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Models for Bearing Damage Detection in Induction
Motors Using Stator Current Monitoring

Martin Blödt, Member, IEEE, Pierre Granjon, Bertrand Raison, Member, IEEE, and Gilles Rostaing

Abstract—This paper describes a new analytical model for the
influence of rolling-element bearing faults on induction motor
stator current. Bearing problems are one major cause for drive
failures. Their detection is possible by vibration monitoring of
characteristic bearing frequencies. As it is possible to detect other
machine faults by monitoring the stator current, a great interest
exists in applying the same method for bearing fault detection.
After a presentation of the existing fault model, a new detailed
approach is proposed. It is based on the following two effects of
a bearing fault: 1) the introduction of a particular radial rotor
movement and 2) load torque variations caused by the bearing
fault. The theoretical study results in new expressions for the
stator current frequency content. Experimental tests with artifi-
cial and realistic bearing damage were conducted by measuring
vibration, torque, and stator current. The obtained results by
spectral analysis of the measured quantities validate the proposed
theoretical approach.

Index Terms—Airgap eccentricity, bearing damage detection,
induction motors, motor current signature analysis, spectral
analysis, torque variations.

I. INTRODUCTION

INDUCTION motors are nowadays widely used in all types
of industry applications due to their simple construction,

high reliability, and the availability of power converters using
efficient control strategies. A permanent condition monitoring
of the electrical drive can further increase the productivity,
reliability, and safety of the entire installation.

Traditionally, motor condition can be supervised by measur-
ing quantities such as noise, vibration, and temperature. The
implementation of these measuring systems is expensive and
proves only to be rentable in the case of large motors or critical
applications. A solution to this problem can be the use of
quantities that are already measured in a drive system, e.g., the
machine’s stator current, which is often required for command
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purposes. A general review of monitoring and fault diagnosis
techniques can be found in [1]–[5].

The different faults that may occur in an electrical machine
can be classified as follows [6]:

• stator faults, e.g., short circuit, loss of supply phase;
• rotor faults, e.g., broken bar, broken end-ring;
• static and dynamic eccentricities;
• bearing faults.
Bearing faults are the most frequent faults in electric motors

(41%) according to an IEEE motor reliability study for large
motors above 200 hp [7], followed by stator (37%) and rotor
faults (10%). Schoen et al. [8] have proposed a model for
bearing fault detection based on the generation of fault-related
rotating eccentricities. This fault model has been applied in
several recent works [2], [9]–[12].

In this paper, a more detailed approach will be introduced,
taking also into account fault-related torque variations. First, a
short overview of bearing fault types is given in Section II,
followed by the characteristic vibration frequencies and the
existing fault model developed by Schoen. In Sections III and
IV, the theoretical background for a new model is developed
and new expressions for the frequency content of the stator
current in case of bearing faults are obtained. Section V gives a
short summary and discussion of the theoretical results. Experi-
mental results with different fault types are given in Section VI,
validating different aspects of the theoretical approach. This
paper has been previously published in a shortened form in the
Proceedings of the IEEE International Symposium on Industrial
Electronics 2004 [13].

II. EXISTING MODELS FOR BEARING FAULT DETECTION

A. Bearing Fault Types

This paper considers rolling-element bearings with a geome-
try shown in Fig. 1. The bearing consists mainly of the outer
and inner raceways, the balls, and the cage, which assures
equidistance between the balls. The number of balls is denoted
Nb, their diameter is Db, and the pitch or cage diameter is Dc.
The point of contact between a ball and the raceway is charac-
terized by the contact angle β.

Bearing faults can be categorized into distributed and local-
ized defects [14], [15]. Distributed defects affect a whole region
and are difficult to characterize by distinct frequencies. In
contrast, single-point defects are localized and can be classified
according to the following affected element:

• outer raceway defect;
• inner raceway defect;
• ball defect.

0278-0046/$25.00 © 2008 IEEE
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Fig. 1. Geometry of a rolling-element bearing.

A single-point defect could be imagined as a small hole, a pit,
or a missing piece of material on the corresponding element.
Only those will be considered in the following.

Some publications [3], [6] consider an additional fault type,
the cage fault. However, it will not be discussed in this paper.

