
HAL Id: hal-00270832
https://hal.science/hal-00270832

Submitted on 24 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Large eddy simulations in curved square ducts:
Variation of the curvature radius

Cécile Munch, Olivier Métais

To cite this version:
Cécile Munch, Olivier Métais. Large eddy simulations in curved square ducts: Variation of the
curvature radius. Journal of Turbulence, 2007, 8 (28), pp.1-18. �10.1080/14685240601142859�. �hal-
00270832�

https://hal.science/hal-00270832
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Large eddy simulations in curved square ducts: variation

of the curvature radius

C. MÜNCH and O. MÉTAIS

L.E.G.I. BP 53, 38041 Grenoble Cedex 09, France

We present large-eddy simulations of the turbulent compressible flow at a low Mach number in curved
ducts. The aim is to investigate the influence of the curvature radius Rc on the flow. Three simulations
are carried out at Rc = 3.5 Dh , 6.5 Dh and 10.5 Dh (Dh hydraulic diameter). We first validate
our computations by comparison with the incompressible experiments performed by Chang et al.
(1983, Turbulent flow in a strongly curved U-bend and downstream tangent of square cross-sections.
Physico-chemical Hydrodynamics, 4(3), 243–269). We observe that the decrease of the curvature
radius is accompanied by a strong intensification of the secondary transverse flows : a rise of 100% of
the maximum of their intensity is obtained between the smaller and the higher values of Rc . We show
that the secondary flows strength is directly related to the radial pressure gradient intensity. We observe
a significant modification of the near-wall laws in the vicinity of each curved walls in correlation with
the favourable or the adverse streamwise pressure gradient depending on the nature of the curvature.
The influence of Rc on the coherent vortices is also estimated.

1. Introduction

Turbulent flows on curved walls play an important role in many engineering applications such

as turbines, heat exchangers or cooling channels of rocket engines. The study of the effects of a

longitudinal curvature on turbulent flows has motivated numerous experimental and numerical

works and several comprehensive reviews like the one by Bradshaw [13] and the more recent

one by Patel and Sotiropoulos [12]. As pointed out by these authors, most of the studies have

concentrated on the curvature effects on the concave or convex boundary layers in rectangular

ducts of high-aspect ratio in attempts to simulate two-dimensional flow conditions. As far

as numerical modelling is concerned, there have been considerable efforts to develop the

statistical model able to correctly reproduce the curvature effects. As pointed out by Patel and

Sotiropoulos [12], there is unfortunately no model suitable to properly take into account the

curvature effects. The main difficulty arises from the three-dimensional nature of the curved

turbulent flows. In a concave boundary layer, there is indeed evidence of longitudinal Taylor–

Görtler vortices. In closed duct of a small-aspect ratio, experiments have brought to light the

development of an intense cross-stream flow due to the unbalance between the radial pressure

gradient and the centrifugal forces, taking the shape of two large counter-rotating vortices of

Ekman-type. This three-dimensional character has motivated several numerical works able

to take into account the flow unsteadiness: curved boundary layers or curved channels have

been studied by Moser and Moin [7], Lund and Moin [8], Silva Lopes and Piomelli [11]
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using either direct numerical simulations (DNS) or (LES) large-eddy simulation. The three-

dimensional coherent vortices present in a curved duct of a large aspect ratio have recently

been studied through unsteady Reynolds averaged Navier–Stokes (URANS) and Detached

Eddy Simulations (DES) by Paik et al. [14].

Despite their numerous industrial applications, very few DNS or LES have been devoted

to the study of the dynamics of the turbulent flow in curved ducts of the small aspect ra-

tio. We have recently published several works, based on LES [18, 21, 23] investigating the

three-dimensional nature of the coherent vortices in curved ducts. The ability for a large-

eddy simulations technique to correctly represent the dynamics of curved flows was clearly

demonstrated. The present paper completes these previous articles by varying the curvature

radius to evaluate its influence on the flow statistics and on the coherent vortices. We focus

on the case of ducts with a strong curvature (Dh/Rc ≥ 0.1). After a short description of the

computational details in section 2, section 3 presents the numerical results which are com-

pared with the available experimental data issued from a flow in a U-bend provided by Chang

et al. [1] and other measurements realized by Johnson [15] for a flow in a concave boundary

layer. We specially investigate the influence of the curvature radius on the secondary flow, the

velocity profiles and the turbulence structures. Finally, some concluding remarks are made in

section 4.

2. Characteristics of the simulations

2.1 Numerical methods

The computer code used for our calculations solves the LES modified three-dimensional

compressible Navier–Stokes equations in a curved square duct (see [16] for details). Previous

applications of the code have been devoted to the study of turbulent compressible flows in

straight ducts (see [16, 17]). They observed a good agreement with previous incompressible

DNS and LES for both statistical quantities and turbulent structures. Hébrard et al. [18] also

initiated some simulations in the case of more complex geometries with this numerical code.

