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On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis

We establish new convergence results, in strong topologies, for solutions of the parabolic-parabolic Keller-Segel system in the plane, to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.

Introduction

We consider two related nonlinear parabolic systems which are frequently used as models for a description of chemotactic phenomena, including the aggregation of microorganisms caused by a chemoattractant, i.e. a chemical whose concentration gradient governs the oriented movement of those microorganisms. The parabolic character of the systems comes from the diffusion described by the Laplacians. A version of the system (PE) below is also used in astrophysics as a model of the evolution of a cloud of self-gravitating particles in the mean field approximation.

The first one is the classical parabolic-elliptic Keller-Segel system     

u t = ∆u -∇ • (u∇ϕ), ∆ϕ + u = 0, u(0) = u 0 .
x ∈ R 2 , t > 0, (PE)

Here, u = u(x, t), ϕ = ϕ(x, t) are either functions or suitable (tempered) distributions. When u ≥ 0, ϕ ≥ 0, they may be interpreted as concentrations (densities) of microorganisms and chemicals, respectively. The second one is the parabolic-parabolic system     

u t = ∆u -∇ • (u∇ϕ), τ ϕ t = ∆ϕ + u, u(0) = u 0 , ϕ(0) = 0, x ∈ R 2 , t > 0, (PP) 
where τ > 0 is a fixed parameter. Each of the models can be considered as a single nonlinear parabolic equation for u with a nonlocal (either in x or in (x, t)) nonlinearity since the term ∇ϕ can be expressed as a linear integral operator acting on u. In the latter model, the variations of the concentration ϕ are governed by the linear nonhomogeneous heat equation, and therefore are slower than in the former system, where the response of ϕ to the variations of u is instantaneous, and described by the integral operator (-∆) -1 whose kernel has a singularity. Thus, one may expect that the evolution described by (PE) might be faster than that for (PP), especially for large values of τ when the diffusion of ϕ is rather slow compared to that of u. Moreover, the nonlinear effects for (PE) should manifest themselves faster than for (PP).

The theory of the system (PE) is relatively well developed, in particular when this is studied in a bounded domain in R d , d = 1, 2, 3, with the homogeneous Neumann conditions for u and ϕ at the boundary of the domain. One of the most intriguing properties of (PE) considered for positive and integrable solutions u in d = 2 case is the existence of a threshold value 8π of mass M ≡ u(x, t) dx, see the pioneering work [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF] and [START_REF] Biler | Existence and nonexistence of solutions for a model of gravitational interaction of particles, III[END_REF][START_REF] Biler | Local and global solvability of parabolic systems modelling chemotaxis[END_REF]. Namely, if u 0 ≥ 0 is such that u 0 (x) dx > 8π, then any regular, positive solution u of (PE) cannot be global in time. We refer the reader for a fine description of the asymptotic behaviour of integrable solutions of (PE) in the subcritical case M < 8π to [START_REF] Blanchet | Two dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions[END_REF] and to [START_REF] Blanchet | Infinite time aggregation for the critical Patlak-Keller-Segel model in R 2[END_REF] for the limit case M = 8π. See also [START_REF] Biler | The 8πproblem for radially symmetric solutions of a chemotaxis model in a disc[END_REF][START_REF] Biler | The 8πproblem for radially symmetric solutions of a chemotaxis model in the plane[END_REF] in the radially symmetric case. The higher dimensional versions of (PE) have been also extensively studied, cf., e.g., [START_REF] Biler | The Cauchy problem and self-similar solutions for a nonlinear parabolic equation[END_REF][START_REF] Biler | Global regular and singular solutions for a model of gravitating particles[END_REF][START_REF] Biler | Global existence versus blow up for some models of interacting particles[END_REF], and [START_REF] Biler | Existence and nonexistence of solutions for a model of gravitational interaction of particles, III[END_REF] for blow up phenomena.