B. Characteristic Frequencies

With each type of bearing fault, a characteristic frequency fc

can be associated. This frequency is equivalent to the period-
icity by which an anomaly appears due to the existence of the
fault. Imagining for example a hole on the outer raceway: as
the rolling elements move over the defect, they are regularly in
contact with the hole, which produces an effect on the machine
at a given frequency.

The characteristic frequencies are functions of the bearing
geometry and the mechanical rotor frequency fr. A detailed
calculation of these frequencies can be found in [16]. For the
three considered fault types, fc takes the following expressions:

Outer raceway : f0 =
Nb

2
fr

(
1 − Db

Dc
cos β

)
(1)

Inner raceway : fi =
Nb

2
fr

(
1 +

Db

Dc
cos β

)
(2)

Ball : fb =
Dc

Db
fr

(
1 − D2

b

D2
c

cos2 β

)
. (3)

It has been statistically shown in [17] that the vibration frequen-
cies can be approximated for most bearings with between 6 and
12 balls by

f0 = 0.4 Nbfr (4)

fi = 0.6 Nbfr. (5)

Vibration measurement is traditionally used to detect bearing
defects. Analytical models describing the vibration response of
bearing with single-point defects can be found in [14], [18],
and [19].

C. Bearing Fault Detection by Stator Current Analysis

The most often quoted model studying the influence of
bearing damage on the induction machine’s stator current was
proposed by Schoen et al. [8]. The authors consider the gen-

eration of rotating eccentricities at bearing fault characteristic
frequencies fc, which leads to periodical changes in the ma-
chine inductances. This should produce additional frequencies
fbf in the stator current, which is given by

fbf = |fs ± kfc| (6)

where fs is the electrical stator supply frequency, and k =
1, 2, 3, . . ..

This model has been applied in a large amount of different
works. In [11] and [12], time–frequency methods based on
Schoen’s model are used to identify bearing faults by analyzing
stator current. Stack et al. [15] examine single-point defects
and generalized roughness. Schoen’s model components are
also analyzed by using parametric [20] and nonparametric [2],
[9] spectral analysis, neural networks, and/or wavelet transform
[10], [21].

We consider this model to be incomplete: On the one hand,
no detailed theoretical development of the fault-related fre-
quency expression is given. On the other hand, it does not
consider torque variations as a consequence of the bearing fault.
In Sections III and IV, the simple existing model for bearing
fault consequences on the stator current will be completed and
extended by the means of a more detailed theoretical study.

III. THEORETICAL STUDY I: RADIAL ROTOR MOVEMENT

The following two physical effects are considered in the
theoretical study when the defect comes into contact with
another bearing element:

1) the introduction of a radial movement of the rotor center;
2) the apparition of load torque variations.

The method used to study the influence of the rotor displace-
ment on the stator current is based on the magnetomotive force
(MMF) and permeance wave approach, which is traditionally
used when considering static and dynamic eccentricities or
rotor and stator slotting [22]–[24]. To the author’s knowledge,
it has not been applied to the analysis of bearing faults yet. The
first step is the calculation of the airgap permeance Λ, which is
closely related to the airgap length g. The magnetic field in the
airgap can then be determined by multiplying the permeance
waves by the rotor and stator MMFs. Finally, the stator current
can be obtained from the magnetic field by the stator voltage
equations of the induction machine.

The following model is based on several simplifying assump-
tions. First, load zone effects in the bearing are not considered.
The fault impact on the airgap length is considered by a series
of Dirac generalized functions. In reality, the fault generates
other pulse shapes, but this alters only the harmonic amplitudes.
Since this modeling approach focuses on the frequency com-
binations and modulation types and not on exact amplitudes,
this assumption is reasonable. In the second part of load torque
oscillations, the higher order terms of the load torque Fourier
series are neglected since higher frequencies in the rotor speed
and angle are considerably dampened due to the mechanical
equation. The calculation of the airgap magnetic field does not
take into account higher order space and time harmonics for the
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Fig. 2. Radial rotor movement due to an outer bearing raceway defect.

sake of simplicity. However, the calculated modulation effects
affect higher harmonics in the same way as the fundamental.

The additional fault-related stator current components pro-
duce themselves rotating stator fields that may generate addi-
tional rotor fields and torque components. These higher order
armature reactions are difficult to take into account with a
simple analytical model. Moreover, they will be of relatively
small amplitude and are therefore neglected in these simplified
considerations.

