerns our approach. Moreover, by only using second-
order statistics, our method is also applicable to Gaussian signals, unlike the first
class of classical methods that we defined above.

2. The second class in this taxonomy consists of methods intended for stationary
sources, which have time correlation, and which are mutually uncorrelated. These
methods only use second-order statistical properties of these stationary sources.
These statistics may be defined in terms of the single-variable autocorrelation func-
tions of the sources, or of the Fourier transforms of these functions, i.e. the power
spectral densities (PSD) of these sources. These methods then require the sources
to have different properties, which may be seen either as conditions on differences
between their auto-correlation functions or as conditions on their spectral differences
[16].

The approaches in this class are similar to ours in the sense that, instead of re-
quiring the sources to be independent, they only request them to be uncorrelated
and they set an additional specific condition on them. However, these two types
of approaches then differ in the type of condition that they consider. Unlike these
classical approaches, we do not assume stationary sources with specific PSDs. In-
stead, we use Assumption 1, which requires the sources to be non-stationary. PSDs
are not defined for non-stationary sources. They cannot be introduced as monodi-
mensional Fourier transforms of single-lag autocorrelation functions, since the source
autocorrelation functions then have two variables. Indeed, PSDs are not used in our
method. The constraint in Assumption 1 concerns the temporal variations of source
variances, which is more directly related to the last class of classical approaches to
be now described.

3. As in the second class of this taxonomy, the approaches in the third class mainly
consist in avoiding the need for source independence, by assuming uncorrelated
sources and requesting another condition: the sources are here supposed to be non-
stationary. The emphasis is then often put on the case of Gaussian signals with
time-varying variances [15].

The temporal approach that we proposed in this paper may be seen as a new method
belonging to this third class. It also takes advantage of assumed time variations
of source variances, but sets different conditions on them as compared to various
reported methods. It does not require us to focus on Gaussian signals, although it
applies to them as well. Moreover, we have to stress again that our main motivation
for introducing this temporal approach is that it opens the way to our second type
of methods, based on TF analysis, which apply to much more general conditions and
are therefore the main result of this paper.

More precisely, we introduced two Linear Instantaneous TIme-Frequency CORRelation-
based BSS methods, which resp. use the Centered and Non-Centered versions of the
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TF transforms of the signals, and which are therefore resp. called LI-TIFCORR-C and
LI-TIFCORR-NC. By only using correlation-based parameters, as our above temporal
approach, these TF methods also have the resulting features of that temporal approach
that we defined above. Especially, they do not require the sources to be independent but
only uncorrelated, and they apply to (realizations of) Gaussian sources, unlike standard
ICA methods.

Our TF methods have a major advantage as compared to our temporal approach and
to various previously reported time-frequency BSS methods, i.e. they set much more
limited constraints on the sparsity of the sources and on the overlap between them. More
precisely, they are based on Assumption 1-TF, i.e. they only require each source to be
isolated in a tiny area of the TF plane. In other words, they only request that, for each
source, there e.g. exist (at least) one very limited set of adjacent time windows and one
associated frequency15 where all other sources are inactive. On the contrary, our temporal
approach is based on Assumption 1, so that it requires that, for each source, there exist
a time window where all other sources are inactive at all frequencies, which is a much
more restrictive requirement. For instance, when applied to speech sources, our temporal
approach is mainly suited to discontinuous speech, so that in some time windows only one
speaker is talking while the others are silent. On the contrary, our TF approaches also
yield high performance for continuous speech: even if several speakers are talking in any
time window, each on them only appears in a few frequency bands in each time window,
due to the formant structure of speech; moreover, these bands are not the same for all
speakers, at least in some time windows, so that each source is isolated at some frequencies
(unless a very high number of sources are mixed).

Our time-frequency BSS methods consist in identifying the columns of the (scaled
permuted) mixing matrix in TF areas where these methods detect that a source is isolated.
Thanks to this principle, both versions of our LI-TIFCORR method are especially well-
suited to non-stationary sources, such as speech signals, but they also apply to stationary
sources, provided there exist at least one small frequency band per source where this
source is isolated. This is to be contrasted with our purely temporal LI-TEMPCORR-C
approach, which requires the sources to be non-stationary, as explained above.

In addition to the standard version of these TF and temporal methods, which aims
at completely separating determined mixtures, we introduced extended versions of these
approaches, which especially achieve partial BSS when processing underdetermined mix-
tures.

We presented various aspects of the experimental performance of all versions of the
LI-TIFCORR method, derived from a large number of tests performed with continuous
and discontinuous speech sources. This showed that these methods yield very good perfor-
mance for linear instantaneous mixtures of real speech sources. Especially, for 2 mixtures
of 2 source signals, their mean output SIRs over BSS parameters are above about 60 dB
and their output SIRs in optimum conditions are close to 80 dB. Moreover, these SIRs have
a low sensitivity to the values of the parameters of these methods, i.e. to the size and over-
lap of their STFT windows and to the number of such windows in analysis zones (short
STFT windows should preferably be used when a large number of sources are mixed).
These methods therefore provide an attractive new way to tackle the BSS problem and
associated applications, such as speech separation. The LI-TIFCORR-NC version of our
method yields slightly higher performance and a somewhat lower computational cost than

15As already noted in Section 4.3, analysis zones may have other shapes in the TF plane. Anyway, our
time-frequency BSS methods then still only yield constraints on tiny areas of the TF plane.
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LI-TIFCORR-C. It is therefore the preferred version of our approach. It should also be
kept in mind that we compared the performance of both proposed TF methods to that of:
i) our temporal version, thus confirming the above theoretical considerations, ii) various
BSS methods from the literature, thus showing that our TF methods highly outperform
all of them, iii) a somewhat related time-frequency BSS method that we previously devel-
oped, which was here theoretically and experimentally shown to yield lower performance
than our new LI-TIFCORR methods.