The doubly parabolic system (PP) has been a bit less studied. For instance, it is known that if for the initial data u 0 one has M < 8π, then positive solutions are global in time, see [START_REF] Calvez | The parabolic-parabolic Keller-Segel model in R 2[END_REF] in the case of a bounded planar domain, and also [START_REF] Biler | Local and global solvability of parabolic systems modelling chemotaxis[END_REF]Theorem 5]. However, it is not known whether M ≤ 8π is, in general, a necessary condition for the existence of global in time solutions. That is, it is not known whether the blow up occurs for solutions, except for a specific example in [START_REF] Herrero | A blow-up mechanism for a chemotaxis model[END_REF] of a particular blowing up solution for a system close to (PP). Even, it is an open question what is the exact range of M guaranteeing the existence of integrable self-similar solutions. For the system (PE) it is proved that M ∈ [0, 8π), and the self-similar solutions (unique for a given M ∈ [0, 8π)) describe the generic asymptotic behaviour of global in time, positive and integrable solutions of (PE). Concerning (PP), it is known that M < M(τ ) with M(τ ) linear in τ , is a necessary condition for the existence of self-similar solutions, cf. [START_REF] Biler | A note on the paper of Y. Naito[END_REF]. For (PP) with small M such special solutions are also important in the study of space-time decay of general solutions, see [START_REF] Naito | Asymptotically self-similar solutions for the parabolic systems modelling chemotaxis[END_REF]. The analysis if any M > 8π may correspond to a self-similar solution is under way, see [7]. For a different point of view about self-similar solutions for higher dimensional models of (PP), see also [START_REF] Kozono | Keller-Segel System of parabolicparabolic type with initial data in weak L n/2 (R n ) and its applications to self-similar solutions[END_REF]. Usual proofs of a blow up for (PE) involve calculations of moments of a solution and then symmetrization, cf. [START_REF] Blanchet | Two dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions[END_REF][START_REF] Biler | Existence and nonexistence of solutions for a model of gravitational interaction of particles, III[END_REF]. These methods seem do not work for (PP), hence another approach is needed to show a blow up for that system. For a numerical insight on blow-up issues we refer, e.g., to [START_REF] Filbet | A finite volume scheme for the Patlak-Keller-Segel chemotaxis model[END_REF].

A nice result in [START_REF] Raczyński | Stability property of the two-dimensional Keller-Segel model[END_REF] shows that the solutions of the systems (PP) and (PE) enjoy a kind of stability property as τ ց 0: solutions of (PP) converge in a suitable sense to those of (PE). It had been an old question raised by J. J. L. Velázquez and D. Wrzosek, recently solved in [START_REF] Raczyński | Stability property of the two-dimensional Keller-Segel model[END_REF]. However, this result obtained for suitably small solutions in quite a big functional space of pseudomeasures, gives no indication on the behaviour of possible ("large") blowing up solutions.

The solvability of the systems (PE), (PP) has been studied in various classes of functions and distributions, like Lebesgue, Morrey, Besov, etc., with an immediate motivation to include the a priori strongest possible critical singularities of either solutions or initial data which appear to be point measures in the two-dimensional case and the multiples of |x| -2 function in the higher dimensional case. In particular, "vast" functional spaces suitable for analysis of the two-dimensional systems include measure and pseudomeasure spaces, cf. [START_REF] Biler | The Cauchy problem and self-similar solutions for a nonlinear parabolic equation[END_REF][START_REF] Biler | Local and global solvability of parabolic systems modelling chemotaxis[END_REF][START_REF] Biler | Global regular and singular solutions for a model of gravitating particles[END_REF][START_REF] Raczyński | Stability property of the two-dimensional Keller-Segel model[END_REF].