A. Airgap Length Variations

The first step in the theoretical analysis is the determination
of the airgap length g as a function of time t and angular posi-
tion θ in the stator reference frame. The radial rotor movement
causes the airgap length to vary as a function of the defect,
which is always considered as a hole or a point of missing
material in the corresponding bearing element.
1) Outer Race Defect: Without loss of generality, the outer

race defect can be assumed to be located at the angular position
θ = 0. When there is no contact between a ball and the defect,
the rotor is perfectly centered. In this case, the airgap length
g is supposed to take the constant value g0, neglecting rotor
and stator slotting effects. On the contrary, every t = k/f0

(with k integer), the contact between a ball and the defect
leads to a small movement of the rotor center in the stator
reference frame (see Fig. 2). In this case, the airgap length can
be approximated by g0(1 − e0 cos θ), where e0 is the relative
degree of eccentricity [25]. In order to model the fault impact
on the airgap length as a function of time, a series of Dirac
generalized functions can then be used, as it is common in
models for vibration analysis [18].

These considerations lead to the following expression for the
airgap length:

g0(θ, t) = g0

[
1 − e0 cos(θ)

+∞∑
k=−∞

δ

(
t − k

f0

)]
(7)

where e0 is the relative degree of eccentricity introduced by
the outer race defect. This equation can be interpreted as a
temporary static eccentricity of the rotor, appearing only at
t = k/f0. The function g0(θ, t) is represented in Fig. 3 for
θ = 0 as an example.

Fig. 3. Airgap length g and permeance Λ in the presence of an outer bearing
raceway defect for θ = 0.

Fig. 4. Radial rotor movement due to an inner bearing raceway defect.

2) Inner Race Defect: In this case, the situation is slightly
different from the outer race defect. The fault occurs at the
instants t = k/fi. As the defect is located on the inner race,
the angular position of the minimal airgap length moves with
respect to the stator reference frame as the rotor turns at
the angular frequency ωr (see Fig. 4). Between two contacts
with the defect, the defect itself has moved by an angle de-
scribed by

∆θi = ωr∆t =
ωr

fi
. (8)

Hence, (7) becomes

gi(θ, t) = g0

[
1 − ei

+∞∑
k=−∞

cos(θ + k∆θi)δ
(

t − k

fi

)]
(9)

where ei is the relative degree of eccentricity introduced by the
inner race defect.

This equation can be simplified for further calculations by
extracting the cosine term of the sum, so that the series of Dirac
generalized functions may be later developed into a Fourier
series. One fundamental property of the Dirac generalized
function is given by the following equation [26]:

h(k) · δ
(

t − k

fi

)
= h(tfi) · δ

(
t − k

fi

)
. (10)

This formula becomes obvious when one considers that
δ(t − k/fi) is always equal to 0, except for t = k/fi. After
combining (8)–(10), the airgap length becomes

gi(θ, t) = g0

[
1 − ei cos(θ + ωrt)

+∞∑
k=−∞

δ

(
t − k

fi

)]
. (11)
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3) Ball Defect: In the presence of a ball defect, the defect
location moves in a similar way as the inner raceway fault. The
fault causes an anomaly on the airgap length at the instants
t = k/fb. The angular position of minimal airgap length
changes as a function of the cage rotational frequency. The balls
are all fixed in the cage that rotates at the fundamental cage
frequency ωcage, which is given by [16]

ωcage =
1
2
ωr

(
1 − Db

Dc
cos β

)
. (12)

The angle ∆θb by which the fault location has moved between
two fault impacts becomes

∆θb = ωcage∆t =
ωcage

fb
. (13)

By analogy with (11), the expression of airgap length in the
presence of a ball defect becomes

gb(θ, t) = g0

[
1 − eb cos(θ + ωcaget)

+∞∑
k=−∞

δ

(
t − k

fb

)]

(14)

where eb is the relative degree of eccentricity introduced by the
ball defect.
4) Generalization: In order to simplify the following con-

siderations, (7), (11), and (14) can be combined in a generalized
expression for the airgap length g in the presence of a bearing
fault, i.e.,

g(θ, t) = g0

[
1 − e cos (θ + ψ(t))

+∞∑
k=−∞

δ

(
t − k

fc

)]
(15)

where fc is the characteristic bearing fault frequency given by
(1), (2), or (3), and ψ(t) is defined as follows:

ψ(t) =




0 for an outer race defect
ωrt for an inner race defect
ωcaget for a ball defect.