The methods that we obtained at this stage still contain some heuristics, especially
concerning the selection of the distance threshold for accepting a new column of the scaled
permuted mixing matrix. Our future investigations will aim at avoiding such heuristics,
e.g. thanks to clustering methods as suggested above, or by using prior information, when
available, in a Bayesian framework. Moreover, up to now we only considered the case
when the sources are mixed in a linear instantaneous way. The BSS methods that we
proposed for that case may be extended so as to handle more general classes of mixtures,
especially mixtures which involve time delays, e.g. associated to propagation phenomena.
The resulting approaches require a detailed description and are therefore presented in the
second part of this paper.
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A Proofs for detection criteria

We here show the validity of the detection criteria (15) and (22) resp. used in the temporal
and TF versions of the proposed BSS approach. In the frame of the temporal version of
our approach described in Section 3, we have the following theorem:

Theorem 1 A source is isolated at time t if an only if

|ρx1xi
(t)| = 1 ∀ i, 2 ≤ i ≤ N. (47)

Proof For the mixed signals expressed in (4), the cross-correlation coefficient defined in
(14) reads

ρx1xi
(t) =

E{
(∑N

j=1 a1jsj(t)
) (∑N

j=1 aijsj(t)
)
∗

}
√

E{
(∑N

j=1 a1jsj(t)
) (∑N

j=1 a1jsj(t)
)
∗

}E{
(∑N

j=1 aijsj(t)
) (∑N

j=1 aijsj(t)
)
∗

}

.

(48)
Since the sources are assumed to be centered and uncorrelated, this yields

ρx1xi
(t) =

∑N
j=1 a1ja

∗

ijE{sj(t)s
∗

j (t)}√(∑N
j=1 a1ja∗1jE{sj(t)s∗j (t)}

) (∑N
j=1 aija∗ijE{sj(t)s∗j(t)}

) . (49)

This coefficient may therefore be expressed as

ρx1xi
(t) =

< V1(t), Vi(t) >

||V1(t)||.||Vi(t)||
, (50)

where the notations < ., . > and ||.|| resp. stand for the usual inner product and vector
2-norm, and where the j-th component of each N -dimensional vector Vi(t) is equal to

aij

√
λj(t), with

λj(t) = E{sj(t)s
∗

j (t)}. (51)

Note that each parameter λj(t) is the variance at time t of the source with index j, whose
centered version is denoted sj(t). The Cauchy-Schwarz inequality then yields

| < V1(t), Vi(t) > | ≤ ||V1(t)||.||Vi(t)|| ∀ i, 1 ≤ i ≤ N (52)

so that (50) results in

|ρx1xi
(t)| ≤ 1 ∀ i, 1 ≤ i ≤ N, (53)

with equality if and only if V1(t) and Vi(t) are linearly dependent.
Let us now analyze this condition at a given time t, depending on the values of the

source variances λj(t), j = 1, . . . N . It should first be noted that when all values λj(t) are
equal to zero, all vectors Vi(t) are equal to zero, so that the cross-correlation coefficients
in (50) cannot be defined. This case is therefore excluded from the theoretical analysis
for noiseless mixtures presented hereafter. It should be clear that this is not a restriction
of our method because: i) this case corresponds to the situation when all sources have
zero variance, so that the BSS problem then becomes irrelevant and ii) this case does not
limit the applicability of the proposed method to practical situations, taking noise into
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consideration, as explained in Appendix C. So, we now analyze the cases when at least
one of the values λj(t) is non zero.

If only one of these values is non zero, then all vectors Vi(t) are linearly dependent,
because all vectors Vi(t) have exactly one non-zero component, which has the same index
j for all these vectors. Equality then holds for all of them in (53) and therefore condition
(47) is fulfilled.

The only case that remains to be considered is then the situation when at least two
values λj(t) and λk(t) are not equal to zero. It may then be shown that if V1(t) and Vi(t)
were linearly dependent for all i, 2 ≤ i ≤ N , then the columns with indices j and k of
the mixing matrix A would be linearly dependent, which is not true since A is assumed to
be invertible. Therefore, in the considered case, at least one pair of vectors (V1(t), Vi(t))
does not consist of linearly dependent vectors, so that |ρx1xi

(t)| < 1 and condition (47) is
not fulfilled.

As an overall result, this condition (47) is fulfilled if and only if exactly one of the
values λj(t) is not equal to zero at the considered time t, i.e. if and only if a source is
isolated at that time. This yields Theorem 1.

Now consider the centered TF version of our approach described in Section 4.4. We
have the following theorem:

Theorem 2 A source is isolated in a TF analysis zone (T, ω) if an only if

|cx1xi
(T, ω)| = 1 ∀ i, 2 ≤ i ≤ N. (54)

Proof For any couple of mixed signals xi(t) and xk(t), the corresponding non-normalized
covariance parameter (20) over an analysis zone reads16

Cxixk
(T, ω) =

1

L

L∑

p=1

[Xi(tp, ω)−Xi(T, ω)][Xk(tp, ω)−Xk(T, ω)]∗ i, k = 1 . . . N. (55)

Moreover, the mixed signals are defined by (4) in the time domain. Taking the STFT of
this mixture equation (4) yields

Xi(t, ω) =
N∑

j=1

aijSj(t, ω) i = 1 . . . N. (56)

Eq. (19) then yields

Xi(T, ω) =
N∑

j=1

aijSj(T, ω) i = 1 . . . N, (57)

so that

Xi(t, ω) − Xi(T, ω) =
N∑

j=1

aij [Sj(t, ω) − Sj(T, ω)] i = 1 . . . N. (58)

16The proof below is presented for the type of analysis zone considered in Section 4, i.e. temporal lines.
It could be extended to other types of analysis zones.
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Eq. (55) then becomes

Cxixk
(T, ω) =

1

L

L∑

p=1





N∑

j=1

aij[Sj(tp, ω) − Sj(T, ω)]





{
N∑

l=1

akl[Sl(tp, ω) − Sl(T, ω)]