We show in this paper a result on the existence of (in general, nonintegrable) solutions in a class X of functions with natural space-time decay properties, see Theorem 2.1 and 3.1. Here, the space E of admissible initial conditions also contains Dirac measures. The corresponding solutions may be positive and "large" in the sense of their nonintegrability. Nevertheless, they are defined globally in time. Unlike the paper [START_REF] Raczyński | Stability property of the two-dimensional Keller-Segel model[END_REF], we work in (x, t) space, when [START_REF] Raczyński | Stability property of the two-dimensional Keller-Segel model[END_REF] has dealt with the Fourier variables ξ, cf. the formulation (36) below. Such results are obtained by an extension and refinement of techniques used in [START_REF] Biler | Global existence versus blow up for some models of interacting particles[END_REF] for (PE) in higher dimensions, but neither for (PP), nor in the two-dimensional case of (PE) which often requires a specific treatement. Moreover, the function spaces that we employ here allow us to deal with data that can be more singular than those considered in [START_REF] Biler | Global existence versus blow up for some models of interacting particles[END_REF]. The spaces X and E defined in the next section are, in a sense, critical for that analysis, and have been already considered, in slightly different forms, e.g. in the studies of the Navier-Stokes system in [START_REF] Cazenave | Chaotic behavior of solutions of the Navier-Stokes system in R N[END_REF][START_REF] Miyakawa | On space time decay properties of nonstationary incompressible Navier-Stokes flows in R n[END_REF].

Our main results are contained in Section 4, where we address the problem of the convergence as τ ց 0 of solutions u τ of the system (PP) to the corresponding solutions u of (PE), in the space X , arising from small data in E. Mathematically, our stability result is not included in, and does not imply, that of [START_REF] Raczyński | Stability property of the two-dimensional Keller-Segel model[END_REF]. However, it seems to us that the use of the natural (x, t) variables provides a more immediate physical interpretation. Furthermore, our method looks more flexible, and can be used to prove the stability of the system with respect to stronger topologies. For example, we establish also the convergence in the L ∞ t (L 1 x )-norm for data belonging to E ∩ L 1 , and in the L ∞ t,x -norm for data in E ∩ L ∞ . Motivated by [START_REF] Lemarié-Rieusset | Recent Development in the Navier-Stokes Problem[END_REF], we will also address this issue in the more general setting of shift invariant spaces of local measures. The main difficulty for obtaining the convergence u τ → u in strong norms is that ∇ϕ τ enjoys some kind of instability as τ → 0, in particular in weighted spaces.

Moreover, we give a nonexistence (blow up) result for solutions of (PP) in R d , d ≥ 1, with the positive Fourier transform of u 0 in the spirit of [START_REF] Montgomery-Smith | Finite time blow up for a Navier-Stokes like equations[END_REF], see Theorem 5.1. These are complex valued solutions with no straightforward physical/biological interpretation. However, such a result tells us that there is no hope to prove the global existence of solutions to (PP) and similar models for arbitrarily large data relying only on size estimates.

The parabolic-elliptic system

In order to study the systems (PE) and (PP) we introduce the Banach space X of functions u = u(x, t) and the Banach space E of tempered distributions u 0 ∈ S ′ (R 2 ) by defining the norms

u X = ess sup t>0,x∈R 2 (t + |x| 2 ) |u(x, t)|, (1) 
and

u 0 E = e t∆ u 0 X . (2) 
Here, e t∆ denotes the heat semigroup defined by the Gaussian kernel g t , g t (x) = 1 4πt e -1 4t |x| 2 . For example, the Dirac mass u 0 = δ in R 2 is an element of E. Notice that, by the definition, E is continuously embedded into the weak Hardy space H 1 w , which is the space consisting of all tempered distributions f such that sup t>0 |e t∆ f | belongs to the Lorentz space L 1,∞ (R 2 ). See [START_REF] Miyakawa | Application of Hardy space techniques to the timedecay problem for incompressible Navier-Stokes flow in R n[END_REF].

