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ABSTRACT

Predicting noise is a step that cannot be ignored in the automotive industry during the vehicle
design cycle.

This is classically achieved through Finite Element and Boundary Element methods. When
dealing with exterior problems, Boundary Element Methods isquite efficient but may induce
ill-conditioned equations. On the other hand, Finite Element Methods, if easier to handle are
not initially adapted to unbounded media.

In this paper a hybrid method, which combines the advantagesof both techniques is pre-
sented. This method, inspired from Substructure Deletion Method, which is well-known in
Civil Engineering, consists in dividing a complex unboundedproblem into two easier ones to
solve finite and infinite problems. Instead of considering a geometrically complex structure, a
prismatic bounding volume is first studied using BEM. Then a classical Finite Element compu-
tation is performed on the volume left between the box and thestructure of interest. Advantage
of this technique is that when testing and comparing severalgeometries contained in such a box,
only one Boundary Element calculation is needed. Efficiency of this method is discussed in the
present document.

1



Euronoise 2006, Tampere, Finland M. Viallet, G. Poumérol, O. Dessombz and L. Jezequel

1 INTRODUCTION

In the automotive industry, evaluating the emitted noise isan important step during units
dimensioning or during the vehicle design cycle. Well-known methods exist to answer this issue
in low frequency domain. Among these, Finite Element Methods ([1], [2], [3], [4]), adapted to
closed domains, are quite easy to implement whereas BoundaryElement Methods ([3], [5], [6])
are more adapted to infinite domains, but may induce singularity problems.

In this paper, a hybrid method inspired from the Substructure Deletion Method is described.
The SDM was first presented by Dasgupta in the late 70’s [7], and developped in Civil Engi-
neering [8], [9], [10]. In order to investigate the dynamic response of a building embedded
foundation under seismic loading, the non-excavated soil impedance matrix is first calculated.
Then the embedment region composed of the same material as the soil is studied. At last the
impedance matrices are combined according to continuity and equilibrium hypothesis to obtain
the impedance matrix of the embedded foundation.

The first part of this article will introduce the hybrid method which will be then applied to
an academic case. Finally some results will be presented.

2 PRESENTATION OF THE HYBRID METHOD

2.1 Global problem formulation

A complex vibrating structure, as shown in Fig. 1, is considered. The acoustical radia-
tion problem is governed by the Helmholtz equation and conditions on the finite and infinite
boundaries (cf Eq. 1).
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Fig. 1: Global problem domain definition
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Fig. 2: Global problem division into two sub-
domains
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In this article, only Neumann and Sommerfeld conditions will be considered. The weak formu-
lation (or integral formulation) is obtained by applying the Green-Gauss theorem.

b(p, δp) = (q, δp)L2(Ω), ∀δp regular test function inΩ (2)

Where:










b(p, δp) = −k2

˚

Ω

δp p dV +

˚

Ω

∇δp∇p dV

(q, δp)L2(Ω) =

¨
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δp
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∂n
dS

Whatever Finite Element or Boundary Element methods are used for the discretization, the
integration leads to the following discretized equation:

p = A
∂p

∂n
(3)

The present method aims at calculating the admittance matrix A.
As in elastodynamics, this is achieved by dividing theΩu domain into two domains as

illustrated in Fig. 2, whereΩ2 is an unbounded domain andΩ1 a bounded domain. The weak
formulation (cf Eq. 2) can then be decomposed on these two domains and the integral equation
(Eq. 2) of the complex problem (Fig. 1) becomes:

b(p1, δp) + b(p2, δp) = (q1, δp)L2(∂Ω1)) + (q2, δp)L2(Ω2)), ∀δp ∈ H1(Ω1) ∪ H1(Ω2) (4)

The most suitable discretization method is then chosen for each type of problem.

2.2 Exterior problem

A main advantage of Boundary Element methods is they are well adapted to infinite domain
studies. Let’s consider again the integral equation written on Eq. 2, substitutingΩ with Ω2.
After applying a second time Green theorem, the fundamentalsolutiong, called Green function,
is introduced.g is the exact solution of the following equation :

∆g + k2g = δ whereδ is the dirac function, (5)

Hence, the boundary integral equation is obtained:
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(6)

The discretization of this equation on∂Ω2 leads to :

G
∂p

∂n2
= Hp2 ⇔ −ρfω Gvn2 = Hp ⇔ p2 = A2vn2 (7)
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2.3 Interior problem

In this case, the use of finite elements avoids the difficulties due to singularities encoun-
tered with boundary elements. Moreover this discretization method is more adapted to bounded
domains.

As in structural dynamics mass-like and stiffness-like matrices can be inferred from the
variational formulation described by Eq. 2 by introducing suitable shape functions. As a con-
sequence the interior problem is governed by:

(

K
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f
)
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To be compatible with the boundary integral formulation inΩ2, these matrices have to be re-
duces on the domain boundary degrees of freedom. An exact condensation or a Guyan reduction
is proceeded to obtain:

Sredp1 = Fredvn1 ⇔ p1 = A1vn1 (9)

2.4 Application of the Substructure Deletion Method

Since the FE and BE matrices have been calculated, only boundary conditions (given below
Eq. 10) are lacking to solve the problem. These conditions guarantee the compatibility and
equilibrium between the two problems described before.
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This leads to the following expression ofA = A3:
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3 RESULTS

1
3

2

Fig. 3: Points position

10
1

10
2

10
3

10
4

−20

0

20

40

60

80

100

 

 

Frequency (Hz)
P

re
ss

ur
e

(d
B

)

SDM
Reference

Fig. 4: Pressure at point 1
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Fig. 5: Pressure at point 2
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Fig. 6: Pressure at point 3 Fig. 7: SDM results (pressure)
at 500 Hz

Fig. 8: Reference results (pres-
sure) at 500 Hz

The hybrid method has been applied on a parallelepipedic structure whom a corner is re-
moved as shown in Fig. 3. Results of the Substructure DeletionMethod are compared to
reference results obtained with Sysnoise Direct BEM.

Fig. 4 to 6 show the pressure at different points on the wettedsurface. SDM results appear
to be in good agreement with Sysnoise results. The results onthe entire model at 500 Hz (Fig.
7 and 8) are also quite good even if some inaccuracies remain.

4 CONCLUSION

In this article, new hybrid method has been described. Results on a geometrically simple
model reveal a good agreement with reference BEM calculations.

This type of method may be useful in prospecting phase of the vehicle unit design for ex-
ample. Indeed, if an invariant box is considered to model theunit global size, only one BE
calculation would have to be carried out on the box. Thanks tothe present method, Finite Ele-
ment analysis on the volume left would be sufficient to evaluate different architectural concepts
according to acoustical criterions.
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