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PRUNING A LÉVY CONTINUUM RANDOM TREE

ROMAIN ABRAHAM, JEAN-FRANÇOIS DELMAS, AND GUILLAUME VOISIN

Abstract. Given a general critical or sub-critical branching mechanism, we define a prun-
ing procedure of the associated Lévy continuum random tree. This pruning procedure is
defined by adding some marks on the tree, using Lévy snake techniques. We then prove
that the resulting sub-tree after pruning is still a Lévy continuum random tree. This last
result is proved using the exploration process that codes the CRT, a special Markov property
and martingale problems for exploration processes. We finally give the joint law under the
excursion measure of the lengths of the excursions of the initial exploration process and the
pruned one.

1. Introduction

Continuous state branching processes (CSBP) were first introduced by Jirina [17] and it
is known since Lamperti [18] that these processes are the scaling limits of Galton-Watson
processes. They hence model the evolution of a large population on a long time interval.
The law of such a process is characterized by the so-called branching mechanism function ψ.
We will be interested mainly by critical or sub-critical CSBP. In those cases, the branching
mechanism ψ is given by

(1) ψ(λ) = αλ+ βλ2 +

∫

(0,+∞)
π(dℓ)

(
e−λℓ−1 + λℓ

)
, λ ≥ 0,

with α ≥ 0, β ≥ 0 and the Lévy measure π is a positive σ-finite measure on (0,+∞) such
that

∫
(0,+∞)(ℓ ∧ ℓ

2)π(dℓ) <∞.

The aim of this paper is, given two sub-critical or critical branching mechanisms

ψ(λ) = αλ+ βλ2 +

∫

(0,+∞)
π(dℓ)

(
e−λℓ−1 + λℓ

)
,

ψ0(λ) = α0λ+ β0λ
2 +

∫

(0,+∞)
π0(dℓ)

(
e−λℓ−1 + λℓ

)
,

to construct a pair of processes ((Yt, Y
0
t ), t ≥ 0) such that

• The process Y (resp. Y 0) is a CSBP with branching mechanism ψ (resp. ψ0),
• Y 0

0 = Y0,
• For every t ≥ 0, Y 0

t ≤ Yt.

In other words, Y 0 represents the evolution of a sub-population of the total population
Y . Therefore, it rather clear that this construction is only possible under some natural
assumptions:

• The diffusion coefficient of Y and Y 0 is the same, β = β0.
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• There exists a positive σ-finite measure π1 on (0,+∞) such that
∫
(0,+∞) ℓπ1(dℓ) < +∞

and

(2) π = π0 + π1.

Thus, the jumps of the total population Y are those of Y 0 plus some additional ones.
• The drift coefficient

(3) α1 = α0 − α−

∫

(0,+∞)
ℓπ1(dℓ)

is non-negative. Thus the total population Y decreases slower than the population
Y 0.

A first approach for this construction is to consider the population Y 0 as an initial Eve-
population (recall the initial condition at t = 0) and the total population Y is obtained by
adding an immigration process. This is the purpose of [3] where Y is constructed as a CSBP
with immigration rate proportional to the size of the population. Notice that [3] deals also
with super-critical CSBP.

The alternative construction we present here is to use the continuum random trees that
describe the genealogy of the CSBPs. Continuum random trees (CRT) were first introduced
by Aldous [7, 6, 8], and then extended by Le Gall and Le Jan [20] and developed later by
Duquesne and Le Gall [15]. Here we start with the CRT associated with the total population
Y and we introduce a pruning procedure of this tree in order to recover a CRT associated with
the sub-population Y 0. As we consider general critical or sub-critical branching mechanism,
this work extends previous work from Abraham and Serlet [5] on Brownian CRT (π = 0) and
Abraham and Delmas [4] on CRT without Brownian part (β = 0). See also Bertoin [10] for
an approach using Galton-Watson trees and π1 = 0.

This work has also others motivations. This result is a first step to construct a general frag-
mentation process associated with a general CRT. It also helps to understand the construction
given in [2] on the Williams’ decomposition for CRT with proportional immigration.

The next subsections give a brief presentation of the mathematical objects and state the
main results. The last one describes the organization of the paper.

1.1. Exploration process. The coding of a tree by its height process is now well-known.
For instance, the height process of Aldous’ CRT [8] is a normalized Brownian excursion.
In [20], Le Gall and Le Jan associated with a Lévy process with no negative jumps that
does not drift to infinity, X = (Xt, t ≥ 0), a CSBP and a Lévy CRT which keeps track of
the genealogy of the CSBP. Let ψ, given by formula (1), denote the Laplace exponent of X:

E[e−λXt ] = etψ(λ) for λ ≥ 0. Following [15], we shall also assume that X is of infinite variation
a.s. which implies that β > 0 or

∫
(0,1) ℓπ(dℓ) = ∞. Notice those hypothesis are fulfilled in

the stable case: ψ(λ) = λα, α ∈ (1, 2) and the quadratic case ψ(λ) = λ2.
Informally, for the height process H = (Ht, t ≥ 0) associated with X, Ht gives the distance

(which can be understood as the number of generations) between the individual labeled t and
the root 0 of the CRT. An individual labeled t is an ancestor of s ≥ t ifHt = inf{Hr, r ∈ [t, s]},
and inf{Hr, r ∈ [u, v]} is the “generation” of the most recent common ancestor of u and v.
The height process is a key tool in this construction but it is not a Markov process. The
so-called exploration process ρ = (ρt, t ≥ 0) is a càd-làg Markov process taking values in
Mf (R+), the set of measures with finite mass on R+ endowed with the topology of weak
convergence. The height process can easily be recovered from the exploration process as
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Ht = H(ρt), where H(µ) denotes the supremum of the closed support of the measure µ (with
the convention that H(0) = 0).

To understand what the exploration process means, let us use the queuing system repre-
sentation of [20] when β = 0. We consider a preemptive LIFO (Last In, First Out) queue
with one server. A jump of X at time s corresponds to the arrival of a new customer re-
quiring a service equal to ∆s := Xs −Xs−. The server interrupts his current job and starts
immediately the service of this new customer (preemptive LIFO procedure). When this new
service is finished, the server will resume the previous job. When π is infinite, all services will
suffer interruptions. The customer (arrived at time) s will still be in the system at time t > s
if and only if Xs− < inf

s≤r≤t
Xr and, in this case, the quantity ρt(Hs) represents the remaining

service required by the customer s at time t. Observe that ρt([0,Ht]) corresponds to the load
of the server at time t and is equal to Xt − It where

It = inf{Xu, 0 ≤ u ≤ t}.

Another process of interest will be the dual process (ηt, t ≥ 0) which is also a measure-
valued process. In the queuing system description, for a customer s still present in the
system at time t, the quantity ηt(Hs) represents the amount of service of customer s already
completed at time t, so that ρt(Hs) + ηt(Hs) = ∆s holds for any customer s still present in
the system at time t.

Definition and properties of the height process, the exploration process and the dual process
are recalled in Section 2.

1.2. The pruned exploration process. As described before, we start from a CRT con-
structed from a Lévy processX with Laplace exponent ψ. This CRT has a rather complicated
structure with nodes of index three (if β > 0) and nodes of infinite index (if π 6= 0). Each
infinite node corresponds to a jump of the Lévy process X. We want to prune this CRT and
for that purpose, we will put some marks on the CRT and we will prune the CRT according
to them. These marks are of two types: some lay on the nodes of infinite index of the tree
and the others lay on the skeleton.

1.2.1. Marks on the nodes (π1 6= 0). Recall that the nodes with infinite index are described
by the jumps of the process X (i.e. by the Lévy measure π) and (2). Therefore, we must
distinguish the jumps of X that are due to measure π0 from those due to measure π1. This
is done by taking

X = X(0) +X(1)

where X(0) and X(1) are independent Lévy processes with respective Lévy measure π0 and
π1 (see Section 2.1). We suppose that the jumps of X that are jumps of X(1) are marked,
which gives marked nodes on the CRT.

1.2.2. Marks on the skeleton (α1 > 0). Those marks are only necessary when α1 > 0, see (3)
for the definition of α1. Given an individual labeled by t (at a distance Ht from the root), we
add some marks along its lineage according to a Poisson process with intensity α1. As the
nodes of the CRT are of null Lebesgue measure on this lineage, these marks will lay on the
skeleton of the tree. Of course, this procedure must be coherent so that, given two distinct
individuals, the marks on their lineage must coincide between the root and their last common
ancestor. Therefore, we use Lévy snakes techniques (see Duquesne-Le Gall, [15]) to define
these marks. Let us remark that in [15], the height process H is supposed to be continuous
for the construction of the Lévy snake. We will explain in the appendix how to remove this
technical assumption.



4 ROMAIN ABRAHAM, JEAN-FRANÇOIS DELMAS, AND GUILLAUME VOISIN

1.2.3. The Lévy Poisson snake and the pruned exploration process. As we don’t use the CRT
framework but only the exploration processes that code the CRTs, all what has been described
above must be translated in terms of CRT. Therefore, we define a measure-valued process
S := ((ρt,m

nod
t ,mske

t ), t ≥ 0) called the Lévy Poisson snake, where the process ρ is the usual
exploration process whereas the processes mnod and mske keep track of the marks on the CRT
respectively on the nodes and on the skeleton. We set At for the Lebesgue measure of the
set of the individuals prior to t that contain no mark on their lineage (see (18) for a precise
definition), we consider its right-continuous inverse Ct = inf{r > 0;Ar ≥ t} and we define
the pruned exploration process ρ̃ by

ρ̃t = ρCt for t ≥ 0.

Theorem 1.1. The pruned exploration process ρ̃ is distributed as the exploration process
associated with a Lévy process with Laplace exponent ψ0.

The proof relies on a martingale problem for ρ̃ and a special Markov property, Theorem
4.2, which covers the quadratic case (see Proposition 6 in [5] or Proposition 7 in [11]) and
the case without quadratic term (see Theorem 3.12 in [4]).

Finally, we give the joint law of the length of the excursion of the exploration process and
the length of the excursion of the pruned exploration process, see Proposition 6.1.

1.3. Organization of the paper. We first recall in the next Section the construction of
the exploration process, how it codes a CRT and its main properties we shall use. We also
define the marked Lévy snake that is used for pruning the tree. In Section 3, we define
rigorously the pruned exploration process ρ̃ and restate precisely Theorem 1.1. The rest
of the paper is devoted to the proof of that theorem. In Section 4, we state and prove a
special Markov property of the marked Lévy snake, that gives the law of the snake “above”
the marks, conditionally on ρ̃. We use this special property in Section 5 to derive from the
martingale problem satisfied by ρ, introduced in [1] when β = 0, a martingale problem for
ρ̃ which allows us to obtain the law of ρ̃. Finally, we compute in the last section, under the
excursion measure, the joint law of the lengths of the excursions of ρ and ρ̃. The Appendix
is devoted to some extension of the Lévy snake when the height process is not continuous.

2. Lévy snake: notations and properties

We recall here the construction of the Lévy continuum random tree introduced in [20, 19]
and developed later in [15]. We will emphasize on the height process and the exploration
process which are the key tools to handle this tree. The results of this section are mainly
extracted from [15], but for Section 2.4.

If E is a polish space, let B(E) (resp. B+(E)) be the set of real-valued measurable (resp.
and non-negative) functions defined on E endowed with its Borel σ-field, and let M(E) (resp.
Mf (E)) be the set of σ-finite (resp. finite) measures on E, endowed with the topology of
vague (resp. weak) convergence. For any measure µ ∈ M(E) and f ∈ B+(E), we write

〈µ, f〉 =

∫
f(x)µ(dx).

2.1. The underlying Lévy process. We consider a R-valued Lévy process X = (Xt, t ≥ 0)
with no negative jumps, starting from 0. Its law is characterized by its Laplace transform:
for λ ≥ 0

E

[
e−λXt

]
= etψ(λ),
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where its Laplace exponent ψ is given by

ψ(λ) = α′λ+ βλ2 +

∫

(0,+∞)
π(dℓ)

(
e−λℓ−1 + 1{ℓ<1}λℓ

)
,

where β ≥ 0 and the Lévy measure π is a non-negative σ-finite measure on (0,+∞) such that∫
(0,+∞)(1 ∧ ℓ2)π(dℓ) <∞. In this paper, we assume that X

• has first moments (i.e.
∫
(0,+∞)(ℓ ∧ ℓ

2)π(dℓ) <∞),

• is of infinite variation (i.e. β > 0 or
∫
(0,1) ℓπ(dℓ) = +∞),

• does not drift to +∞.