Let us define the bilinear form B 0 by

B 0 (u, v)(t) ≡ t 0 e (t-s)∆ ∇ • (u∇(-∆) -1 v)(s) ds. (3) 
Here, (-∆) -1 is the convolution operator on functions defined on R 2 with the kernel K(x) = -1 2π log |x|. With this notation, the equivalent integral (mild) formulation to (PE), called also the Duhamel formula, reads

u(t) = e t∆ u 0 -B 0 (u, u). (4) 
We begin by establishing the following simple result Theorem 2.1 There exist two absolute constants ǫ, β > 0 with the following property. Let u 0 ∈ E be such that u 0 E < ǫ. Then there exists a unique (mild) solution u ∈ X of (PE) such that u X ≤ ǫβ.

The proof of Theorem 2.1 will follow from a series of lemmata.

First, we have the following estimate of the leading term in ∇ϕ Lemma 2.1 Let u ∈ X and ϕ be such that ∆ϕ + u = 0. Then

∇ϕ(x, t) = c 0 x |x| 2 |y|≤|x|/2 u(y, t) dy + R(x, t) (5) 
with c 0 = -1 2π and the remainder R satisfying

|R(x, t)| ≤ C u X t 1 2 + |x| -1
.

Proof. Indeed, let us represent the partial derivatives of ϕ, for j = 1, 2, as

∂ j ϕ = c 0 x j |x| 2 * u ≡ I 1 + I 2 + I 3 ,
where . On the other hand, we can rewrite

I 1 = |y|≤|x|/2 c 0 (x j -y j ) |x -y| 2 u(y,
I 1 as c 0 x j |x| 2 |y|≤|x|/2 u(y, t) dy + R 1 (x, t).
An application of the Taylor formula shows that the above bound holds also for R 1 .

We immediately deduce from ( 5) the following useful estimate Lemma 2.2 Let u ∈ X and ∆ϕ + u = 0. Then

∇ϕ(t) L ∞ ≤ C u X t -1 2 .
The last lemma that we need is the following

Lemma 2.3 Let u, v ∈ X . Then, for some constant C 0 independent of u, v B 0 (u, v) X ≤ C 0 u X v X .
Proof. We can assume, without any restriction, that u

X = v X = 1. Lemma 2.2 implies |u∇(-∆) -1 v|(x, t) ≤ C|x| -3 2 t -3 4 , (6a) 
and also

|u∇(-∆) -1 v|(x, t) ≤ C|x| -2 t -1 2 . ( 6b 
)
We denote the gradient of the heat semigroup kernel g t by

G(•, t) ≡ ∇ x 1 4πt e -1 4t | • | 2 . ( 7 
)
Then we may represent B 0 as

B 0 (u, v)(x, t) = t 0 G(x -y, t -s)(u∇(-∆) -1 v)(y, s) dy ds ≡ J 1 + J 2 ,
where

J 1 = t 0 |y|≤|x|/2 . . . and J 2 = t 0 |y|≥|x|/2 . . . . Using the estimate |G(x -y, t -s)| ≤ C|x -y| -5 2 (t -s) -1 4
and inequality (6a), we get the bound

|J 1 (x, t)| ≤ C|x| -2 . ( 8 
)
Another possible estimate is

|J 1 (x, t)| ≤ C|x| -3 2 t -1 4 , (9) 
which is obtained using the bound

|G(x -y, t -s)| ≤ C|x -y| -2 (t -s) -1 2 .
On the other hand, from the property

G(•, t -s) L 1 = c(t -s) -1 2 (10) 
and inequality (6b), we obtain

|J 2 (x, t)| ≤ C|x| -2 . ( 11 
)
As before, we have also the bound

|J 2 (x, t)| ≤ C|x| -3 2 t -1 4 . ( 12 
)
This second estimate is deduced from (6a). Then, using ( 8), [START_REF] Blanchet | Two dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions[END_REF], we obtain the space decay estimate

|B 0 (u, v)|(x, t) ≤ C|x| -2 (13) 
and from ( 9), ( 12) -a provisory (not optimal) time decay estimate