(16)

B. Airgap Permeance

The airgap permeance Λ is proportional to the inverse of the
airgap length g and is defined as follows:

Λ =
µ

g
(17)

where µ = µrµ0 is the magnetic permeability of the airgap. In
the case of a bearing fault, with (15), the permeance becomes

Λ(θ, t) = Λ0
1[

1 − e cos (θ + ψ(t))
+∞∑

k=−∞
δ
(
t − k

fc

)] (18)

where Λ0 = µ/g0. The relationship between airgap length
g(θ, t) and airgap permeance Λ(θ, t) is illustrated in Fig. 3 at
the position θ = 0 for an outer raceway defect.

First, in order to simplify this expression, the fraction
1/(1−x) is approximated for small airgap variations by the
first-order term of its series development, i.e.,

1
1 − x

= 1 + x + x2 + x3 + · · · , for |x| < 1

≈ 1 + x. (19)

The condition |x| < 1 is always satisfied because the degree of
eccentricity verifies |e| < 1 in order to avoid contact between
the rotor and the stator.

Second, the series of Dirac generalized functions is expressed
as a complex Fourier series development [18], [26], i.e.,

+∞∑
k=−∞

δ

(
t − k

fc

)
=

+∞∑
k=−∞

cke−j2πkfct

= c0 + 2
+∞∑
k=1

ck cos(2πkfct) (20)

with the Fourier series coefficients ck = fc∀k.
Equations (18)–(20) can be combined into a simplified ex-

pression for the airgap permeance wave, i.e.,

Λ(θ, t) ≈Λ0

{
1 + ec0 cos (θ + ψ(t))

+ e

+∞∑
k=1

ck cos (θ + ψ(t) + kωct)

+ e
+∞∑
k=1

ck cos (θ + ψ(t) − kωct)

}
. (21)

C. Airgap Flux Density

The flux density in the airgap is determined by multiplying
the MMF with the permeance wave. For the sake of clarity and
to demonstrate the modulation effects, only the fundamental
MMF waves are considered, i.e., space and time harmonics are
neglected. However, they should theoretically be subject to the
same modulation effects as the fundamental. Rotor and stator
fundamental MMFs are waves at supply frequency ωs = 2πfs

with p pole pairs (where p is the pole pair number of the
machine). The total MMF Ftot is given by their sum and is
assumed as

Ftot(θ, t) = F cos(pθ − ωst + ϕ). (22)

Multiplication of (21) and (22) leads to the following expres-
sion of the flux density distribution:

Btot(θ, t) = Ftot(θ, t) · Λ(θ, t)

= FΛ0 cos(pθ − ωst + ϕ)

+
∞∑

k=0

Bk[cos ((p±1)θ±ψ(t)±kωct−ωst+ϕ)]

(23)
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where Bk are the amplitudes of the fault-related flux density
waves. The notation ± is used to write all possible frequency
combinations in a compact form.

Equation (23) clearly shows the influence of the rotor dis-
placement caused by the bearing fault on the flux density: In
addition to the fundamental sine wave (term B0), a multitude
of fault-related sine waves appear in the airgap. These supple-
mentary waves have p ± 1 pole pairs and a frequency content
fecc that is given by

fecc =
1
2π

(
±dψ(t)

dt
± kωc − ωs

)
. (24)

D. Stator Current

The additional flux density components according to (23)
are equivalent to an additional magnetic flux Φ(θ, t). By con-
sidering the realization of the winding and the geometry of
the machine, the additional flux Φ(t) in each stator phase
can be obtained. If the stator voltages are imposed, the time-
varying flux causes additional components in the machine’s
stator current according to the following stator voltage equation
for phase m:

Vm(t) = RsIm(t) +
dΦm(t)

dt
. (25)

The frequency content of the flux in each phase is supposed
to be equal to the frequency content of the airgap field according
to (24). Under the hypothesis of imposed stator voltages, the
stator current in each phase is given by the derivative of the
corresponding flux. This leads to the following expression for
the stator current Im(t) with ωr assumed constant:

Im(t) =
∞∑

k=0

Ik cos [±ψ(t) ± kωct − ωst + ϕm] . (26)

Thus, it becomes obvious that the radial rotor movement due
to the bearing fault results in additional frequencies in the stator
current. With the three fault types, the following frequencies are
obtained from (16) and (26):

Outer race defect : fecc or = fs ± kf0 (27)

Inner race defect : fecc ir = fs ± fr ± kfi (28)

Ball defect : fecc ball = fs ± fcage ± kfb (29)

where k = 1, 2, 3, . . .. These expressions have never been men-
tioned in former publications.