The Laplace exponent of X can then be written as (1), with drift α ≥ 0 (as X does not
drift to +∞), quadratic term β ≥ 0 and Lévy measure π, a non-negative σ-finite measure on
(0,+∞) such that

∫
(0,+∞)(ℓ ∧ ℓ

2)π(dℓ) <∞, and
∫
(0,1) ℓπ(dℓ) = ∞ or β > 0.

We shall write X as the sum of a Lévy process X(0) = (X
(0)
t , t ≥ 0) with no negative jumps

and of an independent subordinator X(1) = (X
(1)
t , t ≥ 0). Let ψ0 be the Laplace exponent

of X(0), and φ1 the Laplace exponent of X(1) (notice we have a different sign convention for
the Laplace exponent of the Lévy process with no negative jumps and the subordinator):

E

[
e−λX

(0)
t

]
= etψ0(λ) and E

[
e−λX

(1)
t

]
= e−tφ1(λ),

with ψ = ψ0 − φ1 and

ψ0(λ) = α0λ+ βλ2 +

∫

(0,+∞)
π0(dℓ)

(
e−λℓ−1 + λℓ

)
,

φ1(λ) = α1λ+

∫

(0,+∞)
π1(dℓ)

(
1 − e−λℓ

)
,

where α0 ≥ 0, α1 ≥ 0, π1 is a non-negative σ-finite measure on (0,+∞) with
∫
(0,+∞) ℓπ1(dℓ) <

∞ and π0 is a non-negative σ-finite measure on (0,+∞) with
∫
(0,+∞)(ℓ ∧ ℓ2)π0(dℓ) < ∞.

Because of ψ = ψ0 −φ1, we have (2) and (3). As X has a finite first moment, we get that the

subordinator X(1) has also a finite first moment. Notice the condition on the Lévy measure
of the subordinator,

∫
(0,+∞) ℓπ1(dℓ) <∞, is stronger than the usual condition of integrability

of 1 ∧ ℓ because of the existence of this first moment.
We assume that φ1 6= 0, so that

(4) α0 > 0.

Since X(0) +X(1) is a Lévy process with Laplace exponent ψ0 − φ = ψ, we shall assume

that X = X(0) +X(1). For a ∈ {0, 1}, let J a = {s ≥ 0;X
(a)
s 6= X

(a)
s− } be the set of jumping

times of X(a). Since X(0) and X(1) are independent, we have that a.s. J 0 ∩ J 1 = ∅ and
J = J 0 ∪ J 1 is the set of jumping times of X. For s ∈ J , we denote by

∆s = Xs −Xs−

the jump of X at time s and ∆s = 0 otherwise. The two processes
∑

s∈J a δ(s,∆s), for
a ∈ {0, 1}, are independent Poisson point processes with intensity πa.

As X and X(0) are of infinite variation, we have, see Corollary VII.5 in [9],

(5) lim
λ→∞

λ

ψ(λ)
= 0 and lim

λ→∞

λ

ψ0(λ)
= 0.



6 ROMAIN ABRAHAM, JEAN-FRANÇOIS DELMAS, AND GUILLAUME VOISIN

It is easy to check, using
∫
(0,∞) π1(dℓ)ℓ <∞, that

(6) lim
λ→∞

φ1(λ)

λ
= α1.

Let I = (It, t ≥ 0) be the infimum process of X, It = inf0≤s≤tXs, and let S = (St, t ≥ 0)
be the supremum process, St = sup0≤s≤tXs. We will also consider for every 0 ≤ s ≤ t the
infimum of X over [s, t]:

Ist = inf
s≤r≤t

Xr.

The point 0 is regular for the Markov process X − I, and −I is the local time of X − I at
0 (see [9], chap. VII). Let N be the associated excursion measure of the process X − I away
from 0, and let σ = inf{t > 0;Xt − It = 0} be the length of the excursion of X − I under N.
We will assume that under N, X0 = I0 = 0.

Since X is of infinite variation, 0 is also regular for the Markov process S −X. The local
time, L = (Lt, t ≥ 0), of S −X at 0 will be normalized so that

E[e
−βS

L
−1
t ] = e−tψ(β)/β ,

where L−1
t = inf{s ≥ 0;Ls ≥ t} (see also [9] Theorem VII.4 (ii)).

2.2. The height process and the Lévy CRT. For each t ≥ 0, we consider the reversed

process at time t, X̂(t) = (X̂
(t)
s , 0 ≤ s ≤ t) by:

X̂(t)
s = Xt −X(t−s)− if 0 ≤ s < t,

and X̂
(t)
t = Xt. The two processes (X̂

(t)
s , 0 ≤ s ≤ t) and (Xs, 0 ≤ s ≤ t) have the same law.

Let Ŝ(t) be the supremum process of X̂(t) and L̂(t) be the local time at 0 of Ŝ(t) − X̂(t) with
the same normalization as L.

Definition 2.1. ([15], Definition 1.2.1, Lemma 1.2.1 and Lemma 1.2.4)
There exists a [0,∞]-valued lower semi-continuous process H = (Ht, t ≥ 0), called the height

process, such that H0 = 0 and for all t ≥ 0, a.s. Ht = L̂
(t)
t . And a.s. for all s < t s.t.

Xs− ≤ Ist and for s = t if ∆t > 0 then Ht <∞ and for all t′ > t ≥ 0, the process H takes all
the values between Ht and Ht′ on the time interval [t, t′].

The height process (Ht, t ∈ [0, σ]) under N codes a continuous genealogical structure, the
Lévy CRT, via the following procedure.

(i) To each t ∈ [0, σ] corresponds a vertex at generation Ht.
(ii) Vertex t is an ancestor of vertex t′ if Ht = Ht,t′ , where

(7) Ht,t′ = inf{Hu, u ∈ [t ∧ t′, t ∨ t′]}.

In general Ht,t′ is the generation of the last common ancestor of t and t′.
(iii) We put d(t, t′) = Ht +Ht′ − 2Ht,t′ and identify t and t′ (t ∼ t′) if d(t, t′) = 0.

The Lévy CRT coded by H is then the quotient set [0, σ]/ ∼, equipped with the distance
d and the genealogical relation specified in (ii).
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2.3. The exploration process. The height process is not Markov in general. But it is a
very simple function of a measure-valued Markov process, the so-called exploration process.

The exploration process ρ = (ρt, t ≥ 0) is a Mf (R+)-valued process defined as follows: for
every f ∈ B+(R+), 〈ρt, f〉 =

∫
[0,t] dsI

s
t f(Hs), or equivalently

(8) ρt(dr) = β1[0,Ht](r) dr +
∑

0<s≤t

Xs−<Ist

(Ist −Xs−)δHs(dr).

In particular, the total mass of ρt is 〈ρt, 1〉 = Xt − It.
For µ ∈ M(R+), we set

(9) H(µ) = sup Supp µ,

where Supp µ is the closed support of µ, with the convention H(0) = 0. We have

Proposition 2.2. ([15], Lemma 1.2.2 and Formula (1.12))
Almost surely, for every t > 0,

• H(ρt) = Ht,
• ρt = 0 if and only if Ht = 0,
• if ρt 6= 0, then Supp ρt = [0,Ht].
• ρt = ρt− + ∆tδHt , where ∆t = 0 if t 6∈ J .

In the definition of the exploration process, as X starts from 0, we have ρ0 = 0 a.s. To state
the Markov property of ρ, we must first define the process ρ started at any initial measure
µ ∈ Mf (R+).

For a ∈ [0, 〈µ, 1〉], we define the erased measure kaµ by

(10) kaµ([0, r]) = µ([0, r]) ∧ (〈µ, 1〉 − a), for r ≥ 0.

If a > 〈µ, 1〉, we set kaµ = 0. In other words, the measure kaµ is the measure µ erased by a
mass a backward from H(µ).

For ν, µ ∈ Mf (R+), and µ with compact support, we define the concatenation [µ, ν] ∈
Mf (R+) of the two measures by:

〈
[µ, ν], f

〉
=
〈
µ, f

〉
+
〈
ν, f(H(µ) + ·)

〉
, f ∈ B+(R+).

Finally, we set for every µ ∈ Mf (R+) and every t > 0,

(11) ρµt =
[
k−Itµ, ρt].

We say that (ρµt , t ≥ 0) is the process ρ started at ρµ0 = µ, and write Pµ for its law. Unless
there is an ambiguity, we shall write ρt for ρµt .

Proposition 2.3. ([15], Proposition 1.2.3)
The process (ρt, t ≥ 0) is a càd-làg strong Markov process in Mf (R+).

Remark 2.4. From the construction of ρ, we get that a.s. ρt = 0 if and only if −It ≥ 〈ρ0, 1〉
and Xt − It = 0. This implies that 0 is also a regular point for ρ. Notice that N is also the
excursion measure of the process ρ away from 0, and that σ, the length of the excursion, is
N-a.e. equal to inf{t > 0; ρt = 0}.

Exponential formula for the Poisson point process of jumps of the inverse subordinator of
−I gives (see also the beginning of Section 3.2.2. [15]) that for λ > 0

(12) N

[
1 − e−λσ

]
= ψ−1(λ).
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2.4. The Lévy Poisson snake. We shall construct a Poisson snake in order to cut the Lévy
CRT at marked nodes and at marks on the skeleton. The marked nodes will correspond to
the jumps of X at times in J 1. For marks on the skeleton, we will follow [5] and use an
underlying Poisson process.

2.4.1. Marks on the nodes. For t ≥ 0, we consider the measure on R+,

mnod
t (dr) =

∑

0<s≤t, s∈J1
Xs−<Ist

(Ist −Xs−) δHs(dr).

The atoms of mnod
t give the marked nodes of the exploration process at time t.

2.4.2. Marks on the skeleton. . Following Proposition 7.2, see also Proposition 4.1.1 in [15]
when H is continuous, we consider a Lévy snake ((ρt,Wt), t ≥ 0) with underlying process a
Poisson process with intensity α1. A.s., we have that Wt is càd-làg with jumps equal to one.
Its derivative mske

t is an atomic measure on [0,Ht); it gives the marks on the skeleton of the
exploration process at time t.

2.4.3. The Lévy Poisson snake. The mark process will be given by m = (mnod,mske).
We call the process S = ((ρt,mt), t ≥ 0) the Lévy marked snake started at ρ0 = 0,m0 =

0. To get the Markov property of the Lévy marked snake, we must define the process S
started at any initial value (µ,Πnod,Πske) ∈ S, where S is the set of (µ,Πnod,Πske) such

that µ,Πnod ∈ Mf (R+), with Πnod absolutely continuous w.r.t. the singular part, µ(s), of

µ, and Πske ∈ M(R+). Let Π = (Πnod,Πske). For (µ,Π) ∈ S, we set Hµ
t = H(k−Itµ) and

we define (mnod)
(µ,Π)
t = [dΠ

nod

dµ(s) k−Itµ,m
nod
t ] and (mske)

(µ,Π)
t = [Πske1[0,H0,t),m

ske
t ]. Notice the

definition of (mske)
(µ,Π)
t is coherent with the construction of the Lévy snake, with W0 being

the cumulative function of Πske over [0,H0].

We shall writemnod for (mnod)(µ,Π) and similarly formske andm. By construction and since
ρ is an homogeneous Markov process, the Lévy marked snake S = (ρ,m) is an homogeneous
Markov process.

We now denote by Pµ,Π the law of the Lévy marked snake starting at time 0 from (µ,Π),
and by P∗

µ,Π the law of the Lévy marked snake killed when ρ reaches 0. For convenience we

shall write Pµ if Π = 0 and P if (µ,Π) = 0 and similarly for P∗. Finally, we still denote by N

the distribution of S when ρ is distributed under the excursion measure N.
Let F = (Ft, t ≥ 0) be the filtration generated by S completed the usual way. Using the

strong Markov property of (X,X(1)) and Proposition 7.2 or Theorem 4.1.2 in [15] if H is
continuous, we get the following result.

Proposition 2.5. The marked snake S is a càd-làg strong Markov process.

By construction, we have the so called snake property: a.s. (ρt,mt)(s) = (ρt′ ,mt′)(s) for
all 0 ≤ s < Ht,t′ .

2.5. Poisson representation of the snake. We decompose the path of S under P∗
µ,Π

according to excursions of the total mass of ρ above its minimum, see Section 4.2.3 in [15].

More precisely, let (α̃i, β̃i), i ∈ Ĩ be the excursion intervals of X − I above 0 under P∗
µ,Π. For
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every i ∈ Ĩ, we define hi = Hα̃i and Si = (ρi,mi) by the formulas: for t ≥ 0 and f ∈ B+(R+),

〈ρit, f〉 =

∫

(hi,+∞)
f(x− hi)ρ(α̃i+t)∧β̃i

(dx)(13)

〈(ma
t )
i, f〉 =

∫

(hi,+∞)×[0,+∞)
f(x− hi)m

a
(α̃i+t)∧β̃i

(dx), a ∈ {nod, ske},(14)

with mi = ((mnod)i, (mske)i). We set σi = inf{s > 0; 〈ρis, 1〉 = 0}. It is easy to adapt Lemma
4.2.4. of [15] to get the following Lemma.