B 0 (u, v)(t) L 4 3 ,∞ ≤ Ct -1 4 .
But we may represent B 0 as

B 0 (u, v)(t) = e t 2 ∆ B 0 (u, v)(t/2) + t t/2 G(t -s) * (u∇(-∆) -1 v)(s) ds.
Thus, applying the weak Young-type inequality for convolutions in Lorentz spaces L 4 3 ,∞ * L 4,1 ⊂ L ∞ , see [START_REF] Lemarié-Rieusset | Recent Development in the Navier-Stokes Problem[END_REF], and the equality obtained from the scaling laws in Lorentz spaces,

1 4πt e -1 4t | • | 2 L 4,1 = ct -3 4 , (14) 
we finally get

B 0 (u, v)(t) L ∞ ≤ Ct -1 + C t t/2 (t -s) -1 2 u∇(-∆) -1 v(s) L ∞ ds ≤ Ct -1 . (15) 
Combining inequalities ( 13) and ( 15) we get B 0 (u, v) ∈ X , together with its continuity with respect to u and v.

Proof. Note that (using the duality S -S ′ ) we have e t∆ u 0 → u 0 in S ′ as t → 0. The conclusion of Theorem 2.1 follows in a standard way (cf., e.g., [START_REF] Lemarié-Rieusset | Recent Development in the Navier-Stokes Problem[END_REF][START_REF] Biler | The Cauchy problem and self-similar solutions for a nonlinear parabolic equation[END_REF][START_REF] Biler | Global regular and singular solutions for a model of gravitating particles[END_REF]) from the contraction fixed point theorem.

The parabolic-parabolic system

Let τ > 0 be a fixed parameter. We consider the system (PP) whose equivalent integral formulation reads

u(t) = e t∆ u 0 - t 0 ∇ • e (t-s)∆ u(s) 1 τ ∇ s 0 e 1 τ (s-σ)∆ u(σ) dσ ds. ( 16 
)
We introduce for all τ ≥ 0 the bilinear form B τ (recall that G is defined by the expression ( 7))

B τ (u, v)(x, t) ≡ t 0 G(x -y, t -s) u W τ (v) (y, s) dy ds, (17) 
where W τ (v) is the linear operator acting on v

W τ (v)(x, t) = t 0 1 τ G t -σ τ * v(σ) (x, σ) dσ for τ > 0, (18a) 
with a natural convention

W 0 (v)(x, t) = ∇(-∆) -1 v (x, t). (18b) 
In this way, the system (PP) is also rewritten in a compact form (cf. ( 4)) as u = e t∆ u 0 -B τ (u, u).

We are going to solve [START_REF] Lemarié-Rieusset | Recent Development in the Navier-Stokes Problem[END_REF] in the space X exactly as was in the parabolicelliptic case. An additional estimate, however, is needed:

Lemma 3.1 Let u ∈ X and τ > 0.
Then there exists a constant C * > 0, independent of u and τ , such that

W τ (u)(t) L ∞ ≤ C * t -1 2 u X . (20) 
Proof. As usual we can and do assume u X = 1. Then, for all 1 < p ≤ ∞ we have

|u(x, σ)| ≤ |x| -2 p σ -1+ 1 p .
This implies, for 1 < p ≤ ∞,

u(σ) L p,∞ ≤ σ -1+ 1 p . Now, we represent W τ (u) = I 1 + I 2 ,
where I 1 = t/2 0 . . . and I 2 = t t/2 . . . . Evidently, we obtain the bound

I 1 (t) L ∞ ≤ C t/2 0 1 τ G t -σ τ L 2,1 u(σ) L 2,∞ dσ ≤ Ct -1 2 .
For the integral I 2 , let us begin with a rough bound

I 2 (t) L ∞ ≤ C t t/2 1 τ G t -σ τ L 1 u(σ) L ∞ dσ ≤ Cτ -1 2 t -1 2 . ( 21 
)
This bound gives the required estimate, excepted when τ belongs to a neighbourhood of the origin. Thus, in the sequel, it is enough to consider the case 0 < τ < 1 2 . Now, we further decompose 