}∗

(59)

=
N∑

j=1

N∑

l=1

aija
∗

kl

1

L

L∑

p=1

[Sj(tp, ω) − Sj(T, ω)][Sl(tp, ω) − Sl(T, ω)]∗ (60)

=
N∑

j=1

N∑

l=1

aija
∗

klCsjsl
(T, ω) i, k = 1 . . . N. (61)

The centered TF transforms of the sources are assumed to be uncorrelated over each
analysis zone, as defined by Assumption 2-TF. Eq. (61) therefore reduces to

Cxixk
(T, ω) =

N∑

j=1

aija
∗

kjCsjsj
(T, ω) i, k = 1 . . . N. (62)

Now consider the covariance coefficient, over an analysis zone, of the mixed signals x1(t)
and xi(t), with i = 1 . . . N . This coefficient, defined in (21), then reads

cx1xi
(T, ω) =

∑N
j=1 a1ja

∗

ijCsjsj
(T, ω)

√[∑N
j=1 a1ja∗1jCsjsj

(T, ω)
] [∑N

j=1 aija∗ijCsjsj
(T, ω)

] i = 1 . . . N. (63)

This parameter cx1xi
(T, ω) may therefore also be expressed according to the right-hand

side of (50), with the same notations except that: i) the vectors in (50) here depend on
the considered analysis zone (T, ω), and ii) λj(t) is here defined as

λj(T, ω) = Csjsj
(T, ω) (64)

and is therefore the variance of the STFT of source sj(t) over the analysis zone (T, ω).
This leads to the same discussion as above, except that the considered time t is replaced by
the considered analysis zone (T, ω). This eventually shows that condition (54) is fulfilled
if and only if a source is isolated in the considered analysis zone.

B Mean vs. minimum in detection criterion

The temporal approach that we proposed in Section 3 detects single-source time areas by
combining all values of |ρx1xi

(t)|, with 2 ≤ i ≤ N , in an overall detection criterion. We
may consider using the mean or minimum of these values as this criterion (note that these
two criteria differ only if there exist at least two values |ρx1xi

(t)| to be combined, i.e. only
if N ≥ 3). The preferable criterion among these two alternatives first depends whether
we want to select the times t which optimize the mean or worst-case value (vs. i, i.e. over
all channels of BSS systems) of the parameter |ρx1xi

(t)| that we use for detecting single-
source time areas in each channel i of BSS systems. But the selection between these to
alternative detection criteria should also take into account the parameter used to measure
the performance of BSS systems. Consider the usual case, when the output performance
of a BSS system is first defined by a criterion associated to each source (such as the output
Signal to Interference Ratio, or SIR) and global performance is then measured by an overall
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criterion defined as the mean over all sources of the above single-source criterion. This e.g.
includes the criterion (SIRout)dB defined in (74) and used throughout this paper. Then,
it is more coherent to use the mean of |ρx1xi

(t)|: using the minimum of |ρx1xi
(t)| instead

may result in selecting times t when this minimum of |ρx1xi
(t)| is higher than it would

be if the mean of |ρx1xi
(t)| was used for selecting time areas, but when |ρx1xi

(t)| is close
to this minimum for various channels i. All these channels then yield moderate accuracy
when identifying the corresponding column of the scaled permuted matrix, so that they
all tend to decrease (SIRout)dB . This mean parameter then takes a lower value than
what would have been obtained by selecting single-source time areas based on the mean

of |ρx1xi
(t)|. The same principle applies to our subsequent TF extensions of the proposed

method. This analysis was confirmed by our experimental tests: (SIRout)dB tends to be
significantly lower when using the minimum of |ρx1xi

(t)| for detecting single-source areas.
We therefore use the mean of |ρx1xi

(t)| in this paper. The time or TF areas thus selected
are then the ”best” ones in the sense that they optimize that criterion.

C Influence of noise

In Section 3, we considered the theoretical noiseless BSS configuration, and we proposed a
temporal BSS method. The denominators of the detection and identification parameters
(14) and (17) of this method depend on the variances of the observations. If all source
variances are null, these denominators are also null and the parameters in (14) and (17)
are undefined. So, if we were only to provide a formal presentation for the noiseless con-
figuration, in order to avoid the above singularity we would require that in all considered
time areas at least one source has nonzero variance.

Now consider practical signals, which are typically provided by a set of sensors. One
may then reasonably assume that the above requirement on sources is met, because prac-
tical source signals are not likely to all have strictly zero variance. But anyway, there is
then no need to require practical sources to fulfill the above condition, because the sensor
noise contained by real recordings avoids the above singularity and makes our BSS method
work, as will now be shown. First consider time areas where at least one source has signifi-
cantly higher variance than sensor noise. In such areas, the influence of noise is negligible,
so that the proposed method just operates as explained in Section 3. Now, in time areas
where all sources have significantly lower variance than noise, each observed signal xi(t)
becomes restricted to the noise contribution measured by the considered sensor. In clas-
sical situations, these sensor noise signals are mutually uncorrelated. The corresponding
correlation coefficients ρx1xi

(t) are therefore low. Consequently, the corresponding time
areas are not inserted at the beginning of the ordered list created in the detection stage
of the proposed BSS method, and are therefore not used for identifying a column of the
mixing matrix. So, our BSS method handles correctly these time areas where all sources
have negligible variance as compared to noise, and even zero variance.