Lemma 2.6. Let (µ,Π) ∈ S. The point measure
∑

i∈Ĩ

δ(hi,Si) is under P∗
µ,Π a Poisson point

measure with intensity µ(dr)N[dS].

2.6. The dual process and representation formula. We shall need the Mf (R+)-valued
process η = (ηt, t ≥ 0) defined by

ηt(dr) = β1[0,Ht](r) dr +
∑

0<s≤t
Xs−<Ist

(Xs − Ist )δHs(dr).

The process η is the dual process of ρ under N (see Corollary 3.1.6 in [15]).
The next Lemma on time reversibility can easily be deduced from Corollary 3.1.6 of [15]

and the construction of m.

Lemma 2.7. Under N, the processes ((ρs, ηs,1{ms=0}), s ∈ [0, σ]) and ((η(σ−s)−, ρ(σ−s)−,
1{m(σ−s)−=0}), s ∈ [0, σ]) have the same distribution.

We present a Poisson representation of (ρ, η,m) under N. Let N0(dx dℓ du), N1(dx dℓ du)
and N2(dx) be independent Poisson point measures respectively on [0,+∞)3, [0,+∞)3 and
[0,+∞) with respective intensity

dx ℓπ0(dℓ)1[0,1](u)du, dx ℓπ1(dℓ)1[0,1](u)du and α1dx.

For every a > 0, let us denote by Ma the law of the pair (µ, ν,mnod,mske) of measures on R+

with finite mass defined by: for any f ∈ B+(R+)

〈µ, f〉 =

∫
(N0(dx dℓ du) + N1(dx dℓ du)) 1[0,a](x)uℓf(x) + β

∫ a

0
f(r) dr,(15)

〈ν, f〉 =

∫
(N0(dx dℓ du) + N1(dx dℓ du)) 1[0,a](x)(1 − u)ℓf(x) + β

∫ a

0
f(r) dr,(16)

〈mnod, f〉 =

∫
N1(dx dℓ du)1[0,a](x)uℓf(x) and 〈mske, f〉 =

∫
N2(dx)1[0,a](x)f(x).(17)

Remark 2.8. In particular µ(dr)+ν(dr) is defined as 1[0,a](r)drWr, whereW is a subordinator
with Laplace exponent ψ′ − α.

We finally set M =
∫ +∞
0 da e−αa Ma. Using the construction of the snake, it is easy to

deduce from Proposition 3.1.3 in [15], the following Poisson representation.

Proposition 2.9. For every non-negative measurable function F on Mf (R+)2,

N

[∫ σ

0
F (ρt, ηt,mt) dt

]
=

∫
M(dµ dν dm)F (µ, ν,m),

where m = (mnod,mske) and σ = inf{s > 0; ρs = 0} denotes the length of the excursion.
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3. The pruned exploration process

We define the following continuous additive functional of the process ((ρt,mt), t ≥ 0):

(18) At =

∫ t

0
1{ms=0} ds for t ≥ 0.

Lemma 3.1. We have the following properties.

(i) For λ > 0, N[1 − e−λAσ ] = ψ0
−1(λ).

(ii) N-a.e. 0 and σ are points of increase for A. More precisely, N-a.e. for all ε > 0, we
have Aε > 0 and Aσ −A(σ−ε)∨0 > 0.

(iii) If limλ→∞ φ1(λ) = +∞, then N-a.e. the set {s;ms 6= 0} is dense in [0, σ].

Proof. We first prove (i). Let λ > 0. Before computing v = N[1 − exp−λAσ], notice that
Aσ ≤ σ implies, thanks to (12), that v ≤ N[1 − exp−λσ] = ψ−1(λ) < +∞. We have

v = λN

[∫ σ

0
dAt e−λ

∫ σ
t
dAu

]
= λN

[∫ σ

0
dAt E

∗
ρt,0[e

−λAσ ]

]
,

where we replaced e−λ
∫ σ
t
dAu in the last equality by E∗

ρt,mt [e
−λAσ ], its optional projection,

and used that dAt-a.e. mt = 0. In order to compute this last expression, we use the
decomposition of S under P∗

µ according to excursions of the total mass of ρ above its minimum,
see Lemma 2.6. Using the same notations as in this lemma, notice that under P∗

µ, we have

Aσ = A∞ =
∑

i∈Ĩ A
i
∞, where for every T ≥ 0,

(19) AiT =

∫ T

0
1{mit=0}dt.

By Lemma 2.6, we get

E∗
µ[e

−λAσ ] = e−〈µ,1〉N[1−exp−λAσ ] = e−v〈µ,1〉 .

We have

v = λN

[ ∫ σ

0
dAt e−v〈ρt,1〉

]
= λN

[ ∫ σ

0
dt1{mt=0} e−v〈ρt,1〉

]
(20)

= λ

∫ +∞

0
da e−αa Ma[1{m=0} e−v〈µ,1〉]

= λ

∫ +∞

0
da e−αa exp

{
−α1a−

∫ a

0
dx

∫ 1

0
du

∫

(0,∞)
ℓ1π1(dℓ1)

}

exp
{
− βva−

∫ a

0
dx

∫ 1

0
du

∫

(0,∞)
ℓ0π0(dℓ0)

(
1 − e−vuℓ0

)}

= λ

∫ +∞

0
da exp

{
−a

∫ 1

0
du ψ′

0(uv)

}
(21)

= λ
v

ψ0(v)
,(22)

where we used Proposition 2.9 for the third and fourth equalities, and for the last equality
that α0 = α+ α1 +

∫
(0,∞) ℓ1π1(dℓ1) as well as

(23) ψ′
0(λ) = α0 +

∫

(0,∞)
π0(dℓ0) ℓ0(1 − e−λℓ0).
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Notice that if v = 0, then (21) implies v = λ/ψ′
0(0), which is absurd since ψ′

0(0) = α0 > 0
thanks to (4). Therefore we have v ∈ (0,∞), and we can divide (22) by v to get ψ0(v) = λ.
This proves (i).

Now, we prove (ii). If we let λ goes to infinity in (i) and use that limr→∞ ψ0(r) = +∞,
then we get that N[Aσ > 0] = +∞. Notice that for (µ,Π) ∈ S, we have under P∗

µ,Π,

A∞ ≥
∑

i∈Ĩ A
i
∞, with Ai defined by (19). Thus Lemma 2.6 implies that if µ 6= 0, then

P∗
µ,Π-a.s. Ĩ is infinite and A∞ > 0. Using the Markov property at time t of the snake under

N, we get that for any t > 0, N-a.e. on {σ > t}, we have Aσ −At > 0. This implies that σ is
N-a.e. a point of increase of A. By time reversibility, see Lemma 2.7, we also get that N-a.e.
0 is a point of increase of A. This gives (ii).

If α1 > 0 then the snake ((ρs,Ws), s ≥ 0) is non trivial. It is well known that, since the
Lévy process X is of infinite variation, the set {s;∃t ∈ [0,Hs), Ws(t) 6= 0} is N-a.e. dense in
[0, σ]. This implies that {s;ms 6= 0} is N-a.e. dense in [0, σ].

If α1 = 0 and π1((0,∞)) = ∞, then the set J 1 of jumping time of X is N-a.e. dense in
[0, σ]. This also implies that {s;ms 6= 0} is N-a.e. dense in [0, σ].

If α1 = 0 and π1((0,∞)) <∞, then the set J 1 of jumping time of X is N-a.e. finite. This
implies that {s;ms 6= 0} ∩ [0, σ] is N-a.e. a finite union of intervals, which, thanks to (i), is
not dense in [0, σ].

To get (iii), notice that limλ→∞ φ1(λ) = ∞ if and only if α1 > 0 or π1((0,∞)) = ∞. �

We set Ct = inf{r > 0;Ar > t} the right continuous inverse of A, with the convention
that inf ∅ = ∞. From excursion decomposition, see Lemma 2.6, (ii) of Lemma 3.1 implies
the following Corollary.

Corollary 3.2. For any initial measures (µ,Π) ∈ S, Pµ,Π-a.s. the process (Ct, t ≥ 0) is
finite. If m0 = 0, then Pµ,Π-a.s. C0 = 0.

We define the pruned exploration process ρ̃ = (ρ̃t = ρCt , t ≥ 0) and the pruned Lévy

marked snake S̃ = (ρ̃, m̃), where m̃ = (mCt , t ≥ 0). Notice Ct is a F-stopping time for any

t ≥ 0 and is finite a.s. from Corollary 3.2. Notice the process ρ̃, and thus the process S̃, is
càd-làg. We also set H̃t = HCt and σ̃ = inf{t > 0; ρ̃t = 0}.

Let F̃ = (F̃t, t ≥ 0) be the filtration generated by the pruned Lévy Poisson snake S̃
completed the usual way. In particular F̃t ⊂ FCt , where if τ is an F-stopping time, then Fτ
is the σ-field associated with τ .

We are now able to restate precisely Theorem 1.1

Theorem 3.3. For every measure µ with finite mass, the law of the pruned exploration
process ρ̃ under Pµ,0 is the law of the exploration process associated with a Lévy process with
Laplace exponent ψ0 under Pµ.

4. A special Markov property

In order to define the excursions of the Lévy Poisson snake away from {s ≥ 0; ms = 0},
we define O as the interior of {s ≥ 0, ms 6= 0}. We shall see that the complementary of O
has positive Lebesgue measure.

Lemma 4.1. If the set {s ≥ 0, ms 6= 0} is non empty then O is non empty. If we have
limλ→∞ φ1(λ) = ∞, then N-a.e. the open set O is dense in [0, σ].

Proof. For any element s′ in {s ≥ 0, ms 6= 0}, there exists u ≤ Hs′ such that ms′([0, u]) 6= 0
and ρs′([u,∞)) > 0. Then we consider τs′ = inf{t > s′, ρt([u,∞)) = 0}. By the right
continuity of ρ, we have τs′ > s′ and the snake property implies that N-a.e. (s′, τs′) ⊂ O.
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Use (iii) of Lemma 3.1 to get the last part. �

We write O =
⋃
i∈I(αi, βi) and say that (αi, βi)i∈I are the excursions intervals of the Lévy

marked snake S = (ρ,m) away from {s ≥ 0, ms = 0}. For every i ∈ I, let us define the
measure-valued process Si = (ρi,mi) by: for every f ∈ B+(R+), t ≥ 0,

(24)

〈ρit, f〉 =

∫

[Hαi ,+∞)
f(x−Hαi)ρ(αi+t)∧βi(dx)

〈(m(a))it, f〉 =

∫

(Hαi ,+∞)
f(x−Hαi)m

(a)
(αi+t)∧βi

(dx) with a∈ {nod, ske}

and mi
t = ((m(nod))it, (m

(ske))it). Notice that the mass located at Hαi is kept, if there is any,
in the definition of ρi whereas it is removed in the definition of mi. In particular, if ∆αi > 0,
then ρi0 = ∆αiδ0 and for every t < βi − αi, the measure ρit charges 0. On the contrary, as
mi

0 = 0, we have, for every t < βi − αi, m
i
t({0}) = 0.

Let F̃∞ be the σ-field generated by S̃ = ((ρCt ,mCt), t ≥ 0). Recall that P∗
µ,Π(dS) denotes

the law of the snake S started at (µ,Π) ∈ S and stopped when ρ reaches 0. For ℓ ∈ (0,+∞),
we will write P∗

ℓ for P∗
ℓδ0,0

.
If Q is a measure on S and ϕ is a non-negative measurable function defined on the mea-

surable space R+ × Ω × S, we denote by

Q[ϕ(u, ω, ·)] =

∫

S

ϕ(u, ω,S)Q(dS).

In other words, the integration concerns only the third component of the function ϕ.
We can now state the Special Markov Property.

Theorem 4.2 (Special Markov property). Let ϕ be a non-negative measurable function de-

fined on R+ × Ω × S such that t 7→ ϕ(t, ω,S) is progressively F̃∞-measurable for any S ∈ S.
Then, we have P-a.s.

(25) E

[
exp

(
−
∑

i∈I

ϕ(Aαi , ω,S
i)

) ∣∣∣∣ F̃∞

]

= exp

(
−

∫ ∞

0
duα1N

[
1 − e−ϕ(u,ω,·)

])

exp

(
−

∫ ∞

0
du

∫

(0,∞)
π1(dℓ)

(
1 − E∗

ℓ [e
−ϕ(u,ω,·)]

))
.