I 2 ≡ I 2,1 + I 2,
I 2,1 (t) L ∞ ≤ C t-τ t t/2 1 τ G t -σ τ L 3,1 u(σ) L 3 2 ,∞ dσ ≤ Cτ 1 6 t-τ t t/2 (t -σ) -7 6 σ -1 3 dσ ≤ Ct -1 2 . ( 22 
)
The last estimate is

I 2,2 (t) L ∞ ≤ C t t-τ t 1 τ G t -σ τ L 1 u(σ) L ∞ dσ ≤ Cτ -1 2 t t-τ t (t -σ) -1 2 σ -1 dσ ≤ Ct -1 2 . ( 23 
)
The conclusion of Lemma 3.1 follows from ( 21), ( 22), [START_REF] Montgomery-Smith | Finite time blow up for a Navier-Stokes like equations[END_REF].

Lemma 3.1 allows us to see that, if u, v ∈ X with u X = v X = 1, then |u W τ (v)|(x, t) ≤ C|x| -3 2 t -3 4 , (24a) 
and

|u W τ (v)|(x, t) ≤ C|x| -2 t -1 2 , (24b) 
for some constant C > 0 independent of τ > 0. These are the analogous estimates as those we obtained in the parabolic-elliptic case (see inequalities (6a) and (6b)). Then, using exactly the same arguments as in the previous section, we arrive at the following existence result Theorem 3.1 There exist two absolute constants ǫ * , β * > 0 with the following property. Let u 0 ∈ E be such that u 0 E < ǫ * . Then there exists a unique (mild) solution u ∈ X of (PP) such that u X ≤ ǫ * β * .

Remark. The case of nonzero initial data ϕ(0) can be studied in a quite similar way.

Remark.

A closer look at the proofs of estimates for ∇ϕ in (PE) and (PP) reveals that the behaviour of ∇ϕ is a bit different in these two cases. Namely, if 0 ≡ u and u(x, t)

∼ (t + |x| 2 ) -1 (in the sense that c 1 (t + |x| 2 ) -1 ≤ u(x, t) ≤ c 2 (t + |x| 2 ) -1 for some c 1 , c 2 > 0)
, then it follows from (5) that ∇ϕ(x, t) ∼ |x| -1 log(t + |x| 2 ) for (PE), while ∇ϕ is more regular:

|∇ϕ(x, t)| ≤ c t 1 2 + |x| -1
in (PP) case. In other words, letting Y be the space of functions f = f (x, t) such that f 2 ∈ X , we have ϕ τ ∈ Y for τ > 0, but (ϕ τ ) does not converge in Y as τ → 0. However, such an instability does not prevent from the convergence of the densities u τ → u for vanishing τ .

4 Study of the τ ց 0 limit

We now study the convergence as τ ց 0 of solutions u τ of the system (PP) to the corresponding solution u of (PE). A result in this direction has been obtained recently by A. Raczyński in [START_REF] Raczyński | Stability property of the two-dimensional Keller-Segel model[END_REF], who established the convergence u τ → u in the norm Y α , for α ∈ (1, 2), defined as

u Yα = ess sup t>0, ξ∈R 2 1 + t 1 2 |ξ| α | u(ξ, t)|. (25) 
We will obtain in subsection 4.2 a similar result using the X -norm.

Regularity properties of solutions of (PE)

In this subsection we prepare some preliminary material. The first Proposition consists of a regularity result with respect to the space variable for solutions of (PE). The second Proposition describes their regularity properties with respect to the time variable.

Proposition 4.1 For all r ∈ (1, 2) there exists a constant ǫ r , with 0 < ǫ r ≤ ǫ (the absolute constant of Theorem 2.1) such that, if u 0 E < ǫ r , then the solution of (PE) constructed in Theorem 2.1 satisfies

∇u(t) L r,∞ ≤ Ct -3 2 + 1 r , (26) 
for some constant C = C(u 0 , r) independent of t.