In terms of signal processing, it can be noticed that the effect
of the fault-related rotor movement on the stator current is
an amplitude modulation of the fundamental sine wave, due
to the effect of the modified permeance on the fundamental
MMF wave.

In the previous calculation of the magnetic airgap field,
only the fundamental MMF has been considered. Bearing in
mind the existence of time harmonics in the MMF, the same
additional frequencies will appear not only around the funda-

mental frequency fs but also around higher supply frequency
harmonics and even around the rotor slot harmonics.

IV. THEORETICAL STUDY II: TORQUE VARIATIONS

In this section, the second considered effect of a bearing
fault on the machine is studied. Imagining for example a
hole in the outer race: each time a ball passes in a hole, a
mechanical resistance will appear when the ball tries to leave
the hole. The consequence is a small increase of the load torque
at each contact between the defect and another bearing ele-
ment. The bearing fault-related torque variations appear at the
previously mentioned characteristic vibration frequencies fc

(see Section II-B) as they are both of the same origin: a contact
between the defect and another element.

Load torque variations have been studied, e.g., by
Salles et al. [27] or Legowski et al. [28]. However, they always
considered stator current amplitude modulation as a conse-
quence of the periodically varying load torque. Section IV-A
provides a more detailed analysis and demonstrates that, on the
contrary, the stator current is phase modulated.

A. Effect on Rotor MMF

Under a bearing fault, the load torque as a function of time
can be described by a constant component Γ0 and an additional
component varying at the characteristic frequency fc. The first
term of the variable component’s Fourier series development
is a cosine varying at frequency fc. For the sake of clarity,
higher order terms are neglected in the following and only the
fundamental term is considered. The load torque can therefore
be described by

Γload(t) = Γ0 + Γc cos(ωct) (30)

where Γc is the amplitude of the bearing fault-related torque
variations, and ωc = 2πfc.

The application of the mechanical equation of the machine
leads to the influence of the torque variations on motor speed
ωr, i.e.,

∑
Γ(t) = Γmotor(t) − Γload(t) = J

dωr

dt

⇔ ωr(t) =
1
J

∫
t

(Γmotor(τ) − Γload(τ)) dτ (31)

where Γmotor is the electromagnetic torque produced by the
machine, and J is the total inertia of the system machine load.

In steady-state, the motor torque is assumed to be equal to
the constant part of the load torque, i.e., Γmotor(t) = Γ0. This
leads to

ωr(t) = −1
J

t∫
t0

Γc cos(ωcτ)dτ + C

= − Γc

Jωc
sin(ωct) + ωr0. (32)

The mechanical speed consists, therefore, of a constant compo-
nent ωr0 and a sinusoidally varying one.
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The next step is the calculation of the mechanical rotor
position θr, which is the integral of the mechanical speed, i.e.,

θr(t) =

t∫
t0

ωr(τ)dτ =
Γc

Jω2
c

cos(ωct) + ωr0t. (33)

The integration constant has been assumed to be equal to
zero. In contrast to the healthy machine where θr(t) = ωr0t,
variations at the characteristic frequencies are present on the
mechanical rotor position.

The variations of the mechanical rotor position θr have an
influence on the rotor MMF. In a normal state, the rotor MMF
in the rotor reference frame R is a wave with p pole pairs and a
frequency sfs and is given by

F (R)
r (θ, t) = Fr cos (pθ′ − sωst) (34)

where θ′ is the mechanical angle in the rotor reference frame,
and s is the motor slip.

The transformation between the rotor and stator reference
frames is defined by θ = θ′ + θr. Using (33), this leads to

θ′ = θ − ωr0t − Ac cos (ωct) (35)

where Ac = Γc/(Jω2
c ) is the amplitude of the angle variations.