Furthermore, the law of the excursion process
∑

i∈I

δ(Aαi ,ραi−,Si)(du dµ dS), given F̃∞, is the law

of a Poisson point measure with intensity 1{u≥0}du δρ̃u(dµ)
(
α1N(dS) +

∫
(0,∞)π1(dℓ)P

∗
ℓ (dS)

)
.

Informally speaking, this Theorem gives the distribution of the Lévy marked snake “above”
the pruned CRT. The end of this section is now devoted to its proof.

Let us first remark that, if limλ→+∞ φ1(λ) < +∞, we have α1 = 0 and π1 is a finite
measure. Hence, there is no marks on the skeleton and the number of marks on the nodes is
finite on every bounded interval of time. The proof of Theorem 4.2 in that case is easy and
left to the reader. For the rest of this Section, we assume that limλ→+∞ φ1(λ) = +∞.

Fix t > 0 and η > 0. For S = (Ss = (ρs,ms), s ≥ 0), we set B = {σ(S) = −∞} ∪
{Tη(S) = +∞} ∪ {Lη(S) = −∞} where σ(S) = inf{s > 0; ρs = 0}, Tη(S) = inf{s ∈
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[0, σ(S)]; 〈ρs, 1〉 ≥ η and Hs ≥ η} and Lη(S) = sup{s ∈ [0, σ(S)]; 〈ηs, 1〉 ≥ η}, with the
convention inf ∅ = +∞ and sup ∅ = 0.

We consider non-negative bounded functions ϕ satisfying the assumptions of Theorem 4.2
and these three conditions:

(h1) ϕ(u, ω,S) = 0 for any u ≥ t.
(h2) u 7→ ϕ(u, ω,S) is uniformly Lipschitz (with a constant that does not depend on ω

and S).
(h3) ϕ(u, ω,S) = 0 on B; and if S ∈ Bc then ϕ(u, ω,S) depends on S only through

(Su, u ∈ [Tη, Lη ]).

Lemma 4.3. If ϕ satisfies (h1), (h2) and (h3), then the function w defined on (0,∞) ×
[0,∞) × Ω by

w(ℓ, u, ω) = E∗
ℓ [e

−ϕ(u,ω,·)]

is uniformly continuous on (0,∞) × [0,∞).

For convenience, we shall write w(ℓ, u) instead of w(ℓ, u, ω).

Proof. Let u > 0 and ℓ′ > ℓ. If we set τℓ = inf{t ≥ 0, ρt({0}) = ℓ} we have, by the strong
Markov property at time τℓ and assumption (h3), that

E∗
ℓ′

[
e−ϕ(u,ω,·)

]
= E∗

ℓ′

[
1{Tη>τℓ}E

∗
ℓ

[
e−ϕ(u,ω,·)

]]
+ E∗

ℓ′

[
e−ϕ(u,ω,·) 1{Tη≤τℓ}

]
.

Therefore,

∣∣w(ℓ′, u) − w(ℓ, u)| ≤ E∗
ℓ′

[
1{Tη≤τℓ}E

∗
ℓ

[
e−ϕ(u,ω,·)

]]
+ E∗

ℓ′

[
e−ϕ(u,ω,·) 1{Tη≤τℓ}

]

≤ 2P∗
ℓ′(Tη ≤ τℓ)

= 2P∗
ℓ′−ℓ(Tη < +∞).

Using Lemma 2.6, for ℓ′ − ℓ < η, we get

|w(ℓ′, u) − w(ℓ, u)| ≤ 2
(
1 − e−(ℓ′−ℓ)N[Tη<∞]

)
.

Since N[Tη <∞] <∞, we then deduce there exists a finite constant cη s.t. for all function ϕ
satisfying (h1)–(h3),

(26) |w(ℓ′, u) − w(ℓ, u)| ≤ cη|ℓ
′ − ℓ|.

The absolute continuity with respect to u is a direct consequence of assumption (h2). �

The proof now goes along the next subsections.

4.1. Stopping times. Let R(dt, du) be a Poisson point measure on R2
+ independent of F∞

with intensity the Lebesgue measure. For every ε > 0, the process Rεt := R([0, t] × [0, 1/ε])
is a Poisson process with intensity 1/ε. We denote by (eεk, k ≥ 1) the time intervals between
the jumps of (Rεt , t ≥ 0). The random variables (eεk, k ≥ 1) are i.i.d. exponential random
variables with mean ε, and are independent of F∞. They define a mesh of R+ which is finer
and finer as ε decreases to 0.
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For ε > 0, we consider T ε0 = 0, M ε
0 = 0 and for k ≥ 0,

(27)

M ε
k+1 = inf{i > Mε

k ;mT ε
k
+
∑i
j=Mε

k
+1 e

ε
j
6= 0},

Sεk+1 = T εk +

Mε
k+1∑

j=Mε
k
+1

eεj ,

T εk+1 = inf{s > Sεk+1; ms = 0},

with the convention inf ∅ = +∞. Notice T εk and Sεk are F-stopping times.
Now we introduce a notation for the process defined above the marks on the intervals

[Sεk, T
ε
k ]. We set, for a ≥ 0,

(28) H̄a = sup{t > 0,ma([0, t]) = 0}, ρ−a = ρa1[0,H̄a)

and ρ+
a defined by ρa = [ρ−a , ρ

+
a ], that is for any f ∈ B+(R+),

(29) 〈ρ+
a , f〉 =

∫

[H̄a,∞)
f(r − H̄a) ρa(dr).

For k ≥ 1 and ε > 0 fixed, we define Sk,ε =
(
ρk,ε,mk,ε

)
by : for s > 0 and f ∈ B+(R+)

ρk,εs = ρ+
(Sε
k
+s)∧T ε

k
,

〈(m(a))k,εs , f〉 =

∫

(H̄Sε
k
,+∞)

f(r − H̄Sε
k
)m

(a)
(Sε
k
+s)∧T ε

k
(dr), with a∈ {nod, ske},

and mk,ε
s = ((m(nod))k,εs , (m(ske))k,εs ). Notice that ρk,εs ({0}) = ρSε

k
({H̄Sε

k
}). For k ≥ 1, we con-

sider the σ-field F (ε),k generated by the family of processes
(
S(T ε

ℓ
+s)∧Sε

ℓ+1−
, s > 0

)
ℓ∈{0,...,k−1}

.

4.2. Approximation of the functional. Let S be a Lévy snake and g be a function defined
on S. We decompose the path of ρ according to the excursions of the total mass of ρ above
its minimum as in (24), but for the excursions corresponding to an eventual initial mass. We
set Yt = 〈ρt, 1〉 and Jt = inf0≤u≤t Yt. Recall that (Yt, t ≥ 0) is distributed under P∗

µ as a
Lévy process with Laplace exponent ψ started at 〈µ, 1〉 and killed when it reaches 0. Let

(α̃i, β̃i), i ∈ Ĩ, be the intervals excursion of Y − J away from 0. For every i ∈ Ĩ, we define

hi = Hα̃i = Hβ̃i
. We set I = {i ∈ Ĩ ;hi > 0} and for i ∈ I let Si = (ρi,mi) be defined by (24).

Let i0 6∈ I. We set I∗ = I ∪ {i0}, α̃i0 = inf{α̃i; i ∈ Ĩ , hi = 0}, β̃i0 = sup{β̃i; i ∈ Ĩ , hi = 0}
and Si0 = (ρi0 ,mi0) with

〈ρi0t , f〉 =

∫

[0,+∞)
f(x)ρ(α̃i0+t)∧β̃i0

(dx)

〈(m(a))i0t , f〉 =

∫

(0,+∞)
f(x)m

(a)

(α̃i0+t)∧β̃i0
(dx) with a∈ {nod, ske},

and mi0
t = ((m(nod))i0t , (m

(ske))i0t ). See figure 4.2 to get the picture of the different excursions.
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αi βi αi0 βi0

Ht

Figure 1. Definition of the different excursions

We define

(30) g∗(S) =
∑

i∈I∗

g(Si).

Lemma 4.4. P-a.s., we have, for ε > 0 small enough,

(31)
∑

i∈I

ϕ(Aαi , ω,S
i) =

∞∑

k=1

ϕ(ASε
k
, ω,Sk,ε) =

∞∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε),

where the sums have a finite number of non zero terms.

Proof. First equality. By assumptions (h1) and (h3), as N[Tη < +∞] < +∞, the set

J = {i ∈ I, ϕ(Aαi , ω,S
i) 6= 0}

is finite. Therefore, for ε small enough, for every j ∈ J , the mesh defined by (27) intersects
the interval (αj , βj): in other words, there exists an integer kj such that Sεkj ∈ (αj , βj) (and

that integer is unique).
Moreover, for every j ∈ J , we can choose ε small enough so that Sεkj < Tη(ρ

j), which gives

that, for ε small enough,

ϕ(Aαj , ω,S
j) = ϕ(Aαj , ω,S

kj ,ε).

Finally, as the mark at αj is still present at time Sεkj , the additive functional A is constant

on that time interval and

ϕ(Aαj , ω,S
j) = ϕ(ASε

kj
, ω,Skj ,ε).

Second equality. Let j ∈ J . We consider the decomposition of Skj ,ε above its minimum
described at the beginning of this Subsection. We must consider two cases :
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First case : The mass at αj is on a node. Then, for ε > 0 small enough, we have Tη > α̃i0
and

ϕ(ASε
kj
, ω,Skj ,ε) = ϕ(ASε

kj
, ω,Si0) = ϕ∗(ASε

kj
, ω,Skj ,ε)

as all the terms in the sum that defines ϕ∗ are zero but for i = i0.

Second case : The mass at αj is on the skeleton. In that case, we again can choose ε small
enough so that the interval [Tη, Lη ] is included in one excursion interval above the minimum

of the exploration total mass process of Skj ,ε. We then conclude as in the previous case. �

Notice that for k ∈ N∗

(32) F (ε),k ⊂ FSε
k
.

It is easy to check the following measurable result.

Lemma 4.5. For any ε > 0, k ∈ N∗, the function ϕ(ASε
k
, ω, ·) is F (ε),k-measurable.

4.3. Computation of the conditional expectation of the approximation.

Lemma 4.6. For every F̃∞-measurable non-negative random variable Z, we have

E

[
Z exp

(
−

∞∑

k=1

ϕ∗
(
ASε

k
, ω,Sk,ε

))]
= E

[
Z

∞∏

k=1

Kε(ASε
k
, ω)

]
,

where γ = ψ−1 (1/ε) and

(33) Kε(r, ω) =
ψ(γ)

φ1(γ)

γ − v(r)

ψ(γ) − ψ(v(r))

(
α1 +

∫ 1

0
du

∫

(0,∞)
ℓ1π1(dℓ1) w(uℓ1, r) e−γ(1−u)ℓ1

)
.

where

(34) w(ℓ, r) = E∗
ℓ

[
e−ϕ(r,ω,·)

]
and v(r) = N

[
1 − e−ϕ(r,ω,·)

]
.

Proof. Let p ≥ 1. Recall that Ht,t′ denotes the minimum of H between t and t′. We set

ξp−1
d = sup

{
t > T εp−1; Ht = HT εp−1,S

ε
p

}
,

ξpg = inf
{
t > T εp−1; Ht = H̄Sεp and Ht,Sεp = Ht

}
.

Roughly speaking, ξp−1
d is the time at which the height process reaches its minimum over

[T εp−1, S
ε
p] and ξpg is the time at which appears the first mark of the snake at time Sεp, see

figure 4.3 to help understanding.
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T εp−1
Sεpξp−1

d
ξpg

H

t

H̄Sεp

Figure 2. Position of various random times

We consider a bounded non-negative random variable Z of the form Z = Z0Z1Z2Z3,
where Z0 ∈ F (ε),p−1, Z1 ∈ σ(Su, T

ε
p−1 ≤ u < ξp−1

d ), Z2 ∈ σ(Su, ξ
p−1
d ≤ u < ξpg) and Z3 ∈

σ(S(T ε
k
+s)∧Sε

k+1−
, s ≥ 0, k ≥ p) are bounded non-negative.

To compute E

[
Z exp

(
−

p∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε)

)]
, we first apply the strong Markov prop-

erty at time T εp . We obtain

E

[
Z exp

(
−

p∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε)

)]
= E

[
Z0Z1Z2 exp

(
−

p∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε)

)
EρTεp ,0

[Z3]

]
.