The influence of the subgrid scales is modelled by the selective structure function model

proposed by Lesieur and Metais [19]. In order to close the system of equations, we use three

supplementary relations : (i) the Sutherland empirical law describing the variation of the

molecular viscosity with the temperature. (ii) The equation of state describing the fluid as

an ideal gas. (iii) The turbulent Prandtl number taken equal to 0.6. Curvilinear generalized

coordinates are used (see [16] for details.) The discretization of the equations is made with the

compact fully explicit McCormack scheme proposed by Kennedy and Carpenter [20] second

order in time, fourth in space. The simulations are characterized by a Mach number equal to

0.5 and the bulk Reynolds number Reb = 6000. These are based on the bulk velocity (Ub),

bulk density (ρb) (see [16] for definitions), hydraulic diameter (Dh) and the temperature at the

walls (Tw).

2.2 Computational domain

The computational domain is represented in figure 1. In our curvilinear coordinates sys-

tem, s designates the streamwise direction, n the direction normal to the curved walls and

z the direction parallel to the curved walls. The various lengths are normalized by the hy-

draulic diameter Dh . The origin O is taken at the inflow of the concave side (figure 1).

The ducts have a square cross section. The angle of curvature is taken equal to 45◦. We
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Figure 1. Geometry of computational domain.

consider three configurations with different mean curvature radius, Rc = 10.5 Dh , 6.5 Dh

and 3.5 Dh . The different values for the length Lc of the curved part and for the Dean num-

ber, De = Reb ∗

√

Dh

2Rc
, are defined in table 1. The computational domain is discretized using

non-uniform numerical meshes in s, n and z directions. An hyperbolic-tangent stretching

is applied in the transverse direction n and z, the minimal and maximal grid spacing are

shown in table 1. Another stretching in the s direction is applied at the outflow to avoid

the creation of spurious reflected waves. Note that we have performed grid independence

test in previous studies (see [21]) and that the present grid resolution has proven to be

sufficient.

2.3 Boundary conditions

The boundary conditions consist of a no-slip condition for the velocity and an uniform constant

temperature Tw imposed on the four walls. In the present computation, a fully developed

turbulent flow is achieved at the curved duct inlet. Simultaneously, to the curved duct, a

periodic (in the streamwise direction) straight square duct of sufficient length is simulated. It

thus provides a turbulent field, at each time step, at the inlet of the curved duct. The inflow

and outflow boundary conditions are obtained through the use of characteristics condition

proposed by [22]. For further details, the readers can refer to [16].

2.4 Definition of statistical quantities

We define the mean quantities through time averaging, we note 〈 f (s, n, z)〉 the mean value for

any quantity f (s, n, z, t). The mean components of the velocity: 〈u〉, 〈v〉 and 〈w〉 are noted

Table 1. Characteristics of the computational domain.

Curvature radius 10.5 Dh 6.5 Dh 3.5 Dh
Lc
Dh

8.64 5.50 3.14
L total
Dh

14.70 11.56 9.20

De 1310 1660 2270
Resolution 160 × 50 × 50 128 × 50 × 50 104 × 50 × 50

n+
min/n+

max 1.8/14.9 1.8/14.9 1.8/14.9

� x+
min /� x+

max 2.5/39 2.6/40 2.6/40
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as U , V , and W . The root mean square velocities are noted as urms, vrms, wrms and < u′v′ >

is one of the Reynolds stress components. The normalization of those quantities is realized

by either the bulk or the local friction velocities. The bulk quantity fb corresponds to 〈 f 〉

integrated along the two transverse coordinates. The bulk velocity Ub involves the density and

is defined as

Ub = [ρU ]b/ρb. (1)

The friction velocities Uτcc
and Uτcv

are based on the wall shear stresses τcc and τcv , respectively,

on the concave and the convex walls. We designate as n+ the distance, from the considered

wall, normalized by the local viscous thicknesses. We use the fact that the plane z/Dh = 0.5

is a symmetry plane in the representation of the results.

3. Results

3.1 Validation

In this part, we discuss the influence of the curvature on the mean velocity components and

compare our results with the experiments. We first consider the turbulent flow for the duct

with the strongest curvature (Rc = 3.5Dh). Detailed experiments were conducted by Chang

et al. [1] for an incompressible flow in a 180◦ curved duct of square cross section and a

curvature radius equal to 3.35 times the hydraulic diameter. The mean flow and turbulence

characteristics were determined for a Dean number De = 2.1 × 104 and a Reynolds number

equal to 5.6 × 104, which are ten times higher than our values. A straight inlet of 31 Dh was

placed upstream of the bend to obtain a fully developed turbulent flow. This inlet condition

is comparable with our inlet periodic duct. It is important to point out that the experimental

parameters (Reynolds number, Dean number, angle of curvature) are very distinct from our

numerical parameters. Despite these differences, the following results indicate that we observe

not only a good qualitative agreement but also a satisfactory quantitative agreement. Although

we consider a compressible case, Ma = 0.5, the compressibility effects are very weak. To

demonstrate this assumption, we provide the results obtained for the same flow configuration

but with a Mach number equal to 0.35. This constitutes the lowest limit which can be reached

with our numerical code which is conceived for compressible flow and which uses explicit

numerical methods. Figures 2, 4 and 5 show the small difference between the two simulations

at different Mach numbers and justify our validation with an incompressible case. Different

profiles are plotted as a function of the distance n/Dh from the concave wall, for fixed values

of z/Dh and s/Dh or θ . In figure 2, the streamwise mean velocity profiles are plotted in the

symmetry plane for θ = 0◦, 3◦, 45◦. At the inlet of the curved part (θ = 0◦), the variables are

normalized by the centreline velocity at the inflow.