Thus, the rotor MMF given in (34) can be transformed to the
stationary stator reference frame using (35) and ωr0 = ωs(1 −
s)/p, i.e.,

Fr(θ, t) = Fr cos (pθ − ωst − pAc cos (ωct)) . (36)

It becomes clear from this expression that the torque variations
at frequency fc lead to a phase modulation of the rotor MMF in
the stator reference frame. This phase modulation is character-
ized by the introduction of the term pAc cos (ωct) in the phase
of the MMF wave.

B. Effect on Flux Density and Stator Current

The airgap flux density B is the product of total MMF and
permeance. First, the airgap length and the resulting perme-
ance are assumed constant. The additional fault-related flux
density components are obtained by considering the interaction
between the modified rotor MMF and the permeance. This
leads to

B(θ, t) = Fr,1Λ0 cos (pθ − ωst − pAc cos (ωct)) . (37)

The phase modulation present on the flux density can be con-
secutively found on the flux in a machine phase. Considering
(25), the stator current in phase m is given by the derivation of
the flux, leading to the following expression:

Im(t) = I1 sin (ωst + pAc cos (ωct))

+ I2 sin (ωst + pAc cos (ωct) + ωct)

− I2 sin (ωst + pAc cos (ωct) − ωct) . (38)

The term I1 keeps the initial phase modulation found on the
rotor MMF; the expressions with I2 result from the derivation
and should be of smaller amplitude than the term I1.

TABLE I
SUMMARY OF BEARING FAULT-RELATED FREQUENCIES

IN THE STATOR CURRENT SPECTRUM

As the frequency content of a signal x(t) = A cos ϕ(t) is
given by the time derivative of its phase ϕ(t) (in terms of
instantaneous frequency, see [29]), the frequency of the fault-
related components in the stator current is given by

f(t) =
1
2π

dϕ(t)
dt

= fs − pAcfc sin(ωct) ± kfc (39)

where k = 0 or 1. The effects of the fault-related torque vari-
ations on the motor current are therefore phase modulations,
which are equivalent to a time-varying frequency content.

As in Section III, the time harmonics of rotor MMF and the
nonuniform airgap permeance have not been considered. How-
ever, the harmonics of supply frequency fs and the rotor slot
harmonics will theoretically show the same phase modulations
as the fundamental component.

V. SUMMARY

The frequencies found in the preceding theoretical study
enlarge the existing model of the effects of bearing faults on
stator current but also stand in contrast to it. Schoen et al. [8]
considered only one effect of the fault: the introduction of a
radial rotor movement. The theoretical model in this paper con-
siders the following two effects: 1) the radial rotor movement
and 2) torque variations.

Considering the radial rotor movement, the obtained formu-
las give the same result as the existing model only in the case of
an outer raceway defect. The other fault types lead to different
expressions [see (27)–(29)], involving frequencies such as the
shaft rotational frequency or the bearing cage frequency.

The torque variations principally lead to phase modulations
at fc of the stator current fundamental frequency fs, i.e., a
time-varying frequency content. The phase modulations pro-
duce a characteristic signature on the power spectral density
(PSD), which is given by sideband components around the
fundamental at fs ± kfc, where k=1, 2, 3, . . . [30]. Although
Schoen et al. [8] did not consider torque variations as a con-
sequence of bearing faults, these produce the same signature
on the current spectrum as given in (6). Table I summarizes
the fault-related frequencies in the stator current spectrum and
compares them to those proposed by Schoen et al.

VI. EXPERIMENTAL RESULTS

A. Test Rig

The experimental tests were carried out on a test rig with
a standard 1.1-kW two-pole pair Y-coupled induction motor.
A direct current machine was used to simulate different load
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Fig. 5. Scheme of the experimental setup.

Fig. 6. Photo of bearings with single-point defects. (a) Outer raceway defect.
(b) Inner raceway defect.

levels. In order to reduce the harmonic content in the supply
voltage, the induction motor is directly fed by a synchronous
generator (100 kVA). Measured quantities are the three line cur-
rents, the stator voltages, motor speed, torque, and two vibration
signals issued from piezoelectric accelerometers mounted on
the stator core. Data are sampled at 16 kHz and processed using
Matlab. The test rig is schematically displayed in Fig. 5.