We experimentally validated as follows the above theoretical analysis. Starting from
the two 50000-sample sources of Set 2 defined in Section 6.1, we added at the end of each
of these sources 50000 samples which were all equal to zero. We mixed these extended
source signals with the matrix defined in (41). We then added noise components to these
source mixtures. These noise components are mutually independent i.i.d Gaussian centered
signals. Their variances were selected so that they are 40 dB lower than the smallest source
variance. With this low noise level, we may hope the LI-TEMPCORR-C method to still
be able to detect the single-source time areas that it detected in the noiseless case that we
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experimentally studied in Section 6.3. We here aim at checking that

1. it succeeds in detecting these time areas, i.e. it still puts them in the ordered list of
single-source areas (possibly in a slightly different order than in the noiseless case,
because the small noise components in these areas may slightly modify the values of
the detection parameter in these areas)

2. and it handles correctly the numerous time areas where both sources have much
lower variance than the noise components, i.e. all the areas corresponding to the
second part of the source signals, where these signals here have strictly zero variance.
Handling these areas correctly means that the LI-TEMPCORR-C method should not
put them before the single-source areas in the ordered list.

The results to be derived from these tests therefore concern the detection of single-source
time areas. In order to more easily compare these results with those in the noiseless case,
we then used as follows the time areas that we detected here. We again considered the
100000-sample source signals and we again mixed them according to (41), but without
adding noise. Starting from these observations, we then identified the columns of the
scaled permuted mixing matrix in the time areas that we detected above. We then derived
the output signals of our BSS system and the associated SIRout. This procedure was
repeatedly applied for the same parameter values of our BSS system as in Section 6.3. The
resulting mean of SIRout is 51.8 dB, its standard deviation is 17.5 dB and its minimum
and maximum values are respectively 16.1 and 70.3 dB. These results should be compared
to those for Set 2 in Table 4, which concerns the noiseless case studied in Section 6.3.
They are quite similar (considering the limited number of configurations processed in
these tests), which confirms that the proposed BSS method handles correctly time areas
where the sources have much lower variances than the noise components.

While we considered the LI-TEMPCORR-C method above, the same type of comments
also applies to the TF extension of this BSS method introduced in Section 4.

D Alternative detection stages for the centered time-

frequency BSS method

In Section 4.4, we defined a version of the detection stage of the considered centered time-
frequency BSS method. Modified versions of this approach (and of the corresponding
temporal approach described in Section 3) may also be defined. Especially:

• Another method consists in considering the values of |cxixj
(T, ω)| associated to a sin-

gle, arbitrary, couple of observations with indices i and j. This is acceptable if the
considered signals yield perfect single-source zones because, as all mixing coefficients
aij are assumed to be nonzero in this paper, these zones result in |cxixj

(T, ω)| = 1
for any couple of observations and may therefore be detected from a single couple.
Moreover, this is attractive because it reduces the computational cost as compared
to the detection methods which use a large number of couples of observations. How-
ever, practical signals are likely to only yield non-ideal ”single-source” zones, where
residues from other sources result in deviations of |cxixj

(T, ω)| from their ideal value
1. The magnitude of these deviations may depend on the considered mixing coeffi-
cients and therefore on the considered couple of observations. Using a single, arbi-
trary, couple may therefore yield lower performance than the multi-couple method

32



based on the mean value |cx1xi
(T, ω)|. The single-couple method should therefore

only be used when computational cost must be optimized at the expense of perfor-
mance.

• More elaborate methods for combining the information provided by all couples of
observations may of course also be derived, which will result in extended versions of
the detection stage of the proposed time-frequency BSS method.

E Proof for identification parameter of time-frequency BSS

method

We here derive the value of the centered identification parameter Ii(T, ω), defined in
(23), in a single-source analysis zone. For any couple of mixed signals xi(t) and xk(t),
the corresponding non-normalized covariance parameter over an analysis zone may be
expressed according to (62). If a source sj(t) is isolated (i.e. only this source has a
nonzero variance) in the considered analysis zone, (62) reduces to

Cxixk
(T, ω) = aija

∗

kjCsjsj
(T, ω) i, k = 1 . . . N. (65)

The identification parameter Ii(T, ω) defined in (23) may then be expressed as follows

Ii(T, ω) =
aija

∗

1jCsjsj
(T, ω)

a1ja
∗

1jCsjsj
(T, ω)

(66)

=
aij

a1j

i = 1 . . . N, (67)

where j is the index of the source which is isolated in the considered analysis zone. If
we now denote sk(t) the source which is isolated, as in Section 4.4 which uses the current
appendix, (67) becomes

Ii(T, ω) =
aik

a1k

i = 1 . . . N. (68)

F Extension to overdetermined mixtures

This appendix shows how the BSS methods proposed in this paper may be used in the
overdetermined case which was defined in Section 5, i.e. in situations when the number of
observations may be higher than the number of sources. We may then use the standard
technique which consists in first applying a Principal Component Analysis to the available
observations, so as the estimate the number N of sources and to project the observations
into a N -dimensional subspace. The mixed signals thus obtained are then used as the
inputs of the BSS methods that we proposed in this paper. As an alternative, the above
description of our BSS methods shows that they may also be used directly to estimate the
number N of sources from the original observations. Separation may then be achieved by
selecting an arbitrary subset of N signals among the available P observations and applying
our BSS methods to them.
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G SIR of mixed signals and performance criteria of BSS

methods

We here define the Signal to Interference Ratio (SIR) associated to the mixed signals which
are processed by our BSS methods and the parameters used to measure the performance
of these methods in the tests reported in this first part of our paper.

First consider a single source, with a given index17 k. We define the input SIR of our
BSS system associated to source k by using the following two-stage approach. As a first
stage, we consider a single input with index i of the BSS system, which receives the mixed
signal xi(t). This signal consists of:

1. A contribution from the source with index k. This contribution is considered as the
signal of interest contained by input i of the BSS system and is equal to aiksk(t).

2. Contributions from all others sources with indices j 6= k (we here study the situation
when no noise is added to the source signals). These sources are considered as
interfering signals contained by input i of the BSS system. Their overall contribution
in xi(t) is equal to xi(t) − aiksk(t).