Figure 2(a) shows that, at the inflow, the profile is symmetric with respect to the plane

n/Dh = 0.5 since the curvature effects are not yet effective. At θ = 3◦, a slight asymmetry

of the profiles can be distinguished: the velocity becomes larger close to the convex wall

(n/Dh = 1) than on the opposite wall. At θ = 45◦, the opposite effect arises: the flow is

now slowed down near the convex side. As far as figures 2(a) and (b) are concerned, our

results fit quite well with the experiments. One may however note, in figure 2(b), that the

experimental data exhibit higher velocities in the vicinity of each wall: this can be explained

by the higher value of the Reynolds number. In figure 2 (c), we obtain a smaller intensity of

the streamwise velocity close to the convex wall as compared with the experiment, certainly

due to the Reynolds number effects.
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Figure 2. Streamwise mean velocity in the symmetry plane, Chang △, Rc = 3.5 Dh — Ma = 0.5 Dh and - - -
Ma = 0.35 for θ = (a) 0◦, (b) 3◦, and (c) 45◦.

To interpret the various modifications of the velocity profiles induced by the curvature

effects, we next consider the streamwise pressure gradient which is plotted on figure 3. In

the straight inlet part of the duct until the beginning of the curvature, the boundary layer is

subjected to a favourable pressure gradient on the convex side which induces the increase of

the streamwise velocity component on the inner wall, as noted by Chang et al. and Kim et al.

[1, 2]. On the opposite wall, an adverse streamwise pressure gradient arises explaining the

slight diminution of the U/Ub. Further downstream of the curved part, the behaviour of the

pressure changes: the adverse pressure gradient is now observed near the convex wall until

the end of the bend and is accompanied by velocity decrease in that region. The situation is

reversed near the concave wall.

Figure 3 also shows that an important radial pressure gradient takes place within the duct:

it leads to the appearance of a strong secondary motion as observed in previous laboratory

experiments [1, 3] and in our previous numerical works [23]. The secondary flow is defined as

the flow perpendicular to the main flow, which itself follows the curvilinear abscissa. Figure 4

compares the LES results and the experimental data for the velocity component V/Ub normal

to the curved walls: the profile functions of the normal coordinate n/Dh are plotted in the duct

section located at θ = 45◦ and for three values of z/Dh . Again, the influence of the Mach

number is shown to be small.

For the three z locations, V/Ub exhibits negative values: this indicates that the fluid is

flowing from the convex towards the concave wall near the duct centre. It will be shown in

section 3.2 that this central current is compensated by a strong current from the concave wall

P
s

s/ D h

∂

∂

Figure 3. Streamwise pressure gradient in the case Rc = 3.5Dh on −−−− concave wall, - - - convex wall. The vertical
lines correspond to the beginning and the end of the curved parts of the duct.
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a) z / D h = 0.5

n
D h

b) z / D h = 0.35 c) z / D h = 0.25

V/Ub

Figure 4. Profiles as a function of n of the normal component V of the mean velocity: Chang △, Rc = 3.5 Dh −−−−

Ma = 0.5 - - - Ma = 0.35 , for z/Dh = (a) 0.5, (b) 0.35 and (c) 0.25.

towards the convex wall localized in the vicinity of the duct lateral walls (see figures 10–12).

The highest values of V/Ub appear in the symmetry plane (z/Dh = 0.5), reaching almost 20%

of the bulk velocity. For the smaller values of z/Dh , |V/Ub| decreases progressively. A good

agreement is obtained between our LES and the experiment of Chang et al. [1] demonstrating

the ability for the LES to correctly reproduce the secondary flows. As explained by [23], this

secondary flow originates from the unbalance between the radial pressure gradient (see figure

8) and the centrifugal forces. Close to the sidewalls, the radial pressure gradient drives the

fluid from the concave towards the convex wall since the velocity and thus the centrifugal

forces tend to zero. In the core region, the mass conservation requires a flow in the opposite

direction.

In figure 5, the Reynolds shear stress component 〈u′v′〉 is plotted at two stations: θ = 3◦ and

45◦, as a function of n/Dh in the symmetry plane and closer to the sidewalls. In our simulation,

we observe the effects of curvature from θ = 3◦: 〈u′v′〉 is suppressed close to the convex wall

and amplified near the concave wall. This amplification goes on as we move downstream: at

45◦, 〈u′v′〉 indeed reaches more than 6% of U 2
b near the concave wall.