Two classes of faulty bearings (NSK 6205) are available.
First, new bearings have been artificially damaged to pro-
duce defects on the outer and inner raceways. The defects
consist of holes that have been drilled axially through the
raceways (see Fig. 6). Second, bearings with realistic damage,
which are issued from industrial maintenance, were tested. The
faulty bearings are mounted at the load end of the induction
machine.

The characteristic vibration frequencies take the following
values at no-load operation: outer raceway frequency f0 =
89.6 Hz, inner raceway frequency fi = 135.4 Hz, and ball
frequency fb = 58.8 Hz. The contact angle β has been assumed
to be zero.

B. Outer Raceway Defect

The defect on the outer raceway has already been experimen-
tally studied in [8], so that it will be discussed very shortly.
During the tests, the characteristic vibration frequency and
its multiples were clearly visible on the vibration spectrum
of the machine. There also appeared torque variations at the
characteristic vibration frequencies.

The current spectrum shows a characteristic component at
125 Hz, which corresponds to the frequency combination |fs −
2f0| (see Fig. 7). It is interesting to note that the same frequency
combination appeared in [31], where a bearing with an outer
race defect was experimentally tested.

Fig. 7. Stator current spectrum of the loaded machine with outer raceway
defect.

Fig. 8. Vibration spectrum of the unloaded machine with inner raceway
defect.

C. Inner Raceway Defect

In a first step, the vibration signal is analyzed. A logarithmic
plot of the vibration spectrum with a damaged bearing in
comparison with the healthy machine condition is shown in
Fig. 8. The characteristic frequencies of the inner raceway
defect fi and its multiples (e.g., 2fi) are the components with
the largest magnitude. Multiple tests with different load levels
permitted to observe slight variations of the characteristic vi-
bration frequency according to (2). Additional components due
to other mechanical effects, e.g., the cage rotational frequency
(≈10 Hz) and a general rise of the vibration level can also be
noticed on the vibration spectrum.

A spectral analysis of the measured load torque is shown
in Fig. 9. The characteristic fault frequency fi clearly appears
on the torque spectrum with an amplitude of +15 dB in
comparison to the healthy case. This validates the proposed
theoretical approach, which assumes torque variations at the
characteristic frequency as a consequence of the bearing fault.
Higher harmonics of fi can also be observed. In addition to
the aforementioned components, other frequencies appear in
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Fig. 9. Torque spectrum of the unloaded machine with inner raceway defect.

Fig. 10. Stator current spectrum of the unloaded machine with inner raceway
defect.

the torque spectrum at, e.g., 110 and 115 Hz, but they have no
direct link to a predicted characteristic frequency.

The stator current spectrum (see Fig. 10) shows, on the one
hand, a rise of eccentricity related components. The frequency
components at 5fs + fr and 7fs − fr are already present in
the spectrum of the healthy machine due to an inherent level
of dynamic eccentricity. The fault-related eccentricity increases
these components according to (28) (with k = 0). The compo-
nent at fs − fr + 2fi does not appear in the healthy spectrum
but in case of the fault, as it is the consequence of the particular
form of eccentricity introduced by the inner raceway fault.
Another fault-related component at 2fi can be noticed. On
the contrary, no particular rise in amplitude can be noticed
at fs + 2fi where it should be according to the expressions
mentioned by Schoen et al. [8]. The obtained results for this
fault validate, therefore, the precedent theoretical development.

D. Realistic Bearing Fault

After the so-called “artificial” bearing faults, tests were con-
ducted with industrially used bearings that have been changed
due to a problem with an unknown fault type. The tested bearing

Fig. 11. Torque spectrum of the loaded machine with realistic bearing fault.

Fig. 12. Stator current spectrum of the loaded machine with realistic bearing
fault.

shows only small effects on the vibration spectrum, such as a
small peak at 33 Hz and a slight general increase of the vi-
bration level for frequencies higher than 150 Hz. Characteristic
vibration frequencies could not have been clearly identified.

However, the measured machine torque shows considerable
changes in comparison to the healthy case (see Fig. 11). At
nominal load level, torque variations of great amplitude can be
identified at 33 Hz and its multiples.