Recall notation (28) and (29). Notice that ρT εp = ρ−Sεp , and consequently ρT εp is measurable

with respect to FSεp . So, when we use the strong Markov property at time Sεp, we get thanks

to Lemma 4.5 and (32)

E

[
Z exp

(
−

p∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε)

)]

= E

[
Z0Z1Z2 exp

(
−

p−1∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε)

)
E∗
ρ+
Sεp

[
e
−ϕ∗(ASεp ,ω,·)

]
Eρ−

Sεp

[Z3]

]
.

Using the strong Markov property at time T εp−1, we get

(35) E

[
Z exp

(
−

p∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε)

)]

= E

[
Z0 exp

(
−

p−1∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε)

)
E∗
ρTε
p−1

[
Z1Z2Fb0(ρ

+
τ ′ , Aτ ′)G(ρ−τ ′)

]
]

|b0=ASε
p−1

,

with Fb0(µ, b) = E∗
µ

[
e−ϕ

∗(b0+b,ω,·)
]
, G(µ) = E∗

µ[Z3], and τ ′ is distributed as Sε1. In what
follows, we shall write F for Fb0 in order to simplify the expressions when there is no confusion.
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We then consider the Poisson decomposition of S under P∗
ρTε
p−1

given in Lemma 2.6. Notice

there exists a unique excursion i1 ∈ Ĩ s.t. α̃i1 < τ ′ < β̃i1 .
By hypothesis on Z1, we can write Z1 = H1(ρT εp−1

,
∑

i∈Ĩ;α̃i<α̃i1
δhi,Si) for a measurable

function H1. We can also write Z2 = H2(ρu, ξ
p−1
d ≤ u < ξpg) for a measurable function H2

as mu = 0 for u ∈ [ξp−1
d , ξpg). Then, using compensation formula in excursion theory, see

Corollary IV.11 and Theorem VII.1 in [9], we get

(36) E∗
µ′
[
Z1Z2F (ρ+

τ ′ , Aτ ′)G(ρ−τ ′)
]

= E



∫
µ′(dv) 1

{τ ′ >
∑

s<v

σ(Ss)}
H1(µ

′,
∑

s<v

δSs)h
µ′

F (r,
∑

s<v

Aσ(Ss)(S
s))


 ,

where
∑

s δs,Ss is a Poisson point measure with intensity µ′(ds)N[dS], σ(S) = inf{r > 0,Sr =

0}, At(S
s) =

∫ t
0 dv

′ 1{mv′ (S
s)=0} and

hµ
′

F (s, b) = N
[
F (ρ+

τ ′ , b+Aτ ′)G([ksµ
′, ρ−τ ′ ])H2([ksµ

′, ρt], 0 ≤ t < ξ1g)1{τ ′<σ}

]
.

Let (Rk, k ≥ 0) be the increasing sequence of the jumping times of a Poisson process of
intensity 1/ε, independent of S. Then, by time-reversal, we have

hµ
′

F (s, b) = N

[ +∞∑

k=1

1{mRk 6=0}1{∀k′>k, mR
k′

=0}F (η+
Rk
, b+Aσ −ARk)

G([ksµ
′, η−Rk ])H2([ksµ

′, ηu], τk < u ≤ σ)
]
,

where τk = inf{t > Rk;mt = 0}. We then apply the strong Markov property at time Rk and
the Poisson representation of the Poisson Lévy snake to get

hµ
′

F (s, b) = N

[ +∞∑

k=1

1{mRk 6=0}G([ksµ
′, η−Rk ])

E∗
ρRk

[
1{∀k′>0, mR

k′
=0}F (η′, b+Aσ)H2([ksµ

′, ηu], τ0 < u ≤ σ)
]
|η′=η+

Rk

]
,

where τ0 = inf{t > 0;mt = 0}. Now, let us remark that, if m0 6= 0, then ms 6= 0 for s ∈ [0, τ0]
and Aτ0 = 0. Therefore, mR1 = 0 implies R1 > τ0. The strong Markov property at time τ0
gives, with η′ = η+

Rk
,

1{mRk 6=0}E
∗
ρRk

[
1{∀k′>0, mR

k′
=0}F (η′, b+Aσ)H2([ksµ

′, ηu], τ0 < u ≤ σ)
]

= 1{mRk 6=0}P
∗
ρ+
Rk

(R1 > σ)E∗
ρ−
Rk

[
1{∀k′>0, mR

k′
=0}F (η′, b+Aσ)H2([ksµ

′, ηu], 0 < u ≤ σ)
]
.

We have, using the Poisson representation of Lemma 2.6 and (12), that P∗
ρ+
Rk

(R1 > σ) =

E∗
ρ+
Rk

[
e−σ/ε

]
= e

−γ〈ρ+
Rk
,1〉

, as γ = ψ−1(1/ε). We obtain

hµ
′

F (s, b) = N

[
+∞∑

k=1

1{mRk 6=0}G̃(ρ−Rk , η
−
Rk
, ρ+
Rk
, η+
Rk

)

]
,
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where

G̃(µ, ν, ρ′, η′) = G([ksµ
′, ν]) e−γ〈ρ

′,1〉

E∗
µ

[
1{∀k′>0, mR

k′
=0}F (η′, b+Aσ)H2([ksµ

′, ρu], 0 < u ≤ σ)
]
.

As
∑

k≥1 δRk is a Poisson point process with intensity 1/ε, we deduce that

hµ
′

F (s, b) =
1

ε
N

[∫ σ

0
dt1{mt 6=0}G̃(ρ−t , η

−
t , ρ

+
t , η

+
t )

]
.

Using Proposition 2.9, we get

hµ
′

F (s, b) =
1

ε

∫ ∞

0
da e−αa Ma

[
1{m6=0}G̃(µ−, ν−, µ+, ν+)

]
.

For r > 0 and µ a measure on R+, let us define the measures µ≥r and µ<r by

〈µ≥r, f〉 =

∫
f(x− r)1{x≥r}µ(dx) and 〈µ<r, f〉 =

∫
f(x)1{x<r}µ(dx).

We set q(du, dℓ1) = α1δ(0,0)(dudℓ1)+du ℓ1π1(dℓ1) and by convention π({0}) = 0. Using Palm
formula, we get

Ma

[
1{m6=0}G̃(µ−, ν−, µ+, ν+)

]

=

∫ a

0
dr

∫

[0,1]×[0,∞)
q(du, dℓ1)

Ma

[
1{m([0,r))=0}G̃(µ<r, ν<r, µ≥r + uℓ1δ0, ν≥r + (1 − u)ℓ1δ0)

]
.

Using the independence of the Poisson point measures, we get

Ma

[
1{m([0,r))=0}G̃(µ<r, ν<r, µ≥r + uℓ1δ0, ν≥r + (1 − u)ℓ1δ0)

]

=

∫
Mr(dµ, dν, dm)

∫
Ma−r(dρ

′, dη′, dm′)1{m=0}G̃(µ, ν, ρ′ + uℓ1δ0, η
′ + (1 − u)ℓ1δ0).

We deduce that

hµ
′

F (s, b) =
1

ε

∫

[0,1]×[0,∞)
q(du, dℓ1)

∫
M(dµ, dν, dm)

∫
M(dρ′, dη′, dm′)

1{m=0}G̃(µ, ν, ρ′ + uℓ1δ0, η
′ + (1 − u)ℓ1δ0).

Plugging this result in (36), we get

(37) Eµ′
[
Z1Z2F (ρ+

τ ′ , Aτ ′)G(ρ−τ ′)
]

= Eµ′

[
Z1Z2

ΓF (Aτ ′)

Γ1
G(ρ−τ ′)

]
,

where for f non-negative and defined on Mf (R+) × [0,∞)

Γf (b) =

∫

[0,1]×[0,∞)
q(du, dℓ1)

∫
M(dρ′, dη′, dm′) e−γ〈ρ

′,1〉−γuℓ1 f(η′ + (1 − u)ℓ1δ0, b).

We now use the particular form of F to compute ΓF . Using (30) and Lemma 2.6, we get

Fb0(µ, b) = E∗
µ

[
e−ϕ

∗(b0+b,ω,·)
]

= E∗
µ({0})

[
e−ϕ(b0+b,ω,·)

]
e−µ((0,∞))N[1−e−ϕ(b0+b,ω,·)] .
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We w and v defined in (34), we get

Ma

[
e−γ〈µ,1〉−γuℓ1 Fb0(ν + (1 − u)ℓ1δ0, b)

]

= w((1 − u)ℓ1, b0 + b) e−γuℓ1 Ma

[
e−γ〈µ,1〉 e−v(b0+b)〈ν,1〉

]

= w((1 − u)ℓ1, b0 + b) e−γuℓ1 e
−a
(
ψ(γ)−ψ(v(b0+b))

γ−v(b0+b)
−α
)

.

We deduce that

ΓFb0 (b) =
γ − v(b0 + b)

ψ(γ) − ψ(v(b0 + b))

(
α1 +

∫ 1

0
du

∫

(0,∞)
ℓ1π1(dℓ1) w(uℓ1, b0 + b) e−γ(1−u)ℓ1

)
,

and with F = 1, Γ1 =
γ

ψ(γ)

φ1(γ)

γ
=
φ1(γ)

ψ(γ)
.

Use this and (37) in (35), arguments backward from (35) and definition (33) to get

E

[
Z exp

(
−

p∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε)

)]
= E

[
Z exp

(
−

p−1∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε)

)
Kε(ASεp , ω)

]
.

From monotone class Theorem, this equality holds also for any non-negative Z measurable
w.r.t. the σ-field F̄∞ = σ((SCt , t ∈ [AT ε

k
, ASε

k+1
]), k ≥ 0). Notice that Kε(ASεp) = Kε(ASεp , ω)

is measurable w.r.t. F̄∞. So, we may iterate the previous argument and let p goes to infinity
to finally get that for any non-negative random variable Z ∈ F̄∞, we have

E

[
Z exp

(
−

∞∑

k=1

ϕ∗(ASε
k
, ω,Sk,ε)

)]
= E

[
Z

∞∏

k=1

Kε(ASε
k
, ω)

]
.

As F̄∞ contains F̃∞, the Lemma is proved. �

4.4. Computation of the limit. We first study the process t 7→ Nε,t. Recall notation

of Section 4.1. Let Aεs be the Lebesgue measure of [0, s]
⋂(⋃

k≥0[T
ε
k , S

ε
k+1]

)
. The process

t 7→ sup{i ∈ N;
∑i

j=1 e
ε
j ≤ Aεt} is a Poisson process with intensity 1/ε and the process

s 7→ Nε,t, where

Nε,t = sup{k ∈ N;AεSε
k
≤ t} = sup{k ∈ N;

Mε
k∑

j=1

eεj ≤ Aεt},

is a marked Poisson process with intensity P(mτ 6= 0)/ε, where τ is an exponential random
variable with mean ε independent of S.

Lemma 4.7. The process t 7→ Nε,t is a Poisson process with intensity
φ1(γ)

εψ0(γ)
, where γ =

ψ−1(1/ε).
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Proof. We have, by the similar computations as in the proof of Lemma 4.6,

P(mτ = 0) =
1

ε
E

[∫ ∞

0
dt e−t/ε 1{mt=0}

]

=
1

ε

∫ ∞

0
ds e−γs N

[∫ σ

0
dt e−t/ε 1{mt=0}

]

=
1

εγ
N

[∫ σ

0
dt e−t/ε 1{mt=0}

]
.

By time reversibility and using optional projection and (12), we have

N

[∫ σ

0
dt e−t/ε 1{mt=0}

]
= N

[∫ σ

0
dt e−(σ−t)/ε 1{mt=0}

]

= N

[∫ σ

0
dt e−γ〈ρt,1〉 1{mt=0}

]
.

The proof of Lemma 3.1, see (20) and (22), gives that P(mτ = 0) =
1

εψ0(γ)
. Since ε−1 =

ψ(γ) = ψ0(γ) − φ1(γ), we get
1

ε
P(mτ 6= 0) =

φ1(γ)

εψ0(γ)
. �

We then get the following Corollary.

Corollary 4.8. There exists a sub-sequence (εj , j ∈ N) decreasing to 0, s.t. P-a.s. for any
t0 ≥ 0 and any bounded measurable function h defined on R+ × Ω such that u 7→ h(u, ω) is
a.s. continuous and h(u, ω) = 0 for u ≥ t0, we have, with γj = ψ−1(1/εj),

lim
j→∞

φ1(γj)
−1

∞∑

k=1

h(A
S
εj
k

, ω) =

∫ ∞

0
h(u, ω) du.

Proof. Notice that as a direct consequence of (5) and (6), we get

lim
ε→0

εψ0(γ) = 1.