Although a similar behaviour is observed in the computation and the experiment, the LES

yields an overestimation of the Reynolds stress for θ = 3◦ close to the concave wall. At

θ = 45◦, the agreement is better. The discrepancy for θ = 3◦ can be explained by the Reynolds

number which is weaker in our case, therefore the intensity of the Reynolds stress component

could be different. At the end of the curved part, the curvature effect dominates the Reynolds

number effect and the curves exhibit very close values. The results shown in figure 5 bear out

a) z /D h = 0.5

n
D h

b) z / D h = 0.25

100* < u v > / U2
b

c) z / D h = 0.5 d) z / D h = 0.25

Figure 5. Reynolds stress component 〈u′v′〉 Chang △, Rc = 3.5Dh −−−− Ma = 0.5 - - - Ma = 0.35 for θ = 3◦ ,
z/Dh = (a) 0.5, (b) 0.25 and for θ = 45◦ , z/Dh = (c) 0.5, (d) 0.25.
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Imax

(s − L e )/ D h

Figure 6. Maximum value of the secondary flow intensity in curved ducts with Rc = 10.5 Dh and an angle of
curvature equal to —- - —- 15◦ , . . . . . . 30◦, —- 45◦ and - - - 60◦. The rougeoblique line is the linear function given
by formula two. The vertical lines correspond to the curved parts.

the stabilizing effect of the convex side and the production of turbulence on the concave wall

found by many experiments (see [1, 2, 4]). Note again the very small influence of the Mach

number.

3.2 Influence of the curvature radius

3.2.1 Mean quantities. We here investigate the role played by the curvature radius by

comparing the simulations with three different values of Rc : 10.5, 6.5 and 3.5 Dh . As pre-

viously mentioned, the curvature angle for the three cases is taken equal to 45◦. This choice

originates from a prefatory study aimed at the determination of the influence of the curvature

angle for a fixed value of the curvature radius equal to 10.5 Dh . We carried out simulations

for four cases: 15◦, 30◦, 45◦ and 60◦. In figure 6, we represent the maximum of the secondary

flow intensity, defined as Imax =
√

V 2+W 2

U 2
b

, for the four cases. Imax is plotted as a function of

(s − Le)/Dh , where Le is the straight inflow length, so that the origin of the abscissa axis

corresponds to the beginning of the curvature.

In the straight inflow, the secondary flow has an intensity of 2% of the bulk velocity which

is the characteristic of Prandtl’s secondary flow of second kind which develops in the corner

of a straight duct (see [16]). From the beginning of the curvature, we observe that the intensity

of the secondary flow for the four cases increases with the same rate until the end of each

respective curved part. At the beginning of the curvature, this growth is quasi-linear with

Imax = A(s − Le)/Dh + B, (2)

with A = 0.055 and B = 0.041 (plotted in figure 6). In the case where the angle is equal to

15◦, the maximum is reached at the end of the curved part and is equal to 15%. For the three

other cases, the maxima are identical, approximatively equal to 22% of the bulk velocity, the

peak values being reached before the end of the curved part. In the straight outlet part, Imax

decreases for the four cases. This result brings out the existence of a limit value for Imax of

22% for this value of Rc. It is important to note that the comparison between the 45◦ and 60◦

cases indicates that Imax is independent of θ in the curved part for a sufficiently high angle.

This justifies the choice of an angle of 45◦ in the next simulations: we indeed estimate that this

angle is sufficient to allow the full development of the intense secondary flows associated with

the curvature. The agreement with the experimental measurements presented in the previous

section corroborates this observation.
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I max

(s − L e )/ D h

Figure 7. Maximum of the secondary flow intensity Imax: −−−− Rc = 10.5 Dh , - - - Rc = 6.5 Dh , ···· Rc = 3.5
Dh . The vertical lines correspond to the limits of the curved parts.

We now investigate the influence of the curvature radius on the secondary flow intensity.

In figure 7, Imax is plotted as a function of (s − Le)/Dh with Le = 1.7 Dh for the three cases

with different Rc and a fixed value of the angle θ = 45◦. We observe a similar behaviour as

in figure 6: at the inflow, Imax is approximatively equal to 2% of the bulk velocity; in the

curved parts the intensity increases and declines at the outflow. However, when the curvature

radius changes, the growth rate in the curved part is also modified: the smaller value of Rc

corresponds to the faster growth. The peak for Rc = 3.5Dh exceeds 40% of the bulk velocity,

30% for Rc = 6.5Dh and 20% for Rc = 10.5Dh .

As explained above, the secondary flow is generated by the pressure difference between the

two curved wall: we represent C p = (p − pi )/ρU 2
b in figure 8, where pi is the pressure at the

duct inlet.

