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Abstract

The numerical studies of control problems in
quantum chemistry go through the computer
simulation of the dynamical phenomena in-
volved. These simulations are in many cases
too expensive to be carried out for complex
systems, precluding thus treatment of interest-
ing practical situations.

In a context of fast increasing in both the CPU
power available on typical workstations and
of the number of computers that can be con-
nected through high speed networks, the diffi-
culty lies rather in how to obtain “real time”
solutions than in the amount of CPU power
available (which becomes to exceed the needs).

In this context, the ”parareal” time algorithm
that parallelize in the time direction the ef-
fort required to solve evolution equations has
been introduced in previous works [4, 3, 2].
The theoretical modifications required in or-

der to apply this algorithm to quantum control
problems together with numerical evidence is
the main topic of this paper.

1 Introduction

The control of quantum mechanical systems
has long tradition in using numerical computer
simulations in order to model and understand
intricate practical situations encountered in
complex laboratory experiments [1]. However,
even when these simulations refer to simple
systems they are very costly in computational
resources and require long times to be carried
on. On the other hand, in the nowadays hard-
ware environments, CPU power is not such
a scarce resource and, for instance, the price
of constructing a high-speed networked cluster
of PCs is now within the financial means of
most academic departments. The bottleneck
comes thus not from the lack of processors but
rather from the intrinsic sequential nature of



the simulations used in quantum control which
mostly deal with evolution equations. In or-
der to address this situation, a discretization
scheme parallel in time was proposed [4]; this
scheme, called the “parareal” time scheme, de-
composes the time evolution in several inde-
pendent sub-problems which are evolved simul-
taneously (in parallel) on different processors.
Necessary corrections are then applied to the
results thus obtained in an iterative manner
leading to (fast) convergence to the exact result
(allowing to envision real time simulations).
This scheme was applied with success to the
linear [4] and non-linear PDEs [3], to the equa-
tions of the molecular dynamics [2] and also
for a first application to control problems [5].
Within this context, the goal of this paper is to
discuss the specificities required by the appli-
cation of this “parareal” time scheme to quan-
tum control settings. The necessary dynam-
ical equations are presented in Section 2 to-
gether with the adequated algorithms to solve
the control problem. The parareal scheme is
presented in Section 3 followed in Section 4 by
implementation details and numerical results.
Finally, a discussion and some perspectives are
developped in Section 5.

2 Dynamical Equations

Consider a quantum system with internal
Hamiltonian H0 without control interaction
that is prepared in the initial state ψ0(x) (with
‖ψ0‖L2(Rγ) = 1) where x denotes the rele-
vant coordinate variables; the state ψ(x, t) of
the system satisfies at each time t the time-
dependent Schrödinger equation

{

ih̄ ∂
∂t
ψ(x, t) = H0ψ(x, t)

ψ(x, t = 0) = ψ0(x),
(1)

In the presence of an external interaction taken
here as an electric field modeled by a coupling
operator given by an amplitude ε(t) ∈ R and
a time independent dipole moment operator µ
the Hamiltonian H0 is replaced by H = H0 −

ε(t)µ that gives rise to the dynamical equations
to be controlled:

{

ih̄ ∂
∂t
ψ(x, t) = (H0 − ε(t)µ)ψ(x, t)

ψ(x, t = 0) = ψ0(x)
(2)

The optimal control approach is to assess
the fitness of the final state ψ(T ) = ψ(x, T )
through the introduction of a cost functional J
to be optimized; this cost functional includes
on one hand terms that describe how well the
objective has been met and on the other hand
terms that penalize undesired effects. One sim-
ple example of cost functional is

J(ε) =< ψ(T )|O|ψ(T ) > −α
∫ T

0
ε2(t)dt (3)

where α > 0 is a parameter and O is the ob-
servable operator that encodes the goal. In
mathematical terms, the observable O is a self-
adjoint operator that acts on ψ(T ); larger the
value < ψ(T )|O|ψ(T ) > better the control
objectives have been met; note that in gen-
eral attaining the maximal possible value of
< ψ(T )|O|ψ(T ) > requires a large laser flu-
ence

∫ T
0 ε2(t)dt; the optimum evolution will

therefore strike a balance between using a not
too expensive laser fluence while simultane-
ously ensuring the desired observable has a suf-
ficiently large value.