Recall that (AεSε
k
, k ≥ 1) are the jumping time of the Poisson process t 7→ Nε,t with pa-

rameter φ1(γ)/εψ0(γ). Standard results on Poisson process implies the vague convergence in
distribution (see also Lemma XI.11.1 in [13]) of φ1(γ)

−1
∑∞

k=1 δAεSε
k

(dr) towards the Lebesgue

measure on R+ as ε goes down to 0. Since the limit is deterministic, the convergence holds
in probability and a.s. along a decreasing sub-sequence (εj , j ∈ N). In particular, as h is
continuous and h(u, ω) = 0 for u ≥ t0, we have that a.s.

lim
j→∞

φ1(γj)
−1

∞∑

k=1

h(A
εj

S
εj
k

, ω) =

∫ ∞

0
h(u, ω) du.

Notice that a.s. for all u ≥ 0, lim
ε′→0

Aε
′

u = Au, and the convergence is uniform over any bounded

interval as Aε
′
and A are non-decreasing. From the continuity of h and since h(u, ω) = 0 for

u ≥ t0, we deduce that a.s.

lim
j→∞

φ1(γj)
−1

∞∑

k=1

|h(A
εj

S
εj
k

, ω) − h(A
S
εj
k

, ω)| = 0.

This ends the proof of the Corollary. �
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We now study Kε given by (33). We keep the same notation as in Lemma 4.6.

Lemma 4.9. There exists a deterministic function R s.t. lim
ε→0

R(ε) = 0 and P-a.s for all

ε > 0, we have:

sup
r≥0

∣∣∣∣∣φ1(γ) log(Kε(r, ω)) − α1v(r) −

∫

(0,∞)
π1(dℓ1) (1 − w(ℓ1, r))

∣∣∣∣∣ ≤ R(ε).

Proof. We have

Kε(r, ω) =
ψ(γ)

ψ(γ) − ψ(v(r))

γ − v(r)

γ

1

φ1(γ)

(
α1γ + γ

∫ 1

0
du

∫

(0,∞)
ℓ1π1(dℓ1) w(uℓ1, r) e−γ(1−u)ℓ1

)

=
ψ(γ)

ψ(γ) − ψ(v(r))

γ − v(r)

γ

1

φ1(γ)

(
α1γ +

∫

(0,∞)
π1(dℓ1)

∫ γℓ1

0
e−s ds w(ℓ1 −

s

γ
, r)

)

=
ψ(γ)

ψ(γ) − ψ(v(r))

γ − v(r)

γ

1

φ1(γ)(
φ1(γ) −

∫

(0,∞)
π1(dℓ1)

∫ γℓ1

0
e−s ds

(
1 − w(ℓ1 −

s

γ
, r)

))
.

In particular, we have φ1(γ) log(Kε(r)) = −A1 +A2 +A3, where

A1(r) = φ1(γ) log
(
1 − ψ(v(r))/ψ(γ)

)
,

A2(r) = φ1(γ) log(1 − v(r)/γ),

A3(r) = φ1(γ) log

(
1 −

∫

(0,∞)
π1(dℓ1)

∫ γℓ1

0
e−s ds

(
1 − w(ℓ1 −

s

γ
, r)

)
/φ1(γ)

)
.

Thanks to (h3), there exists a finite constant a > 0 s.t. P-a.s. v(r) < a for all r ≥ 0. We
deduce there exists ε0 > 0 and a finite constant c > 0 s.t. P-a.s for all ε ∈ (0, ε0],

(38) sup
r≥0

|A1(r)| ≤ c
φ1(γ)

ψ(γ)
and sup

r≥0
|A2(r) − α1v(r)| ≤

c

γ
+ c|

φ1(γ)

γ
− α1|.

We have

∫

(0,∞)
π1(dℓ1)

∫ γℓ1

0
e−s ds

(
1 − w(ℓ1 −

s

γ
, r)

)
−

∫

(0,∞)
π1(dℓ1) (1 −w(ℓ1, r))

=

∫

(0,∞)
π1(dℓ1) e−γℓ1(w(ℓ1, r) − 1)

+

∫

(0,∞)
π1(dℓ1)

∫ ∞

0
e−s ds

(
w(ℓ1, r) − w(ℓ1 −

s

γ
, r)

)
1{s≤γℓ1}.

It is then easy to get, using (h4) and (26), that P-a.s

φ2(γ) = sup
r≥0

∣∣∣∣∣

∫

(0,∞)
π1(dℓ1)

∫ γℓ1

0
e−s ds

(
1 − w(ℓ1 −

s

γ
, r)

)
−

∫

(0,∞)
π1(dℓ1) (1 − w(ℓ1, r))

∣∣∣∣∣

converges to 0 as γ goes to infinity.
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Recall that we assumed that lim
γ→∞

φ1(γ) = +∞. Thus, there exist ε0 > 0 and a finite

constant c > 0 s.t. P-a.s for all ε ∈ (0, ε0],

(39) sup
r≥0

∣∣∣∣∣A3(r) −

∫

(0,∞)
π1(dℓ1) (1 − w(ℓ1, r))

∣∣∣∣∣ ≤
c

φ1(γ)
+ φ2(γ).

Using (38) and (39), we get that there exists a deterministic function R s.t. P-a.s

sup
r≥0

∣∣∣∣∣φ1(γ) log(Kε(r)) − α1v(r) −

∫

(0,∞)
π1(dℓ1) (1 − w(ℓ1, r))

∣∣∣∣∣ ≤ R(ε),

where lim
ε→0

R(ε) = 0, thanks to (5) and (6).

�

The previous results allow us to compute the following limit. We keep the same notation
as in Lemma 4.6.

Lemma 4.10. Let ϕ satisfying condition (h1)–(h3). There exists a sub-sequence (εj , j ∈ N)
decreasing to 0, s.t. P-a.s.

lim
j→∞

∞∏

k=1

Kεj(AS
εj
k

) = exp−

∫ ∞

0
du

(
α1v(u) +

∫

(0,∞)
π1(dℓ) (1 − w(ℓ, u))

)
.

Proof. Notice that thanks to (h1), the functions v and w(ℓ, ·) are continuous and that for
r ≥ t, v(r) = 0 and w(ℓ, r) = 1. The result is then a direct consequence of Corollary 4.8 and
Lemma 4.9. �

4.5. Proof of Theorem 4.2. Now we can prove the special Markov property in the case
limγ→∞ φ1(γ) = +∞.

Let Z ∈ F̃∞ non-negative such that E[Z] < ∞. Let ϕ satisfying hypothesis of Theorem
4.2, (h1)–(h3). We have, using notation of the previous sections

E

[
Z exp

(
−
∑

i∈I

ϕ(Aαi , ω,S
i)

)]
= lim

j→∞
E

[
Z exp

(
−

∞∑

k=1

ϕ∗
(
A
S
εj
k

, ω,Sk,εj
))]

= lim
j→∞

E

[
Z

∞∏

k=1

Kεj(AS
εj
k

)

]

= E

[
Z e

−
∫∞
0 du

(
α1v(u)+

∫
(0,∞) π1(dℓ) (1−w(ℓ,u))

)]
,

where we used Lemma 4.4 and dominated convergence for the first equality, Lemma 4.6 for the
second equality, Lemma 4.10 and dominated convergence for the last equality. By monotone
class Theorem and monotonicity, we can remove hypothesis (h1)– (h3). To ends the proof of

the first part, notice that
∫ t
0 du

(
α1v(u) +

∫
(0,∞) π1(dℓ) (1 − w(ℓ, u))

)
is F̃∞-measurable and

so this is P-a.e. equal to the conditional expectation (i.e. the left hand side term of (25)).
The second part of Theorem 4.2 is just a consequence of the following Lemma.

Lemma 4.11. Let ϕ be a bounded non-negative measurable function defined on the product
space R+ ×Mf (R+) × S. N-a.e., we have

∑

i∈I

ϕ(Aαi , ραi−,S
i) =

∑

i∈I

ϕ̃(Aαi , ω,S
i),
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where ϕ̃(t, ω,S) = ϕ(t, ρ̃t(ω),S).

Proof. First we assume that ϕ satisfies (h3). The same arguments as those used to prove
Lemma 4.4 yields that P-a.e. for ε > 0 small enough, we have

∑

i∈I

ϕ(Aαi , ραi−,S
i) =

∑

k≥1

ϕ(ASε
k
, ρ−Sε

k
,Sk,ε).

Notice that by construction, ρ−Sε
k

= ρT ε
k

and that mT ε
k

= 0. Using the strong Markov property

at time T εk and the second part of Corollary 3.2, we deduce that P-a.e. for all k ∈ N∗,

(40) CATε
k

= T εk .

Therefore, as ASε
k

= AT ε
k
, we have N-a.e.

ρ̃ASε
k

= ρ̃ATε
k

= ρT ε
k

= ρ−Sε
k
.

Hence, we have that N-a.e. for ε > 0 small enough,
∑

i∈I

ϕ(Aαi , ραi−,S
i) =

∑

k≥1

ϕ̃(ASε
k
, ω,Sk,ε),

with ϕ̃(t, ω,S) = ϕ(t, ρ̃t(ω),S). Now, we complete the proof using Lemma 4.4. The condition
(h3) is removed using the monotone class Theorem. �

5. Law of the pruned exploration process

Let ρ(0) be the exploration process of a Lévy process with Laplace exponent ψ0. The aim
of this section is to prove the following Theorem.

Theorem 5.1. For every finite measure µ, the law of the pruned process ρ̃ under Pµ,0 is the

law of the exploration process ρ(0) associated with a Lévy process with Laplace exponent ψ0

under Pµ.

5.1. A martingale problem for ρ̃. Let σ̃ = inf{t > 0, ρ̃t = 0}. In this section, we shall
compute the law of the total mass process (〈ρ̃t∧σ̃ , 1〉, t ≥ 0) under Pµ = Pµ,0, using martingale
problem characterization. We will first show how a martingale problem for ρ can be translated
into a martingale problem for ρ̃, see also [1]. Unfortunately, we were not able to use standard
techniques of random time change, as developed in Chapter 6 of [16] and used for Poisson
snake in [5], mainly because t−1

(
Eµ[f(ρt)1{mt=0}] − f(µ)

)
may not have a limit as t goes

down to 0, even for exponential functionals.

Let F,K ∈ B(Mf (R+)) be bounded. We suppose that N

[∫ σ

0
|K(ρs)| ds

]
< ∞, that for

any µ ∈ Mf (R+), E∗
µ

[∫ σ

0
|K(ρs)| ds

]
< ∞ and that Mt = F (ρt∧σ) −

∫ t∧σ
0 K(ρs) ds, for

t ≥ 0, defines an F-martingale. In particular, notice that E∗
µ

[
supt≥0 |Mt|

]
< ∞. Thus, we

can define for t ≥ 0,

Nt = E∗
µ[MCt |F̃t].

Proposition 5.2. The process N = (Nt, t ≥ 0) is an F̃-martingale. And we have the
representation formula for Nt:

(41) Nt = F (ρ̃t∧σ̃) −

∫ t∧σ̃

0
du K̃(ρ̃u),
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with

(42) K̃(ν) = K(ν) + α1N

[∫ σ

0
K([ν, ρs]) ds

]
+

∫

(0,∞)
π1(dℓ) E∗

ℓ

[∫ σ

0
K([ν, ρs]) ds

]
.

Proof. Notice that N = (Nt, t ≥ 0) is an F̃-martingale. Indeed, we have for t, s ≥ 0,

Eµ[Nt+s|F̃t] = Eµ[Eµ[MCt+s |F̃t+s]|F̃t]

= Eµ[MCt+s |F̃t]

= Eµ[Eµ[MCt+s |FCt ]|F̃t]

= Eµ[MCt |F̃t],

where we used the optional stopping time Theorem for the last equality. To compute
Eµ[MCt |F̃t], we write MCt = N ′

t −M ′
Ct

, where for u ≥ 0,

M ′
u =

∫ u∧σ

0
K(ρs)1{ms 6=0} ds.

Recall that C0 = 0 Pµ-a.s. by Corollary 3.2. In particular, we get

N ′
t = MCt +M ′

Ct = = F (ρCt∧σ) −

∫ Ct∧σ

0
K(ρs)1{ms=0} ds

= F (ρ̃t∧σ̃) −

∫ Ct∧σ

0
K(ρs) dAs

= F (ρ̃t∧σ̃) −

∫ t∧σ̃

0
K(ρ̃u) du,

where we used the time change u = As for the last equality. In particular, as σ̃ is an F̃ -
stopping time, we get that the process (N ′

t, t ≥ 0) is F̃ -adapted. Since Nt = N ′
t−Eµ[M

′
Ct
|F̃t],

we are left with the computation of Eµ[M
′
Ct
|F̃t].