In the three ducts, C p rises on the concave wall and decreases on the convex side. It generates

a pressure difference between the two curved walls whose intensity is almost constant in the

curved part. This phenomenon starts before the beginning of the curvature and fades away after

its end. When the curvature radius becomes weaker, the difference between the two values of

C p increases, which means a stronger radial pressure gradient than in the case Rc = 10.5Dh .

Since the radial pressure gradient drives the fluid from the concave to the convex wall close

to the sidewalls, this secondary transverse flow is therefore enhanced. This result explains the

Cp

s/ D h

Figure 8. C p on the concave and on the rougeconvex wall: −−−− Rc = 10.5 Dh , - - - Rc = 6.5 Dh , ···· Rc = 3.5
Dh . The vertical lines correspond to the limits of the curved parts.
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I max
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( s Le) / D h

Figure 9. Normalized maximum of the secondary flow intensity Imax/�C pm : −−−− Rc = 10.5 Dh , - - - Rc = 6.5
Dh , ····· Rc = 3.5 Dh . The rougeoblique line is the linear function given by formula (3). The vertical lines correspond
to the limits of the curved parts.

different rates of growth of Imax. Since Imax and C p are interconnected, we next normalize

Imax by the maximum difference between the values of C p on the two curved wall: �C pm . In

figure 9, we plot Imax/�C pm as a function of (s − Le)/Dh in the three cases.

We observe that this normalization leads to the same rate of growth for Imax/�C pm for the

three values of Rc. The linear law, which describes the increase of Imax in the curved part, is

thus only dependent on the radial pressure gradient between the two curved walls. In our case,

we find a law

Imax = �C pm ∗ (A(s − Le)/Dh + B)), (3)

with A = 1.35 and B = 1.0 (plotted in figure 9). In fact, this law is similar to the first found

in figure 6 since for Rc = 10.5Dh , �C pm = 0.041. We note that, with this normalization, the

peak is higher for the higher value of the curvature radius, since the length of the curved part

is longer in that case.

In the next figures, we show the mean secondary flow in half cross-sections. We compare

our results in three sections: at the beginning of the curvature (0◦), at θ = 30◦ and at the

outflow. As mentioned above, in a straight duct, another type of secondary flow develops due

to the corner, usually called the Prandtl’s secondary flow of second kind. They generate eight

counter rotating cells, two in each corner (see [16]). At the beginning of the curvature, they

are still perceptible in figures 10(b) and (c) for Rc = 6.5 and 10.5Dh . For the smallest value

of Rc, the pressure gradient between the concave and convex walls due to the curvature is the

most important. Due to the non-locality of the pressure effects, these can be filled upstream

of the curved part as notable on the C p coefficient was shown in figure 8. Consequently, an

intense stream close to the side wall is already apparent right at the beginning of the curved

part (θ = 0◦, figure 10a)). At the station θ = 30o, the secondary flow exhibits the same pattern

for the three values of Rc. The flow is driven from the concave to the convex wall along the

sidewall, then from the sidewall to the middle of the convex wall, along the convex wall and

finally towards the core region in the symmetry plane. The resulting flow organisation is a cell

close to the convex wall, called the Ekman cell (as denominated by Mees et al. [5]). We observe

that the cell is more confined near the duct corner for the smaller values of Rc. Furthermore,

the intensity of the secondary flow is higher in the case of smaller curvature radius.

In figure 12, the Ekman cells are now totally developed and consist of pairs of large longi-

tudinal vortices which occupy the full width of the duct. Since the secondary flows grow in

intensity when Rc decreases, the Ekman cells are larger in that case inducing a translation of

9
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Figure 10. Half cross-sections showing the secondary flow at the beginning of the curved part, (a) Rc = 3.5 Dh ,
(b) Rc = 6.5 Dh and (c) Rc = 10.5 Dh .

their centre towards the duct core: for Rc = 10.5Dh , the centre is located at n/Dh = 0.8 when

it is placed at n/Dh = 0.7 for Rc = 3.5Dh . We also note the stronger value of the vertical

velocity in the symmetry plane for smaller values of the curvature radius.

To quantify the intensity of the secondary flow, we plot in figure 13 the velocity component

V/Ub, normal to the curved wall, as a function of the normal coordinate n/Dh in the duct

symmetry plane (z/Dh = 0.5) and for three different cross-sections. In the straight inflow

part, V/Ub is very weak since the secondary cells of Prandtl’s second remain located at the

duct corners. Figure 13(b) shows a significant amplification of the secondary flows as one

moves further downstream. V/Ub indeed exhibits negative values indicating the development

of the secondary flow going from the convex to the concave side. At this downstream location,

the secondary flow amplitude is weakly influenced by the value of the curvature radius. This
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z / D h
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D h

0.

1.

c)

z / D h
0.5 1.

n
D h
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1.