The elementary input SIR of the BSS system, associated to its input i and to source k, is
then defined as the ratio of the powers of the above signal and interference contributions18,
i.e

SIRin
k (i) =

E{|aiksk(t)|
2}

E{|xi(t) − aiksk(t)|2}
. (69)

As a second stage, we define the overall input SIR of the BSS system associated to source
k, i.e. when taking into account all observed signals xi(t) used as the inputs of this system.
This overall SIR is defined as

SIRin
k = max

i=1...N
(SIRin

k (i)), (70)

i.e, for the considered source k, we take into account the observed signal where this source
has the highest SIR.

We then use the same approach for defining the output SIR of the BSS system. There-
fore, we first consider source k and output i of the BSS system, which provides the signal
yi(t). This signal consists of:

1. The useful contribution associated to output i of the BSS system. This contribution
is defined as the ideal value of output yi(t) when the source extracted on that output
is source k. Due to the principle of the considered BSS methods which was presented
in Section 2, this ideal output is equal to the contribution of source k in the first
mixed signal, i.e. a1ksk(t).

2. In the same way as in input signals, the interference contribution in output i is then
defined as the remainder of yi(t), i.e. it is equal to yi(t) − a1ksk(t).

The elementary output SIR of the BSS system, associated to its output i and to source k,
is then defined as the ratio of the powers of the above signal and interference contributions,
i.e

SIRout
k (i) =

E{|a1ksk(t)|
2}

E{|yi(t) − a1ksk(t)|2}
. (71)

17The index of each source signal is known when testing our BSS methods with given source signals.
18In our tests, we first centered each overall time series defining one source signal.
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We then define the overall output SIR of the BSS system associated to source k as

SIRout
k = max

i=1...N
(SIRout

k (i)). (72)

We then define the SIR Improvement (SIRI) achieved by the BSS system with respect
to source k as

SIRIk =
SIRout

k

SIRin
k

. (73)

All above parameters only refer to a single source. The corresponding overall features
of the BSS system are eventually defined as the geometrical means of each considered
parameter over all sources k, i.e. as the arithmetic means of this parameter expressed in
dB. This yields explicitly

SIRin =

(
N∏

k=1

SIRin
k

) 1
N

and (SIRin)dB =
1

N

N∑

k=1

(SIRin
k )dB , (74)

SIRout =

(
N∏

k=1

SIRout
k

) 1
N

and (SIRout)dB =
1

N

N∑

k=1

(SIRout
k )dB , (75)

SIRI =

(
N∏

k=1

SIRIk

) 1
N

and (SIRI)dB =
1

N

N∑

k=1

(SIRIk)dB . (76)

Note that this also entails

SIRout

SIRin
=

(
N∏

k=1

[
SIRout

k

SIRin
k

]) 1
N

=

(
N∏

k=1

SIRIk

) 1
N

= SIRI (77)

and therefore
(SIRI)dB = (SIRout)dB − (SIRin)dB . (78)

The parameters SIRout and/or SIRI are used to measure the performance of the
considered BSS system, whereas SIRin indicates to which extent the signals processed
by this system are mixed. It should be noted that SIRin has a simple expression in the
configuration involving N = 2 mixtures of N = 2 sources, as will now be shown. First
consider the source with index k = 1. Eq. (69) yields

SIRin
1 (i) =

E{|ai1s1(t)|
2}

E{|ai2s2(t)|2}
. (79)

Denoting m the value of the input index i which corresponds to the highest SIRin
1 (i), eq.

(70) yields

SIRin
1 =

E{|am1s1(t)|
2}

E{|am2s2(t)|2}
. (80)

Similarly, for the source with index k = 2, eq. (69) yields

SIRin
2 (i) =

E{|ai2s2(t)|
2}

E{|ai1s1(t)|2}
. (81)
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Denoting n the value of the input index i which corresponds to the highest SIRin
2 (i), eq.

(70) yields

SIRin
2 =

E{|an2s2(t)|
2}

E{|an1s1(t)|2}
. (82)

Therefore

SIRin =
√

SIRin
1 SIRin

2 (83)

=

∣∣∣∣
am1an2

am2an1

∣∣∣∣ . (84)

Especially, in the standard situation when source 1 is prominent in input 1 and source 2
is prominent in input 2, we have: m = 1 and n = 2. Eq. (83) then reads

SIRin =

∣∣∣∣
a11a22

a12a21

∣∣∣∣ . (85)

H Additional test results for two mixtures of two sources

We here provide a more detailed analysis of the results of the tests considered in Section
6.1.

Let us first analyze the influence of the considered set of sources on performance. First
consider continuous speech sources. One may expect the performance of time-frequency
BSS methods to be higher for sources which have lower spectral overlap, and therefore: i)
higher for different male (resp. female) speakers than for the same speaker and ii) higher
when mixing a male and a female speakers than when mixing the same or different male
(resp. female) speakers. Similarly, one may expect Set 6 to yield better performance
than Set 2, because it contains silence phases in addition, thus making the sources more
accessible (at any frequency). The mean values of SIRout in Table 1 confirm all these
expectations, except one of them i.e: the performance achieved when mixing male and
female speech is slightly lower than when mixing two male speakers or two female speakers
(but still higher than when mixing two signals from the same speaker). However, a few
permutations with respect to the expected respective merits of the considered sources could
be foreseen because all considered sets of sources yield very high and often relatively similar
mean SIRout, and such permutations are not guaranteed to be statistically significant due
to the limited number of signals considered at this stage.

Tables 12 to 14 provide a more detailed analysis of some aspects of the above tests:
they only contain the overall values of the considered performance criteria over all sets
of sources, but each of these tables details the variations of these criteria vs one of the
parameters of the BSS methods (while averaging over the others). They first show that
the mean of SIRout has a relatively low sensitivity to the size and overlap of STFT
windows and to the number of such windows in analysis zones. In addition, Table 12
shows that the number of samples in STFT windows should preferably be set to 256 (or
128) in order to optimize the mean, standard deviation and minimum value of SIRout. A
trade-off between these parameters may be obtained by also using 10 STFT windows per
analysis zone19 and a 75% overlap between these windows. These tables also show that the
LI-TIFCORR-NC version yields a slightly better mean SIRout than LI-TIFCORR-C in

19Performance may be lower when using a higher number of STFT windows per analysis zone for the
following reason. Consider the best single-source TF areas, i.e. the areas where the interfering sources
have the smallest STFT values as compared to the source of interest. These are the areas where the mixing
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almost all considered cases, which is in agreement with the overall respective performance
of these methods derived in Section 6.1 from the results contained in Table 1.