We keep the notations of Section 4. We consider (ρi,mi), i ∈ I the excursions of the
process (ρ,m) outside {s,ms = 0} before σ and let (αi, βi), i ∈ I be the corresponding
interval excursions. In particular we can write

∫ Ct∧σ

0
|K(ρs)| 1{ms 6=0} ds =

∑

i∈I

Φ(Aαi , ραi−, ρ
i),

with

Φ(u, µ, ρ) = 1{u<t}

∫ σ(ρ)

0
|K([µ, ρs])| ds,

where σ(ρ) = inf{v > 0; ρv = 0}. We deduce from the second part of Theorem 4.2, that
Pµ-a.s.

(43) Eµ

[∫ Ct∧σ

0
|K(ρs)|1{ms 6=0} ds|F̃∞

]
=

∫ σ̃

0
1{u<t}K̂(ρ̃u) du,

with, K̂ defined for ν ∈ Mf (R+) by

K̂(ν) = α1N

[∫ σ

0
|K([ν, ρs])| ds

]
+

∫

(0,∞)
π1(dℓ) E∗

ℓ

[∫ σ

0
|K([ν, ρs])| ds

]
.
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Since Eµ

[∫ Ct∧σ
0 |K(ρs)|1{ms 6=0} ds

]
≤ Eµ

[∫ σ
0 |K(ρs)| ds

]
< ∞, we deduce from (43) that

Pµ-a.s. du-a.e. 1{u<σ̃}K̂(ρ̃u) is finite.

We define K̄ ∈ B(Mf (R+)) for ν ∈ Mf (R+) by

(44) K̄(ν) = α1N

[∫ σ

0
K([ν, ρs]) ds

]
+

∫

(0,∞)
π1(dℓ) E∗

ℓ

[∫ σ

0
K([ν, ρs]) ds

]

if K̂(ν) < ∞, or by K̄(ν) = 0 if K̂(ν) = +∞. In particular, we have |K̄(ν)| ≤ K̂(ν) and

Pµ-a.s.
∫ σ̃
0 |K̄(ρ̃u)| du is finite. Using the special Markov property once again (see (43)), we

get that Pµ-a.s.,

Eµ

[
M ′
Ct |F̃∞

]
= Eµ

[∫ Ct∧σ

0
K(ρs)1{ms 6=0} ds|F̃∞

]
=

∫ t∧σ̃

0
K̄(ρ̃u) du.

Finally, as Nt = N ′
t − Eµ

[
M ′
Ct
|F̃∞

]
, this gives (41). �

Corollary 5.3. Let µ ∈ Mf (R+). The law of the total mass process (〈ρ̃t, 1〉, t ≥ 0) under

P∗
µ,0 is the law of the total mass process of ρ(0) under P∗

µ.

Proof. Let X = (Xt, t ≥ 0) be under P∗
x a Lévy process with Laplace transform ψ started

at x > 0 and stopped when it reached 0. Under Pµ, the total mass process (〈ρt∧σ , 1〉, t ≥ 0)
is distributed as X under P∗

〈µ,1〉. Let c > 0. From Lévy processes theory, we know that the

process e−cXt −ψ(c)
∫ t
0 e−cXs ds, for t ≥ 0 is a martingale. We deduce from the stopping

time Theorem that M = (Mt, t ≥ 0) is an F-martingale under Pµ, where Mt = F (ρt∧σ) −∫ t∧σ
0 K(ρs) ds, with F,K ∈ B(Mf (R+)) defined by F (ν) = e−c〈ν,1〉 for ν ∈ Mf (R+) and
K = ψ(c)F . Notice K ≥ 0. We have by dominated convergence and monotone convergence.

e−c〈µ,1〉 = lim
t→∞

Eµ[Mt] = Eµ[e
−c〈ρσ ,1〉] − ψ(c)Eµ

[∫ σ

0
e−c〈ρs,1〉 ds

]
.

This implies that, for any µ ∈ Mf (R+), Eµ

[∫ σ

0
|K(ρs)| ds

]
is finite. Using the Poisson

representation, see Proposition 2.9, it is easy to get that

(45) N

[∫ σ

0
dt e−c〈ρt,1〉

]
=

c

ψ(c)
.

In particular, it is also finite.
From Proposition 5.2, we get that N = (Nt, t ≥ 0) is under Pµ an F̃-martingale, where:

for t ≥ 0,

Nt = e−c〈ρ̃t∧σ̃,1〉−

∫ t∧σ̃

0
K̃(ρ̃u) du
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and K̃ given by (42). We can compute K̃:

K̃(ν) = ψ(c) e−c〈ν,1〉

(
1 + α1N

[∫ σ

0
e−c〈ρs,1〉 ds

]
+

∫

(0,∞)
π1(dℓ) E∗

ℓ

[∫ σ

0
e−c〈ρs,1〉 ds

])

= ψ(c) e−c〈ν,1〉

(
1 + α1

c

ψ(c)
+

∫

(0,∞)
π1(dℓ)

∫ ℓ

0
dr e−cr N

[∫ σ

0
e−c〈ρs,1〉 ds

])

= e−c〈ν,1〉

(
ψ(c) + α1c+

∫

(0,∞)
π1(dℓ)(1 − e−cℓ)

)

= ψ0(c) e−c〈ν,1〉,

where we used (45) and the excursion decomposition for the second equality, and ψ0 = ψ+φ1

for the last one.
Thus, the process (Nt, t ≥ 0) with for t ≥ 0

Nt = e−c〈ρ̃t∧σ̃,1〉−ψ0(c)

∫ t∧σ̃

0
e−c〈ρ̃u,1〉 du

is under Pµ an F̃ -martingale.

Notice that σ̃ = inf{s ≥ 0; 〈ρ̃s, 1〉 = 0}. Let X(0) = (X
(0)
t , t ≥ 0) be under P∗

x a Lévy
process with Laplace transform ψ0 started at x > 0 and stopped when it reached 0. The two
non-negative càd-làg processes (〈ρ̃t∧σ̃ , 1〉, t ≥ 0) and X(0) solves the martingale problem: for
any c ≥ 0, the process defined for t ≥ 0 by

e−cYt∧σ′ −ψ0(c)

∫ t∧σ′

0
e−cYs ds,

where σ′ = inf{s ≥ 0;Ys ≤ 0}, is a martingale. From Corollary 4.4.4 in [16], we deduce that
those two processes have the same distribution. To finish the proof, notice that the total
mass process of ρ(0) under P∗

µ is distributed as X(0) under P∗
〈µ,1〉. �

5.2. Identification of the law of ρ̃. To begin with, let us mention some useful properties
of the process ρ̃.

Lemma 5.4. We have the following properties for the process ρ̃.

(i) ρ̃ is a càd-làg Markov process.
(ii) The sojourn time at 0 of ρ̃ is 0.
(iii) 0 is recurrent for ρ̃.

Proof. (i) This is a direct consequence of the strong Markov property of the process (ρ,m).
(ii) We have for r > 0, with the change of variable t = As, a.s.

∫ r

0
1{ρ̃t=0} dt =

∫ r

0
1{ρCt=0} dt =

∫ Cr

0
1{ρs=0} dAs =

∫ Cr

0
1{ρs=0} ds = 0,

as the sojourn time of ρ at 0 is 0 a.s.
(iii) Since σ̃ = Aσ and σ < +∞ a.s., we deduce that 0 is recurrent for ρ̃ a.s. �

Since the processes ρ̃ and ρ(0) are both Markov processes, to show that they have the same
law, it is enough to show that they have the same one-dimensional marginals. We first prove
that result under the excursion measure.
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Proposition 5.5. For every λ > 0 and every non-negative bounded measurable function f ,

N

[∫ σ̃

0
e−λt−〈ρ̃t,f〉 dt

]
= N

[∫ σ(0)

0
e−λt−〈ρ

(0)
t ,f〉 dt

]
.

Proof. On one hand, we compute, using the definition of the pruned process ρ̃,

N

[∫ σ̃

0
e−λt−〈ρ̃t ,f〉 dt

]
= N

[∫ Aσ

0
e−λt−〈ρCt ,f〉 dt

]
.

We now make the change of variable t = Au to get

N

[∫ σ̃

0
e−λt−〈ρ̃t,f〉 dt

]
= N

[∫ σ

0
e−λAu e−〈ρu,f〉 dAu

]

= N

[∫ σ

0
e−λAu e−〈ρu,f〉 1{mu=0}du

]
.

By a time reversibility argument, see Lemma 2.7, we obtain

N

[∫ σ̃

0
e−λt−〈ρ̃t,f〉 dt

]
= N

[∫ σ

0
1{mu=0} e−〈ηu,f〉 e−λ(Aσ−Au) du

]

= N

[∫ σ

0
1{mu=0} e−〈ηu,f〉 E∗

ρu,0

[
e−λAσ

]
du

]

= N

[∫ σ

0
1{mu=0} e−〈ηu,f〉−ψ

−1
0 (λ)〈ρu,1〉 du

]
,

where we applied Lemma 3.1 (i) for the last equality. Now, using Proposition 2.9, we have

N

[∫ σ̃

0
e−λt−〈ρ̃t ,f〉 dt

]
=

∫ ∞

0
da e−αa Ma

[
1{m=0} e−〈ν,f〉−ψ−1

0 (λ)〈µ,1〉
]
.

Using usual properties of point Poisson measures, we have, with c = α1 +
∫
(0,∞) ℓ π1(dℓ),

Ma

[
1{m=0}F (µ, ν)

]
= e−ca Ma

[
F (µ0, ν0)

]
,

where with the notations of Proposition 2.9, for any f ∈ B+(R+)

〈µ0, f〉 =

∫
N0(dx dℓ du)1[0,a](x)uℓf(x) + β

∫ a

0
f(r) dr,

〈ν0, f〉 =

∫
N0(dx dℓ du)1[0,a](x)(1 − u)ℓf(x) + β

∫ a

0
f(r) dr.

As α0 = α+ c, we have

N

[∫ σ̃

0
e−λt−〈ρ̃t,f〉 dt

]
=

∫ ∞

0
da e−α0a Ma

[
e−〈ν0,f〉−ψ−1

0 (λ)〈µ0,1〉
]
.

Proposition 3.1.3 in [15] directly implies that the left-hand side of the previous equality is

equal to N

[∫ σ(0)

0
e−〈η

(0)
t ,f〉−ψ−1

0 (λ)〈ρ
(0)
t ,1〉 dt

]
. On the other hand, similar computations as

above yields that this quantity is equal to N

[∫ σ(0)

0
e−λt−〈ρ

(0)
t ,f〉 dt

]
. This ends the proof. �

Now, we prove the same result under P∗
µ,0, that is:
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Proposition 5.6. For every λ > 0, f ∈ B+(R+) bounded and every finite measure µ,

E∗
µ,0

[∫ σ̃

0
e−λt−〈ρ̃t,f〉 dt

]
= E∗

µ

[∫ σ(0)

0
e−λt−〈ρ

(0)
t ,f〉 dt

]
.

Proof. From the Poisson representation, see Lemma 2.6, and using notations of this Lemma
and of (19) we have

E∗
µ,0

[∫ σ̃

0
e−λt−〈ρ̃t ,f〉 dt

]
= E∗

µ,0

[∫ σ

0
e−λAu−〈ρu,f〉 dAu

]

= E∗
µ,0

[
∑

i∈J

e−λAαi−〈k−Iαi
,f〉
∫ σi

0
e−〈ρis,f−Iαi

〉−λAis dAis

]
,

where the function fr is defined by fr(x) = f(H
(µ)
r + x) and H

(µ)
r = H(krµ) is the maximal

element of the closed support of krµ (see (9)). We recall that −I is the local time at 0 of the
reflected process X − I, and that τr = inf{s;−Is > r} is the right continuous inverse of −I.
From excursion formula, and using the time change −Is = r (or equivalently τr = s), we get

E∗
µ,0

[∫ σ̃

0
e−λt−〈ρ̃t,f〉 dt

]
= E∗

µ,0

[∫ τ〈µ,1〉

0
d(−Is) e−〈k−Isµ,f〉−λAs G(−Is)

]

= E∗
µ,0

[∫ 〈µ,1〉

0
dr e−〈krµ,f〉−λAτr G(r)

]
,(46)

where the function G(r) is given by

G(r) = N

[∫ σ

0
e−〈ρs ,fr〉−λAs dAs

]
= N

[∫ σ̃

0
e−λt−〈ρ̃t,fr〉 dt

]
.