Proof. We use a standard argument involving the subspace X r ⊂ X defined by

X r = u ∈ X , ∃ C : ∇u(t) L r,∞ ≤ Ct -3 2 + 1 r ,
and equipped with its natural norm. Recalling that the kernel c 0 x |x| 2 of the operator ∇(-∆) -1 belongs to L 2,∞ , first we deduce from the Young inequality

∇ 2 (-∆) -1 v(t) L α,∞ ≤ Ct -3 2 + 1 r v Xr , 1 α = 1 r -1 2 . ( 27 
)
Next, from the Hölder inequality (noticing that u(t

) L 2,∞ ≤ Ct -1 2 u X ), u∇ 2 (-∆) -1 v(t) L r,∞ ≤ Ct -2+ 1 r u X v Xr . ( 28 
)
The generalization of the classical inequalities to Lorentz spaces can be found, e.g., in [START_REF] Lemarié-Rieusset | Recent Development in the Navier-Stokes Problem[END_REF].

We claim that the bilinear operator B 0 introduced in (3) is boundedly defined: B 0 : X r × X r → X r . Indeed, for u Xr = v Xr = 1, we combine the estimates

∇G(t -s) 1 ≤ C(t -s) -1
and (10) with the inequality (a consequence of u ∈ X )

u(s) L r,∞ ≤ Cs -1+ 1 r , (29) 
the estimate ∇(-∆) -1 v(s) ∞ ≤ Cs -1 2 obtained from Lemma 2.2, and (28). Then we arrive at

∇B 0 (u, v)(t) L r,∞ ≤ C t/2 0 (t -s) -1 u(s) L r,∞ ∇(-∆) -1 v(s) ∞ ds + C t t/2 (t -s) -1 2 ∇u(s) L r,∞ ∇(-∆) -1 v(s) ∞ + s -2+ 1 r ds ≤ Ct -3 2 + 1 r .
Moreover, for u 0 ∈ E, we have |e

t 2 ∆ u 0 (x)| ≤ C(t + |x| 2 ) -1 . Hence, e t 2 ∆ u 0 L γ,∞ ≤ Ct -1+ 1 γ for 1 < γ < ∞. We now choose β, γ ∈ (1, ∞) such that 1 + 1 r = 1 β + 1 γ .
Then, the semigroup property of the heat kernel g t , and the fact that ∇g t/2 ∈ L β,1 , imply

∇e t∆ u 0 L r,∞ ≤ Ct -3 2 + 1 r .
Now the usual the application of the contraction mapping theorem, in a closed ball of small radius in the space X r , allows us to conclude.

The following proposition is the first crucial tool for our stability result. It provides the Hölder regularity, with respect to the time variable, of solutions of (PE) in Lorentz spaces. Proposition 4.2 Let 1 < r < 2 and u 0 ∈ E, such that u 0 E < ǫ r . Then the solution u of (PE) constructed in Proposition 4.1 satisfies for all 0

< t ′ < t u(t) -u(t ′ ) L r,∞ ≤ C(t -t ′ ) 1 2 (t ′ ) -3 2 + 1 r , (30) 
for some C = C(u 0 , r) independent of t and t ′ .

Proof. It is enough to show that both e t∆ u 0 -e t ′ ∆ u 0 and B 0 (u, u)(t) -B 0 (u, u)(t ′ ) satisfy the required bound in the L r,∞ -norm.