As an example, we present in more detail the results achieved by these methods when
they are operated with the preferred parameter values that we selected above, i.e. analy-
sis zones consisting of 10 STFT windows, with 256 samples per window and 75% overlap.
These methods are here applied to the ”Set 2” of sources, since this corresponds to a diffi-
cult but realistic situation, as explained above. The LI-TIFCORR-C and LI-TIFFCORR-
NC methods then resp. yield SIRout = 74.8 dB and 77.7 dB 20. As expected, both values
are quite high and SIRout is somewhat better for LI-TIFCORR-NC. These high values
prove that both methods estimate the scaled possibly permuted mixing matrix B very
accurately. This may also be checked directly by analyzing the estimates B̂ of this matrix
provided by these BSS methods. When rounding their elements with 10−4 accuracy, these
matrices are equal to

B̂ =

[
1.0000 1.0000
1.1112 0.8000

]
and B̂ =

[
1.0000 1.0000
1.1111 0.8000

]
(86)

resp. for the LI-TIFCORR-C and LI-TIFCORR-NC methods. Both values should be
compared to the actual matrix B defined by (8), which is here equal to

B =

[
1.0000 1.0000
0.8000 1.1111

]
or B =

[
1.0000 1.0000
1.1111 0.8000

]
, (87)

depending whether it corresponds to a non-permuted or a permuted version of the source
signals. Both estimated values in (86) are therefore extremely close to the permuted
version of B, which clearly demonstrates the high separation capability of the proposed
approaches. This capability may also be checked as follows from the temporal and TF
representations of the considered signals. The source signals used in the test detailed here
are shown in Fig. 2. Although the TF transforms of these source signals have significant
differences (see Fig. 3 and 4), the TF transforms of the resulting mixed signals are almost
identical (see Fig. 5 and 6), due to the considered hard mixing conditions. Nevertheless,
consider e.g. the estimated output signals provided by the LI-TIFCORR-NC method,
which are shown in Fig. 7. These signals are identical to the (scaled permuted) sources,
which confirms that the proposed time-frequency BSS methods succeed in separating these
signals with a high accuracy.

I Test results for four mixtures of four sources

In addition to the tests with two mixtures of two sources reported in Section 6.1, we
checked the applicability of the above methods to a higher number of sources. To this
end, we used a single set of 4 sources, corresponding to 2 male and 2 female speakers,

matrix may be identified with the highest accuracy. Consider a situation where these areas are ”small”.
They are exploited in our BSS methods when the size of the analysis zones used in these methods is smaller
than these single-source TF areas. High performance is then achieved. On the contrary, if our methods are
operated with analysis zones larger than these single-source areas, they cannot identify the mixing matrix
in these areas. The mixing matrix is then identified in other areas (which may include these areas), thus
resulting in lower performance. Increasing the number of STFT windows per analysis zone also increases
the size of these analysis zones and may therefore lead to such performance degradation.

20We also checked the performance of both methods for a lower number of STFT windows per analysis
zone: their SIRout remain higher than 60 dB for 8, 6 or 4 windows, but degrade significantly for 2 windows.
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and selected from the above continuous speech signals. We mixed them with a 4x4 matrix
defined as an extension of the matrix form introduced in (43), i.e

A =




1 p p2 p3

p 1 p p2

p2 p 1 p
p3 p2 p 1


 . (88)

We here focus on the results obtained for a value of p corresponding to highly mixed
signals, i.e. p = 0.9. The parameters of the two considered time-frequency BSS methods
were varied in the same way as above.

Both methods again succeeded in identifying all columns of the matrix B in all these
tests. Since we consider a single set of sources and a single mixing matrix, all tests
are performed with the same SIRin, which is equal to - 3.65 dB. As in Section 6.1,
the difference between SIRout and SIRI is thus constant and we only consider SIRout

hereafter. Its mean value over all considered tests is equal to 41.5 dB for LI-TIFCORR-C
and 43.2 dB for LI-TIFCORR-NC. The latter method therefore again yields slightly better
performance.

Tables 15 to 17 resp. detail the dependence of SIRout with respect to each BSS method
parameter, while averaging over the other parameters. These tables show that, here again,
the proposed methods should be operated with 10 short STFT windows per analysis zone,
with 75% overlap (or 90% for LI-TIFCORR-NC). As for the size of STFT windows:

• If we take into account all test configurations reported in Tables 15 to 17, decreasing
the STFT window size down to 128 samples yields a somewhat better value for the
mean of SIRout (and for its standard deviation, which is not detailed here for the
sake of brevity), whereas overall performance was somewhat better for 256-sample
windows for the tests with two sources reported in Section 6.1.

• But performance is here again better with 256 samples than with 128 samples if
we focus on the case when the above-defined optimum values are used for the other
parameters of the BSS methods, i.e. 10 STFT windows with 75% overlap in anal-
ysis zones. More precisely, the SIRout resp. achieved by LI-TIFCORR-C and LI-
TIFCORR-NC are 47.7 and 46.9 dB for 128-sample windows, 49.8 and 49.3 dB for
256-sample windows (LI-TIFCORR-C performs slightly better than LI-TIFCORR-
NC in these specific configurations).