The same kind of computation gives

(47) E∗
µ

[∫ σ(0)

0
e−λt−〈ρ

(0)
t ,f〉 dt

]
= E

[∫ 〈µ,1〉

0
dr e−〈krµ,f〉−λτ

(0)
r G(0)(r)

]

where the function G(0) is defined by

G(0)(r) = N

[∫ σ(0)

0
e−λs−〈ρ

(0)
s ,fr〉 ds

]

and τ (0) is the right-continuous inverse of the infimum process −I(0) of the Lévy process with
Laplace exponent ψ0.

Proposition 5.5 says that the functions G and G(0) are equal. Moreover, as the total mass
processes have the same law (see Corollary 5.3), we know that the proposition is true for f

constant. And, for f constant, the functions G and G(0) are also constant. Therefore, we
have for f constant equal to c ≥ 0,

E∗
µ,0

[∫ 〈µ,1〉

0
dr e−c(〈µ,1〉−r) e−λAτr

]
= E

[∫ 〈µ,1〉

0
dr e−c(〈µ,1〉−r) e−λτ

(0)
r

]
.

As this is true for any c ≥ 0, uniqueness of the Laplace transform gives the equality

E∗
µ,0

[
e−λAτr

]
= E

[
e−λτ

(0)
r

]
dr − a.e.

In fact this equality holds for every r by right-continuity.
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Finally as G = G(0), we have thanks to (46) and (47), that, for every bounded non-negative
measurable function f ,

∫ 〈µ,1〉

0
dr e−〈krµ,f〉 E∗

µ,0

[
e−λAτr

]
G(r) =

∫ 〈µ,1〉

0
dr e−〈krµ,f〉 E

[
e−λτ

(0)
r

]
G(0)(r)

which ends the proof. �

Corollary 5.7. The process ρ̃ under P∗
µ,0 is distributed as ρ(0) under P∗

µ.

Proof. Let f ∈ B+(R+) bounded. Proposition 5.6 can be re-written as
∫ +∞

0
e−λt E∗

µ,0

[
e−〈ρ̃t,f〉 1{t≤σ̃}

]
dt =

∫ +∞

0
e−λt E∗

µ

[
e−〈ρ

(0)
t ,f〉 1{t≤σ(0)}

]
dt.

By uniqueness of the Laplace transform, we deduce that, for almost every t > 0,

E∗
µ,0

[
e−〈ρ̃t,f〉 1{t≤σ̃}

]
= E∗

µ

[
e−〈ρ

(0)
t ,f〉 1{t≤σ(0)}

]
.

In fact this equality holds for every t by right-continuity. As the Laplace functionals charac-
terize the law of a random measure, we deduce that, for fixed t > 0, the law of ρ̃t under P∗

µ,0

is the same as the law of ρ
(0)
t under P∗

µ.

The Markov property then gives the equality in law for the càd-làg processes ρ̃ and ρ(0). �

Proof of Theorem 5.1. 0 is recurrent for the Markov càd-làg processes ρ̃ and ρ(0). These two
processes have no sojourn time at 0, and when killed on the first hitting time of 0, they have
the same law, thanks to Lemma 5.7. From Theorem 4.2 of [12], Section 5, we deduce that ρ̃

under Pµ,0 is distributed as ρ(0) under Pµ. �

6. Law of the excursion lengths

Recall σ̃ =
∫ σ
0 1{ms=0} ds denotes the length of the excursion of the pruned exploration

process. We can compute the joint law of (σ̃, σ). This will determine uniquely the law of σ̃
conditionally on σ = r.

Proposition 6.1. For all non-negative γ, κ, the value v defined by v = N

[
1 − e−ψ(γ)σ−κσ̃

]

is the unique non-negative solution of the equation

ψ0(v) = κ+ ψ0(γ).

Proof. Excursion theory implies that the special Markov property, Theorem 4.2, also holds
under N, with the integration of u over [0, σ̃ = Aσ] instead of [0,∞). Taking φ(S) = ψ(γ)σ,
we have

v = N
[
1 − e−κσ̃−ψ(γ)σ

]
= N

[
1 − e−(κ+ψ(γ))σ̃−ψ(γ)

∫ σ
0 1{ms 6=0} ds

]

= N

[
1 − e

−(κ+ψ(γ))σ̃−σ̃
(
α1N[1−e−ψ(γ)σ ]+

∫
(0,+∞) π1(dℓ)(1−E∗

ℓ
[e(−ψ(γ)σ)]

)]
.

Notice that σ under P∗
ℓ is distributed as τℓ, the first time for which the infimum of X, started

at 0, reaches −ℓ. Since τℓ is distributed as a subordinator with Laplace exponent ψ−1 at time
ℓ, we have

E∗
ℓ [e

−ψ(γ)σ ] = E

[
e−ψ(γ)τℓ

]
= e−ℓγ .
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Thanks to (12), we get N[1 − e−ψ(γ)σ ] = γ. We deduce that

v = N

[
1 − e

−(κ+ψ(γ))σ̃−σ̃
(
α1γ+

∫
(0,+∞) π1(dℓ)(1−e−γℓ)

)]

= N

[
1 − e−(κ+ψ0(γ))σ̃

]

= ψ0
−1(κ+ ψ0(γ)).

Since ψ0 is increasing and continuous, we get the result. �

7. Appendix

We shall present in this appendix, how one can extend the construction of the Lévy snake
from [15] to the case of non continuous height process.

Let D be a distance on Mf (R+) which defines the topology of weak convergence. Let us
recall that (Mf (R+),D) is a Polish space, see [14], section 3.1.

Let E be a Polish space, whose topology is defined by a metric δ, and ∂ be a cemetery
point added to E. Let Wx be the space of all E-valued weighted killed paths started at
x ∈ E. An element w̄ = (µ,w) of Wx is a mass measure µ ∈ Mf (R+) and a càd-làg mapping
w : [0, 〈µ, 1〉) → E s.t. w(0) = x. By convention the point x is also considered as a weighted
killed path with mass measure µ = 0. We set W =

⋃
x∈EWx and equip W with the distance

d((µ,w), (µ′, w′)) = δ(w(0), w′(0)) +D(µ, µ′) +

∫ 〈µ,1〉∧〈µ′,1〉

0
dt
(
dt(w≤t, w

′
≤t)
)
,

where dt is the Skorohod metric on the space D([0, t], E) and w≤t denote the restriction of w
to the interval [0, t]. It is then elementary to check that the space (W, d) is a Polish space.
We shall write µw̄ instead of µ when w̄ = (µ,w).

Recall (9). We consider a family of probability measures Π̄x,µ, for x ∈ E and the mass
measure µ ∈ Mf (R+) on Wx, s.t.

a) µw̄ = µ, Π̄x,µ(dw̄)-a.s.;
b) w(0) = x, Π̄x,µ(dw̄)-a.s.;
c) w has no fixed discontinuity: for all s ∈ [0, 〈µ, 1〉), Π̄x,µ(w(s−) = w(s)) = 1;
d) If H(µ) <∞, then w(〈µ, 1〉−) exists Π̄x,µ(dw̄)-a.s.;
e) If H(µ) < ∞ and ν ∈ Mf (R+), then under Π̄x,[µ,ν], (w(r), r ∈ [0, 〈µ, 1〉) is distributed

as (w(r), r ∈ [0, 〈µ, 1〉) under Π̄x,µ and, conditionally on (w(r), r ∈ [0, 〈µ, 1〉), (w(r +
〈µ, 1〉), r ∈ [0, 〈ν, 1〉) is distributed as (w(r), r ∈ [0, 〈ν, 1〉)) under Π̄w(〈µ,1〉−),ν .

The last property corresponds to the Markov property conditionally on the mass measure.
We shall assume that the mapping (x, µ) 7→ Π̄x,µ is measurable.

Let ρ be an exploration process starting at µ. We set Yt = 〈ρt, 1〉. Recall that (Yt, t ≥ 0) is
distributed as a Lévy process with Laplace exponent ψ started at 〈µ, 1〉. For 0 ≤ s < t, we set
Js,t = infs≤u≤t Yt and ρs,t = k(Ys−Js,t)ρs = k(Yt−Js,t)ρt, the last equality being a consequence

of the construction of the exploration process. We also define ρ̄
(s)
t as the unique measure ν

s.t. [ρs,t, ν] = ρt.
Conditionally on ρ, we define a probability transition semi-group Rρs,t on Wx as follows:

for 0 ≤ s < t s.t. Js,t < Ys or w(〈ρs, 1〉−) exists and µw̄ = ρs, under Rρs,t(w̄, dw̄
′) we have

i) µw̄′ = ρt,
ii) (w′(r), r ∈ [0, 〈ρs,t, 1〉)) = (w(r), r ∈ [0, 〈ρs,t, 1〉)),
iii) (w′(r), r ∈ [〈ρs,t, 1〉, 〈ρt, 1〉)) is distributed according to Π̄

w(〈ρs,t,1〉−),ρ̄
(s)
t

.
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In (iii), by convention, if ρs,t = 0, then w(〈ρs,t, 1〉−) = x. Notice that for fixed s < t, a.s.
Js,t < Ys so that, with the previous convention w(〈ρs,t, 1〉−) is a.s. well defined. Notice that
if (ρs, w) is distributed as Π̄x,ρs , then (ρt, w

′) is distributed as Π̄x,ρt thanks to condition e)
on Π̄. Thus we can use the Kolmogorov extension theorem to get that there exists a unique
probability measure P(µ,w) on (Wx)

R+ s.t. for 0 = s0 < s1 < · · · < sn,

P(µ,w)(W
′
s0 ∈ A0, ρs0 ∈ B0, . . . ,W

′
sn ∈ An, ρsn ∈ Bn)

= Eµ

[
1{ρs0∈B0,...,ρsn∈Bn}

1{w∈A0}

∫

A1×···×An

Rρs0,s1(w, dws1) · · ·R
ρ
sn−1,sn(wsn−1 , dwsn)

]
.

We set W̄s = (ρs,W
′
s). Notice that W ′

s(r) = W ′
t(r) for r ∈ [0, 〈ρs,t, 1〉) and thus that

d(W̄s, W̄t) ≤ D(ρs, ρt) + |Ys ∧ Yt − Js,t|.

Since ρ and Y are Pµ-a.s. càd-làg, this implies that the mapping s 7→ W̄s is P(µ,w)-a.s.
càd-làg on [0,∞)

⋂
Q. Hence there is a unique càd-làg extension to the positive real line,

we shall still denote by P(µ,w). The process (W̄s, s ≥ 0) is under P(µ,w) a time-homogeneous
Markov process living in D(R+,Mf (R+) ×W). We call this distribution the distribution of
the weighted Lévy snake associated with Π̄.

We denote by (Fs, s ≥ 0) the canonical filtration on D(R+,Mf (R+)×W). One can readily
adapt the proofs of Propositions 4.1.1 and 4.1.2 of [15] to get the following result.

Theorem 7.1. The process (W̄s, s ≥ 0) is a càd-làg Markov process and is strong Markov
with respect to the filtration (Fs+, s ≥ 0).

Let us remark that, when the family of probability measures π̄x,µ is just the law of a homo-
geneous Markov process ξ starting at x and stopped at time 〈µ, 1〉, the previous construction
gives a snake with spatial motion ξ and lifetime process X − I.

However, we need some dependency between the spatial motion and the exploration process
ρ in order to recover the usual Lévy snake from the weighted Lévy snake. Informally, we keep
the spatial motion from moving when time t is “on a mass” of ρs. This idea can be compared
to a subordination and has already been used in the snake framework by Bertoin, Le Gall
and Le Jan in [11] in order to construct a kind of Lévy snake from the usual Brownian snake.

Let Πx be the distribution of ξ a càd-làg Markov process taking values in E with no fixed
discontinuities and starting at x, such that the mapping x 7→ Πx is measurable. Recall (10)
and set µ̂r = k〈µ,1〉−rµ for r ∈ [0, 〈µ, 1〉). We define Π̄x,µ as the distribution of (µ,w) with
w = (ξH(µ̂r), r ∈ [0, 〈µ, 1〉)) under Πx. Notice that ξr′ = w(〈µ,1[0,r′]〉) for r′ ∈ [0,H(µ)). We

have that Π̄ satisfies condition a)-e).
Let ((ρs,W

′
s), s ≥ 0) be the corresponding weighted Lévy snake. For s ≥ 0, r ≥ 0, we set

Ws(r) = W ′
s(〈ρs,1[0,r]〉). The process ((ρs,Ws), s ≥ 0) is the Lévy snake defined in Section 4

of [15] with underlying motion ξ, when H is continuous. Notice that the construction here
allows to remove the continuity condition of H. As a consequence of Theorem 7.1, we get
that the (general) Lévy snake is strong Markov.

Proposition 7.2. The process ((ρs,Ws), s ≥ 0) is a càd-làg Markov process and is strong
Markov with respect to the filtration (Fs+, s ≥ 0).
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