The maximization of the cost functional J(ε)
can be realized by writing down the Euler-
Lagrange critical point equations; a standard
way to derive these equations is to introduce
an adjoint state χ(t, x) (used as a Lagrange
multiplier). The following equations are thus
obtained [9]:

{

ih̄ ∂
∂t
ψ(x, t) = (H0 − ε(t)µ)ψ(x, t)

ψ(x, t = 0) = ψ0(x)
(4)

{

ih̄ ∂
∂t
χ(x, t) = (H0 − ε(t)µ)χ(x, t)

χ(x, t = T ) = Oψ(x, T )
(5)

αε(t) = −Im < χ(t)|µ|ψ(t) > (6)

One efficient choice for solving in practice
the critical point equations (4)-(6) is the



monotonically convergent iterative algorithm
of Zhu&Rabitz [9] that can be described by the
resolution of the following equations at step k:

{

ih̄ ∂
∂t
ψk(x, t) = (H0 +

Im<χk−1|µ|ψk>(t)
α

µ)ψk(x, t)
ψk(x, t = 0) = ψ0(x)

(7)

{

ih̄ ∂
∂t
χk(x, t) = (H0 +

Im<χk|µ|ψk>(t)
α

µ)χk(x, t)
χk(x, t = T ) = Oψk(x, T )

(8)

Let us also mention the formulation of [6] that
was also used here

{

ih̄ ∂
∂t
ψk(x, t) = (H0 − εk(t)µ)ψk(x, t)

ψk(x, t = 0) = ψ0(x)
(9)

εk = (1− δ)ε̃k−1 −
δ

α
Im〈χk−1|µ|ψk〉 (10)

{

ih̄ ∂
∂t
χk(x, t) = (H0 − ε̃k(t)µ)χk(x, t)

χk(x, t = T ) = Oψk(x, T )
(11)

ε̃k = (1− η)εk −
η

α
Im〈χk|µ|ψk〉 (12)

3 Parareal time discretization

Consider a general evolution equation

d

dt
u(t) = Au(t) (13)

and define the associated propagator F (t0, t1)
by the requirement that for any u, F (t0, t1)u is
the solution at time t1 of Eqn. (13) for the ini-
tial data u at time t0. Given a final time T and
an initial data u0, solving Eqn. (13) reduces to
computing U(t) = F (0, t)u, 0 ≤ t ≤ T . Let
us introduce intermediary times Tn = n · T/N ,
n = 0, .., N and intermediate time state snap-
shots un, n = 1, ..., N . It is obvious that un are
exactly the values U(Tn) if and only if for any
n = 1, ..., N : un = F (Tn−1, Tn)un−1.

The parareal time scheme proposes to give
an iterative method to obtain the sequence
U(Tn), n = 1, ..., N using a coarse propaga-

torG(Tn−1, Tn) that approximates F (Tn−1, Tn)
(n = 1, ..., N) obtained e.g. by solving a cheap,
approximate, yet close to original evolution

equation

d

dt
u(t) = Ãu(t) (14)

The iterative update procedure is then










uk+1
0 = u0

uk+1
n+1 = G(Tn, Tn+1)u

k+1
n +

F (Tn, Tn+1)u
k
n −G(Tn, Tn+1)u

k
n

(15)

In this scheme, for each iteration k the compu-
tation of F (Tn, Tn+1)u

k
n − G(Tn, Tn+1)u

k
n (n =

1, ..., N) is to be done in parallel and the only
sequential part remains the computation of
G(Tn, Tn+1)u

k+1
n which is cheap since it involves

the coarse propagator.

When this scheme is applied to the setting
of the quantum control, a desirable property
is that the update formula of Eqn. (15) be
consistent with the norm preservation proper-
ties of the evolution equation (4): ‖ψ(x, t)‖ =
‖ψ0(x)‖ = 1,∀t. In order to address this issue
an alternative update scheme will also be used
in this work:

uk+1
0 = u0, u

k+1
n+1 = RnF (Tn, Tn+1)u

k
n (16)

where Rn is the rotation in the plane spanned
by G(Tn, Tn+1)u

k
n and G(Tn, Tn+1)u

k+1
n

that transforms G(Tn, Tn+1)u
k
n into

G(Tn, Tn+1)u
k+1
n . This update formula

will preserve the norm of the state as soon
as the fine evolution F (Tn, Tn+1) is norm
preserving.