Figure 11. Half cross-sections showing the secondary flow at θ = 30◦ (a) Rc = 3.5 Dh , (b) Rc = 6.5 Dh and
(c) Rc = 10.5 Dh .
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Figure 12. Half cross-sections showing the secondary flow at the outflow (a) Rc = 3.5 Dh , (b) Rc = 6.5 Dh and
(c) Rc = 10.5 Dh .

influence is much greater near the end of the curved part (figure 13(c)) where it can be clearly

seen that the secondary flow is more and more enhanced when the curvature radius is decreased.

Now, we focus our attention on the behaviour of the mean velocity profiles in the curved

boundary layer and in particular the near-wall behaviour. For modelling purposes wall func-

tions are often used to mimic the near-wall region. Well-defined wall laws remain uncertain

for the boundary layers submitted to the curvature effects. Experimental and numerical stud-

ies ([7, 9, 15, 24]) have shown that the longitudinal velocity profiles on the concave wall lie

below the classical logarithmic law defined as u+ = 1
κ
ln(y+)+5.5, with κ = 0.418 being the

Karman constant while the velocity profiles develop above this law close to the convex wall.

Furthermore, Piomelli et al. [25] have shown that the deviation from the standard log-law

is directly linked to the intensity of the longitudinal pressure gradient: a strong favourable

pressure gradient is associated with a strong acceleration of the boundary layer and with a

logarithmic behaviour for the streamwise mean velocity well above the standard log-law.

In figure 14, we plot the streamwise pressure gradient, similarly to figure 3 but for the

three values of Rc, in black on the concave wall and in red on the opposite wall. We take the

abscissa to be the inclination angle to more easily compare the three different curvatures. We

a) s / D h = 1

n
Dh

b) = 15

V/ Ub

c) = 45

Figure 13. Profiles as a function of n of the normal component V of the mean velocity: −−−− Rc = 10.5Dh , - - -
Rc = 6.5 Dh and ····· Rc = 3.5 Dh for (a) s/Dh = 1, (b) θ = 15 and (c) θ = 45.
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Figure 14. Streamwise pressure gradient as a function of the angle on the concave and the convex wall for −−−−

Rc = 10.5Dh , - - - Rc = 6.5Dh and ····· Rc = 3.5Dh .

observe that the streamwise pressure gradient, at the beginning of the curvature, is positive

on the concave wall corresponding with an adverse pressure gradient. It is negative on the

opposite wall indicating a favourable pressure gradient. The pressure gradient changes the

sign further downstream and becomes strongly negative on the concave side and slightly

positive on the convex side. The amplitude of the pressure gradient is directly linked with the

curvature magnitude since it is far more important when the curvature radius is small. The two

boundary layers on each of the curved walls therefore evolve in the presence of a favourable

or an adverse pressure gradient. The dynamics of both boundary layers is however made more

complex due to the presence of the Ekman cells located near the convex side of the duct. If

one considers the duct symmetry plane, the flow ejection on the convex wall will be associated

with a decrease of the friction velocity on this wall, while the flow impact on the opposite

wall yields an increase of the local friction velocity. These modifications directly impact the

behaviour of u+ since it is normalized by the friction velocity. These effects will be more and

more important when one moves further downstream since the cells intensity increases.

In figure 15, we represent the mean velocity on each wall (concave and convex) in local

wall coordinates: U+ and the normalized distance from the considered wall n+ are based on

the local value of the friction velocity Uτcc
(for the concave wall) or Uτcv

(for the convex wall).

The profiles are plotted in the symmetry plane at four stations of the duct: at the inlet, for

θ = 15◦, 30◦ and 45◦, in black close to the concave wall, in blue close to the convex one.

We compare our velocity profiles on the concave wall with those obtained in the experiment

performed by Johnson [15] in a fully developed boundary layer submitted to destabilizing the

concave curvature. In the experiment, the Reynolds number based on the momentum thickness

and the free-stream velocity, Reθ , is equal to 1450. The curvature radius, Rc, is equal to

136 cm and the boundary layer thickness to approximatively δ = 10 cm, thus Rc/2δ = 6.8.

The experimental data consist of two different sets: with △ or without � inflow grid-generated

turbulence. For comparison, we plot the log–law observed on a flat wall in a duct (see [26]):

U+ = 3.2ln(n+)+3.9 which takes into account the influence of the lateral wall on the velocity

profiles.

In figure 15(a), we check that the mean streamwise velocity profiles follow the log–law

expected in a straight duct: this constitutes a validation of our LES. In three figures 15(b),

(c) and (d), we add the experimental data from Johnson [15]. For θ = 15◦ , figure 15(b), our

profiles separate from the log–law corresponding to a flat wall. Close to the concave side, the

velocity profiles develop under the law while they go over it close to the opposite curved wall:

this is consistent with the previous experimental observations in curved concave and convex

12



a) b)

c) d)

Figure 15. U+ as a function of n+ in semi-log graphics, close to the concave and the convex walls:−−−− Rc = 10.5Dh ,
- - - Rc = 6.5Dh and ····· Rc = 3.5 Dh , in the concave boundary layer [15] △, �. (a) At the inlet of our duct, for
θ = (b) 15◦ and (c) 30◦ and (d) 45◦.