These results are therefore coherent with those obtained in Section 6.1 for mixtures of
two sources. The possibility to get slightly better performance with shorter (i.e. 128-
sample) STFT windows when mixing four sources may be explained as follows. When
the observed signals are mixtures of a larger number of arbitrary sources, the TF areas
where a source is isolated may tend to get smaller, because more sources overlap in the
considered observations. Shorter STFT windows should then be used in order not to miss
these small single-source areas in the detection stage of our BSS approaches.
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BSS method perf. criterion set of sources
1 2 3 4 5 6 1-6

LI-TIFCORR-C SIRout: mean 61.1 64.1 57.9 65.8 62.8 72.1 64.0
dev. 11.8 7.7 7.3 7.2 4.9 6.8 8.9
min. 31.0 47.6 38.3 50.8 54.5 59.0 31.0
max. 76.7 75.9 70.8 78.4 74.3 88.6 88.6

LI-TIFCORR-NC SIRout: mean 61.2 65.7 61.5 66.8 63.3 71.6 65.0
dev. 11.7 7.6 8.1 6.5 5.0 7.2 8.6
min. 31.1 47.0 40.6 52.7 56.3 61.1 31.1
max. 76.6 78.3 80.2 76.5 77.5 96.4 96.4

Table 1: Performance of both time-frequency BSS methods for each set of 2 speech sources
and global performance for all 6 sets. Performance criteria: mean value, standard devia-
tion, minimum and maximum of SIRout (in dB) over all parameter values of BSS methods.
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BSS method perf. criterion set of sources: 2

LI-TIFCORR-C SIR : mean 71.4
dev. 9.3
min. 51.5
max. 93.6

LI-TIFCORR-C SDR : mean 71.4
dev. 9.3
min. 51.5
max. 93.6

Table 2: Performance of the LI-TIFCORR-C method for Set 2 of speech sources. Perfor-
mance criteria: mean value, standard deviation, minimum and maximum (in dB), over all
parameter values of BSS method, of the version of SIR and SDR defined in [19].
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BSS method criterion mixing matrix
A2 A3 A1 A4

(p = 0.1) (p = 0.5) (p = 0.9)

SIRin 20.0 6.0 1.4 0.9

LI-TIFCORR-C SIRout 58.7 63.1 64.1 64.1
SIRI 38.7 57.1 62.7 63.2

LI-TIFCORR-NC SIRout 58.7 64.2 65.7 65.7
SIRI 38.7 58.1 64.3 64.8

Table 3: SIRin (in dB) and performance of both time-frequency BSS methods vs. mixing
matrix. Performance criteria: mean values (in dB) of SIRout and SIRI over all parameter
values of BSS methods.

41



BSS method perf. criterion set of sources
1 2 3 4 5 6 1-6

LI-TEMPCORR-C SIRout: mean 42.4 49.6 39.3 53.0 51.8 72.0 51.3
dev. 19.5 17.1 20.3 24.3 18.5 6.1 20.8
min. 10.2 14.7 6.1 14.4 3.5 60.4 3.5
max. 66.4 66.9 63.6 79.7 67.7 82.0 82.0

Table 4: Performance of temporal BSS method for each set of 2 speech sources and global
performance for all 6 sets. Performance criteria: same as Table 1.

42



BSS method SIRout

LI-TIFCORR-C mean param. 64.0
opt. param. 69.5

LI-TIFCORR-NC mean param. 65.0
opt. param. 71.7

AMUSE 30.5
EVD2 31.5
EVD24 23.6
SOBI 31.5
SOBI-RO 35.7
SOBI-BPF 28.4
SONS 36.2
JADE-op 2.4
JADETD 34.1
FPICA hyper tangent 39.5

Gauss. 41.0
Cubic 41.9
5th-order Cum. 25.1
6th-order Cum. 28.4

PEARSON opt. 42.2
SANG 40.5
NG-FICA 35.7
ThinICA 39.0
ERICA 37.3
SIMBEC 38.8
UNICA 37.3
FOBI-E 16.6
SYM-WHITE 20.1

Table 5: 1) SIRout (in dB) of both proposed time-frequency BSS methods: i) mean SIRout

over all parameter values, ii) SIRout for optimum parameter values. 2) SIRout (in dB) of
classical methods. This table contains the global performance for all 6 sets of sources.
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BSS method perf. criterion set of sources
1 2 3 4 5 6 1-6

LI-TIFROM SIRout: mean 57.1 60.2 57.5 60.0 64.1 67.4 61.0
dev. 13.0 14.4 11.6 13.8 10.5 8.5 12.5
min. 17.3 27.8 21.5 33.0 30.9 42.5 17.3
max. 72.9 85.9 71.8 80.4 83.0 80.6 85.9

Table 6: Performance of the LI-TIFROM BSS method for each set of 2 speech sources
and global performance for all 6 sets. Performance criteria: same as Table 1.
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BSS method criterion mixing matrix
A2 A3 A1 A4

(p = 0.1) (p = 0.5) (p = 0.9)

SIRin 20.0 6.0 1.4 0.9

LI-TIFROM SIRout 19.8 58.4 60.2 60.2
SIRI - 0.2 52.4 58.8 59.3

Table 7: SIRin (in dB) and performance of the TIFROM method vs. mixing matrix.
Performance criteria: same as Table 3.
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BSS method perf. criterion window size
128 256 512 1024 all

LI-TIFCORR-C ||B − B̂||F : mean 0.0018 0.0019 0.0045 0.0061 0.0036
dev. 0.0008 0.0011 0.0024 0.0054 0.0034
min. 0.0005 0.0008 0.0020 0.0021 0.0005
max. 0.0027 0.0033 0.0098 0.0194 0.0194

Table 8: Performance of the LI-TIFCORR-C method vs. STFT window size (in samples)
and global performance for all STFT window sizes. Performance criteria: mean value,
standard deviation, minimum and maximum of Frobenius norm of difference between
actual matrix B and its estimate B̂, over all other parameter values of BSS method.
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BSS method perf. criterion window size
128 256 512 1024 all

LI-TIFROM ||B − B̂||F : mean 0.0015 0.0024 0.0043 0.0269 0.0088
dev. 0.0010 0.0022 0.0048 0.0353 0.0201
min. 0.0002 0.0006 0.0010 0.0029 0.0002
max. 0.0035 0.0070 0.0168 0.0992 0.0992