4 Choice of coarse propagator and

numerical results

In order to test the parareal algorithm for
quantum control problems we have chosen the
case of a Morse potential type O − H bond.
The model was taken to be the one described
in [8] page 1958 (first test case: from ψ0 = |0〉
to ψT = |1〉, T = 30000 a.u.). The fine propa-
gator F was taken to correspond to the split-
operator propagation method (of second or-
der in the state and first-order in the field)



with a time step dt = 1 a.u. and a spacial
discretization of dx = 0.234 a.u. The coarse
propagator G was taken to correspond to the
same numerical scheme but with a larger time
step, DT = T/N = 10 a.u.; it is therefore
DT/dt = 10 times faster to apply the coarse
propagator G than it is to compute the fine
propagator F .

Remark. One can also think of a coarse prop-
agator that corresponds to the evolution of the
system within the space spanned by the first `
eigenfunctions of the internal Hamiltonian H0

(e.g. ` = 10). The numerical results corre-
sponding to this approach, not reported here,
show promising perspectives but work is still
needed in this direction to improve its perfor-
mance.

In the first test of our parallel scheme we con-
sider that the optimal field ε(t) that maximizes
J(ε) is known and we check that the parareal
scheme is able to recover the evolution of the
system. The numerical results are presented in
Fig. 1 and 2 where it is demonstrated that the
parareal scheme improves the results obtained
by the coarse propagator only. Depending on
the tolerance, two or three parareal iterations
suffice, which results in a speed-up by a factor
of 5 or 3.33 respectively. As expected, the per-
formance of the scheme in Eqn. (16) is better
than that of Eqn. (15).
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Figure 1: Result of the parareal rotation scheme
in Eqn. (16). Negligible error is recov-
ered after only 3 parareal iterations.

Finally, the quantum control problem was con-
sidered. The problem was solved with the
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Figure 2: Result of the parareal linear scheme
in Eqn. (15). Small error is recov-
ered after only 3 parareal iterations.
It is seen that the error decay is slower
than that of the scheme in Eqn. (16)
and Fig. 1.

monotonic convergent algorithm in Eqns (9)-
(11) (with δ = 0.25 = η, δ = 1 = η and
δ = 2, η = 0) in each (nonlinear) propagation
the parareal scheme was employed, with only
one parareal iteration per evolution equation.
The results in Fig 3 (δ = 1 = η) show that
a good overlap with the objective operator is
reached Our actual implementation is not yet
parallel, but we estimate that a parallel imple-
mentation would yield in an overall gain factor
(in real time required to solve the problem) of
the order of 5.

For this case other choices for the parameters
δ and η give the expected behavior [6]: for in-
stance δ = 0.25 = η converges slower than
δ = 1.0 = η that is turn converges slower
than δ = 2, η = 0. For other cases not re-
ported here we could identify some choices of
time steps for which the setting δ = 0.25 = η
converges but not δ = 1.0 = η; the explana-
tion may be in the high nonlinearity of the
equations Eqns (9)-(11) implied by the choice
δ = 1.0 = η, this nonlinearity being reduced in
the case δ = 0.25 = η.

5 Conclusion and perspectives

In an effort to introduce the parallel in time
discretization for the simulation of quantum
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Figure 3: Plotting |ψ0|, |ψT | and |ψ(x, T )| ob-
tained with the controlled field. Com-
plete overlap with the target is ob-
served for the parareal scheme solved
with the algorithm in Eqns (9)-(11)
with δ = 1 = η.

control problems we have presented here our
preliminary studies that show the feasibility of
the parareal implementations. Much work is
still to be done in the direction of choosing
more efficient coarse propagators and also in
the adaptation of the overall scheme to equa-
tions (like those of the quantum control) where
conservation laws are present. This results,
even if encouraging, still need to be improved
in order to gain in reliability and stability. The
natural continuation would be the search for ef-
ficient entangled control-parareal formulation
as in [5] in order to combine the parareal up-
date directly with the control iterations.
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