Figure 16. Instantaneous isosurfaces of Q = 0.7U 2
b /D2

h , colored by the longitudinal vorticity, close to the convex
wall: Rc = 10.5 Dh , see http://www.informaworld.com/mpp/uploads/jot-2005-0072-file001.mpg

Figure 17. Instantaneous isosurfaces of Q = 0.7U 2
b /D2

h , colored by the longitudinal vorticity, close to the convex
wall: Rc = 6.5Dh , see http://www.informaworld.com/mpp/uploads/jot-2005-0072-file002.mpg

Figure 18. Instantaneous isosurfaces of Q = 0.7U 2
b /D2

h , colored by the longitudinal vorticity, close to the convex
wall: Rc = 3.5Dh , see http://www.informaworld.com/mpp/uploads/jot-2005-0072-file003.mpg
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Figure 19. Instantaneous isosurfaces of Q = 0.7U 2
b /D2

h , colored by the longitudinal vorticity, close to the concave
wall: Rc = 10.5Dh , see http://www.informaworld.com/mpp/uploads/jot-2005-0072-file004.mpg

(see Patel and Sotiropoulos [12]) . In the concave wall boundary layer, the comparison with

the experiments shows a good agreement for the case Rc = 10.5 Dh . For the smaller curvature

radii 6.5 Dh and 3.5 Dh , the velocity becomes inferior to the experimental data for n+ situated

between 10 and 100. Furtheraway from the wall, all the curves superpose. Figures 15(c) and

(d), respectively, correspond with θ = 30◦ and θ = 45◦. As previously shown, the intensity of

the Ekman cells is important at these stations and both the longitudinal pressure gradient and

the cells play a significant role in the modification of the streamwise velocity profile. These

combined effects lead to a quasi-disappearance of the log–law in the convex boundary layer.

A log–law can still be observed in the case with a large curvature radius (Rc = 10.5Dh), but

it becomes shorter and shorter when the Ekman cells intensify as we move from θ = 30◦

to θ = 45◦. It is interesting to note the good qualitative agreement between our results and

the wall-law predictions in curved boundary layers based on the mixing-length analysis (see

section 3.2 of Patel and Sotiropoulos [12]): for the convex curvature, the velocity profile

lies above the log–law and this overshoot is more and more pronounced for an increasing

curvature. In contrast, for the concave curvature, the velocity profile lies below the log profile

with a deviation with is growing for an increasing curvature radius. The reader is referred to

figure 3 of Patel and Sotiropoulos [12]. A good agreement between the numerical results and

the experimental data is observed for the case Rc = 10.5 Dh except near the duct core for

θ = 45◦.

3.2.2 Coherent vortices. Piomelli et al. [25] showed that a sufficient acceleration associ-

ated with a favourable pressure gradient induces a significant modification of the instantaneous

coherent vortices of the boundary layer: these become fewer and more elongated in the stream-

wise direction. We now concentrate on the vortices present in the boundary layers of the curved

duct. To visualize these vortices, we use the Q criterion: we remind that positive Q regions

are associated with intense coherent vortices, [27, 28]. Q is defined as

Q =
1

2
(�i j�i j − Si j Si j ), (4)

where �i j and Si j are, respectively, the antisymmetric and the symmetric parts of the velocity

gradient tensor. In figures 16–21 and animations 1 to 6, we show Q isosurfaces coloured

by the longitudinal vorticity close to each curved walls: the vortices are seen from above

the considered wall. The rectangles in thick-lines indicate the curved part of the duct. The

three different values of the curvature radius are here considered. As previously shown, on

Figure 20. Instantaneous isosurfaces of Q = 0.7U 2
b /D2

h , colored by the longitudinal vorticity, close to the concave
wall: Rc = 6.5Dh , see http://www.informaworld.com/mpp/uploads/jot-2005-0072-file005.mpg
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Figure 21. Instantaneous isosurfaces of Q = 0.7U 2
b /D2

h , colored by the longitudinal vorticity, close to the concave
wall: Rc = 3.5 Dh , see http://www.informaworld.com/mpp/uploads/jot-2005-0072-file006.mpg

the convex wall, the streamwise pressure gradient is at first negative (favourable pressure

gradient) which signifies an acceleration in the boundary layer and a stabilizing action on

the flow. Consequently, we observe in figures 16–18 and animations 1–3, that the quasi-

longitudinal vortices issued from the straight inlet become less numerous from the beginning

of the curved part (s/Dh = 1.7). Then new vortices develop from the middle of the curved

part: these are concentrated within the core of the two Ekman cells and we see that each cell is

constituted of longitudinal vortices whose longitudinal vorticity has a fixed sign. We observe

that the vortices concentration is more and more pronounced for smaller and smaller curvature

radii.