Table 9: Performance of the LI-TIFROM method vs. STFT window size (in samples) and
global performance for all STFT window sizes. Performance criteria: same as Table 8.
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BSS method perf. criterion set of sources
1 2 3 4 5 6 1-6

LI-TIFCORR-C norm: mean 5.21 e-5 4.61 e-5 14.15 e-5 9.98 e-5 9.66 e-5 5.20 e-5 8.13 e-5
dev. 3.12 e-5 3.71 e-5 11.72 e-5 9.13 e-5 7.63 e-5 2.86 e-5 7.91 e-5
min. 0.65 e-5 0.42 e-5 2.01 e-5 0.76 e-5 1.12 e-5 0.99 e-5 0.42 e-5
max. 13.03 e-5 12.88 e-5 45.07 e-5 37.37 e-5 33.58 e-5 13.75 e-5 45.07 e-5

Table 10: Performance of the LI-TIFCORR-C method for each set of sources and global
performance for all 6 sets. Performance criteria: mean value (over all parameter values of
BSS method), standard deviation, minimum and maximum of norm of difference between
actual and estimated values of the single column of scaled mixing matrix identified in first
stage of recursion.
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BSS method perf. criterion set of sources
1 2 3 4 5 6 1-6

LI-TIFCORR-C norm: mean 0.0094 0.0032 0.1069 0.0029 0.0041 0.0012 0.0213
dev. 0.0182 0.0036 0.5984 0.0035 0.0031 0.0008 0.2446
min. 0.0007 0.0004 0.0006 0.0001 0.0008 0.0002 0.0001
max. 0.0866 0.0181 3.5973 0.0178 0.0125 0.0033 3.5973

Table 11: Performance of the LI-TIFCORR-C method for each set of sources and global
performance for all 6 sets. Performance criteria: mean value (over all parameter values of
BSS method), standard deviation, minimum and maximum of Frobenius norm of difference
between actual and estimated values of the 2 × 2 scaled mixing sub-matrix identified in
second stage of recursion.
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BSS method perf. criterion window size
128 256 512 1024

LI-TIFCORR-C SIRout: mean 65.6 65.5 64.1 60.6
dev. 8.0 6.3 9.9 10.2
min. 46.4 50.8 31.0 34.0
max. 78.4 75.6 86.5 88.6

LI-TIFCORR-NC SIRout: mean 67.2 66.8 63.7 62.3
dev. 6.4 5.1 8.8 11.8
min. 50.2 54.7 31.1 34.1
max. 78.8 78.3 76.6 96.4

Table 12: Performance of both time-frequency BSS methods vs. STFT window size (in
samples). Performance criteria: same as Table 1.
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BSS method perf. criterion nb. windows
8 10 12

LI-TIFCORR-C SIRout: mean 63.7 63.8 64.5
dev. 7.8 8.9 10.0
min. 38.2 42.3 31.0
max. 79.1 86.5 88.6

LI-TIFCORR-NC SIRout: mean 65.8 64.7 64.6
dev. 7.6 8.9 9.3
min. 39.4 39.9 31.1
max. 81.6 96.4 84.1

Table 13: Performance of both time-frequency BSS methods vs. number of STFT windows
in analysis zones. Performance criteria: same as previous table.
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BSS method perf. criterion overlap
50% 75% 90%

LI-TIFCORR-C SIRout: mean 62.1 65.7 64.1
dev. 10.9 8.1 7.1
min. 31.0 34.0 46.4
max. 86.5 79.1 88.6

LI-TIFCORR-NC SIRout: mean 62.6 66.4 66.1
dev. 10.5 7.7 6.9
min. 31.1 34.1 50.2
max. 80.2 79.1 96.4

Table 14: Performance of both time-frequency BSS methods vs. overlap between STFT
windows. Performance criteria: same as previous table.
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BSS method window size
128 256 512 1024

LI-TIFCORR-C 46.9 42.7 40.4 36.0

LI-TIFCORR-NC 48.1 45.1 41.4 38.2

Table 15: Mean values of SIRout (in dB) of both time-frequency BSS methods vs. STFT
window size (in samples), for a set of 4 speech sources.
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BSS method nb. windows
8 10 12

LI-TIFCORR-C 41.3 42.6 40.6

LI-TIFCORR-NC 43.0 44.3 42.3

Table 16: Mean values of SIRout (in dB) of both time-frequency BSS methods vs. number
of STFT windows in analysis zones, for a set of 4 speech sources.
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BSS method overlap
50% 75% 90%

LI-TIFCORR-C 38.3 43.3 42.9

LI-TIFCORR-NC 39.0 43.7 46.9

Table 17: Mean values of SIRout (in dB) of both time-frequency BSS methods vs. overlap
between STFT windows, for a set of 4 speech sources.

55



1. For each time t, compute |ρx1xi
(t)|.

2. Create list: order all times t according to decreasing values of |ρx1xi
(t)|.

3. Successively for first and subsequent times t in above list:

(a) Estimate a column of B using: E{xi(t)x
∗

1(t)}/E{x1(t)x
∗

1(t)}.

(b) Keep column if its distance vs all previously identified columns > threshold.

(c) End if number of kept columns = N .

4. Compute estimated sources: y′(t) = B̂−1x(t).

Figure 1: Pseudo-code of proposed temporal BSS method (each time t corresponds to a
time window in practice).
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Figure 2: Sample values of both sources.

57



Time (s)

Fr
eq

ue
nc

y 
(H

z)

0 0.5 1 1.5 2
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 3: Time-frequency transform of first source.
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Figure 4: Time-frequency transform of second source.
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Figure 5: Time-frequency transform of first mixed signal.
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Figure 6: Time-frequency transform of second mixed signal.
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Figure 7: Sample values of both estimated source signals.
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