These torque variations have a considerable effect on the
stator current. In Fig. 12, the stator current spectrum with the
faulty bearing can be compared to the healthy machine. Side-
band components to the fundamental appear at 50 ± k · 33 Hz.
This is the characteristic signature on the spectrum of a phase
modulation of the fundamental component (see [30]).

As a phase modulation is equivalent to a time-varying fre-
quency of the analytic signal [see (39)], time–frequency meth-
ods can be used to verify the theoretical prediction that torque
variations create a phase modulation on the stator current.
Time–frequency methods [32] are used in signal processing
applications when nonstationary signals are analyzed.

One basic method is to compute the instantaneous frequency
[29] of a signal. The idea is to use the Hilbert transform to
obtain a complex form of the original real signal called analytic
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Fig. 13. Stator current instantaneous frequency spectrum of the loaded ma-
chine with realistic bearing fault.

signal. The phase information of a complex can easily be re-
trieved considering its argument. The instantaneous frequency
of the signal is then obtained by the derivation of the phase
[see (39)]. This definition of instantaneous frequency is only
valid for a signal having one single component.

However, the measured stator current on the test rig natu-
rally contains a multitude of harmonic components so that the
instantaneous frequency cannot be directly computed on the
signal. The following steps are necessary in order to obtain
useful information.

1) The stator current is low-pass filtered at approximately
two times the fundamental frequency.

2) The current signal is downsampled to a sampling rate at
about four times the fundamental frequency in order to
reduce the data volume.

3) The Hilbert transform is used on the real current signal in
order to obtain the analytic signal.

4) The instantaneous frequency of the fundamental com-
ponent is calculated using the Matlab Time–Frequency
Toolbox [33].

In Fig. 13, the PSD of the instantaneous frequency is shown
for the healthy and faulty cases. The significant difference is
a component at 33 Hz in the faulty case. The spectral peak at
this frequency indicates variations at 33 Hz of the fundamental
stator current component. These variations are a sign of phase
modulations present in the faulty case. Considering the mea-
sured torque variations with the faulty bearing (see Fig. 11),
it can be concluded that the observed phase modulation is the
consequence of the recognized torque variations, as it has been
developed in Section IV.

E. Summary of Experimental Results

The previous experimental results have validated several the-
oretical aspects. The produced single-point defects showed the
expected effects on the vibration spectrum, i.e., the apparition
of the characteristic vibration frequencies. In case of inner
and outer race faults, the measured load torque showed vari-
ations at these frequencies, confirming that the assumption of
bearing fault-related torque oscillations is valid. Furthermore,
significant effects could be observed in the stator current spec-
trum, i.e., the apparition of some of the theoretically predicted
frequencies.

Moreover, low-frequency load torque oscillations have been
observed with a realistic bearing fault. The resulting stator
current shows phase modulations, which validates the second
part of the theoretical study.

However, it must be noted that the amplitudes of the addi-
tional stator current frequencies may depend heavily on the con-
sidered bearing and the load condition. Therefore, a systematic
bearing monitoring using only the stator current is difficult to
realize. Nevertheless, in some cases, the stator current showed
more significant effects than the vibration data, which suggests
that a combined approach using vibration and current analysis
could be reasonable.

VII. CONCLUSION

This paper has investigated the detection of rolling-element
bearing faults in induction motors by stator current monitoring.
A new fault model has been proposed, which considers fault-
related airgap length variations and changes in the load torque.
The theoretical development is based on airgap field calculation
by MMF and permeance wave approach. New expressions for
the frequency content of the stator current are obtained for the
three major fault types.

An experimental study has been conducted on a test rig with
several faulty bearings, measuring quantities such as machine
vibrations, torque, and stator current. The spectral analysis
shows that characteristic vibration frequencies are visible in the
torque spectrum. The torque oscillations lead to changes in the
stator current spectrum. Other fault-related components are due
to a particular fault-related radial rotor movement.

In order to validate the hypothesis of phase modulations
in the stator current as a consequence of torque variations, a
basic time–frequency method, the instantaneous frequency, has
been applied. The result proves that the torque oscillations lead
indeed to a time-varying frequency content, which corroborates
the predicted phase modulations.

It has therefore been shown that bearing faults can cause
significant changes in the stator current spectrum that can be
used for fault diagnosis purposes.
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