Close to the opposite wall, concave wall, figures 19–21 and animations 4–6, the streamwise

pressure gradient is positive (adverse) near the beginning of the curved part (see figure 14):

these lead to more numerous vortical structures. When the curvature radius is decreased, the

size of the vortices increases and these are less elongated: it is directly connected with the

larger value of the positive streamwise pressure gradient in that case. At the end of the curved

part, we observe that for Rc = 3.5 Dh the change in the sign of the pressure gradient induces

a rarefaction of the structures. The notable increase in the number of vortices in the curved

part is attributable to the destabilizing effect of the concave curvature associated with the

centrifugal instability. The instability is more and more pronounced when the curvature radius

is decreased.

We next propose to quantify the previous observations related to the variation of coherent

vortices concentration with varying the curvature radius. We chose to identify the presence

of coherent vortices through flow regions where Q exceeds a given threshold. According to

the previous studies related to the wall bounded flows, we estimate that Q = 0.6U 2
b /D2

h is a

well-adapted threshold, see [28]. We then plot, in figure 22, the percentage of points where this

threshold is overtaken in each downstream sections and for the three values of the curvature

100 *
N (Q > 0.6)

N t o t a l

s/ D h

Figure 22. Percentage of points for which Q > 0.6U 2
b /D2

h : 100 ∗ N (Q > 0.6)/Ntotal (Ntotal total number of dis-
cretization points in a section) as a function of s/Dh for : −−−− Rc = 10.5 Dh , - - - Rc = 6.5 Dh and ····· Rc = 3.5 Dh .
The vertical lines correspond to the beginning and the end of the curved parts.
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P (Q )

b )

Q

P (Q )

c)

Q

P (Q )

d )

Q

P (Q)

Figure 23. Normalized pdf of Q for −−−− Rc = 10.5Dh , - - - Rc = 6.5Dh and ····· Rc = 3.5Dh . (a) at s/Dh = 1,
(b) θ = 15, (c) θ = 30 and (d) θ = 45.

radius. These data are obtained through a time averaging over a time period of 60Dh/Ub. At

the inlet, the vortical structures represent only 4% of the cross-section for the three values

of the curvature radius. In the curved part, an increase of the vortical structures density is

observed in the three cases. The maximum vortical concentration is reached at the end of the

curved part and significantly increases for small curvature radius: the peak is indeed of about

12% for Rc = 3.5 Dh . This confirms the observations of figures 16–21. Subsequently, in the

straight outflow, the vortices percentage decreases in the three cases but it remains higher than

the percentage at the inlet: this is attributable to the long lived structures associated with the

Ekman vortices.

A more detailed information about the Q spatial distribution is provided by the probability

density function of Q in various flow sections. Figure 23 plots the normalized pdf P(Q) as a

function of Q in four cross-sections and for the three values of Rc.

In the straight inflow, the three curves slightly differ probably due to an insufficient length

of the statistical sampling. Further downstream, figures 23(b–d) clearly show the influence

of the curvature radius. For large values of Q, the number of points corresponding to values

between Q and Q + d Q is much larger when Rc decreases: this confirms the higher vortical

concentration for small radii. Figure 23 furthermore shows that the high Q regions are more

numerous but also that the Q maximum is much higher for Rc = 3.5Dh indicating a stronger

vorticity amplification in that case.
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4. Conclusion

Large Eddy Simulations (LES) are carried out to determine the influence of the curvature

radius, Rc, on a fully developed turbulent flow in a curved duct: three values of Rc are thus

considered: 3.5, 6.5 and 10.5 hydraulic diameters. We first show the ability of the LES to

correctly reproduce the curvature effects since our simulations exhibit a good agreement with

the experimental observations. We find that a diminution of Rc induces a strong intensification

of the secondary flow transverse to the bulk velocity. This can be accredited to the increase

of the radial pressure gradient which is shown to drive these secondary flows. We observe

that the secondary flow organizes into Ekman cells which are found to be more intense and

larger in size for smaller curvature radius. We also investigate the influence of Rc on the

streamwise velocity profiles in both curved boundary layers. At the beginning of the curved

part, an adverse streamwise pressure gradient develops on the concave wall which induces a

diminution of u+ and a logarithmic behaviour lower than the classical one for a flat plate. The

opposite effect arises on the convex side. Further downstream, the combined effects of the

longitudinal pressure gradient of the Ekman cells induces a strong deviation from a logarithmic

behaviour on the convex wall.

A well defined logarithmic law is observed on the concave boundary layer but only for

the large value of Rc. This absence of logarithmic behaviour is of importance for near wall

modelling which is often based on the existence of a logarithmic law.

As far as instantaneous coherent vortices are concerned, we first observe their rarefaction

close to the convex wall, due to the favourable pressure gradient in agreement with Piomelli

et al. [25] results. Further downstream, the longitudinal vortices concentrate within the core of

the two counter-rotating Ekman cells. On the opposite concave wall, the flow destabilization

associated with the centrifugal instability leads to a significant increase of the number of

longitudinal vortices. The longitudinal pressure gradient is also shown to play a role in the

size and the number of these vortices: an adverse pressure gradient being associated with their

shortening and an increase in their number.
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