From the identity e t∆ u 0 (x) -e t ′ ∆ u 0 (x) = e t ′ ∆ u 0 (x -y) -e t ′ ∆ u 0 (x) g t-t ′ (y) dy = -

1 0 ∇e t ′ ∆ u 0 (x -θy) • yg t-t ′ (y) dy dθ,
we get

e t∆ u 0 -e t ′ ∆ u 0 L r,∞ ≤ C ∇e t ′ ∆ u 0 L r,∞ yg t-t ′ 1 ≤ C(t -t ′ ) 1 2 (t ′ ) -3 2 + 1 r .
Now, we can write

B 0 (u, u)(t) -B 0 (u, u)(t ′ ) = A 1 + A 2 ,
with

A 1 ≡ t ′ 0 G(t -s) -G(t ′ -s) * u∇(-∆) -1 u (s) ds and A 2 ≡ t t ′ G(t -s) * u∇(-∆) -1 u (s) ds.
Recall that from u ∈ X we deduce (29). Combining this with the estimate of Lemma 2.2 we get

u∇(-∆) -1 u(s) L r,∞ ≤ Cs -3 2 + 1 r . (31) 
This immediately yields

A 2 L r,∞ ≤ t t ′ (t -s) -1 2 s -3 2 + 1 r ds ≤ C(t -t ′ ) 1 2 t ′ -3 2 + 1 r .
The estimate of A 1 is slightly more involved. We start with the identity

G(t -s) -G(t ′ -s) = e (t-t ′ )∆ -Id G(t ′ -s).
The action of the convolution operator with the function on the right hand side is studied via the following variant of a result established in [START_REF] Meyer | Wavelets, paraproducts and Navier-Stokes equations[END_REF]. . Then, for some constant C depending only on r ∈ (1, ∞)

e t∆ -Id f L r,∞ ≤ Ct 1 2 Λf L r,∞ .
Proof. Writing f = Λ -1 Λf , we see that

e t∆ -Id f = Φ t * (Λf ), where, Φ t (ξ) = t 1 2 Φ(t 1 2 ξ), and 
Φ(ξ) = (e -|ξ| 2 -1)|ξ| -1 .
It only remains to show that Φ ∈ L 1 (R2 ), which is immediate. Indeed, it is well known, and easy to check, that Ψ(ξ) = |ξ|e -|ξ| 2 defines a function Ψ ∈ L 1 (R 2 ) (for example, with the method described in [START_REF] Furioli | Molecules of the Hardy space and the Navier-Stokes equations[END_REF], one obtains

|Ψ(x)| ≤ C(1 + |x|) -3 and |∇Ψ(x)| ≤ C(1 + |x|) -4
). We conclude applying the Bochner inequality to the identity

Φ(x) = -2 ∞ 1 Ψ(η x) dη.
Using this Lemma we deduce

A 1 L r,∞ ≤ C(t -t ′ ) 1 2 t ′ 0 Λ∇g t ′ -s * u∇(-∆) -1 u (s) L r,∞ ds = C(t -t ′ ) 1 2 (A 1,1 + A 1,2 ),
where A 1,1 and A 1,2 are obtained splitting the integral at s = t ′ /2. But, as the function Ψ introduced in the proof of Lemma 4.1 satisfies ∇Ψ ∈ L 1 (R 2 ), we see by a simple rescaling that

Λ∇g t ′ -s 1 ≤ C(t ′ -s) -1 .
Combining this estimate with inequality (31), we get

A 1,1 ≤ C(t ′ ) -3 2 + 1 r , 1 < r < 2.
For treating A 1,2 , we combine the estimate

Λg t ′ -s 1 ≤ C(t ′ -s) -1 2
with the inequality (for 1 < r < 2)

(∇u) ∇(-∆) -1 u (s) L r,∞ + u ∇ 2 (-∆) -1 u (s) L r,∞ ≤ Cs -2+ 1 r ,
obtained by applying (26), Lemma 2.2, and (28) with u = v. We get as before

A 1,2 ≤ C(t ′ ) -3

The vanishing τ limit

After Proposition 4.2, the second crucial step for the study of the limit as τ ց 0 consists in the asymptotic analysis of the linear operators W τ , τ ≥ 0, introduced in (18a)-(18b). This is the purpose of the following lemma.

Lemma 4.2 Let ε = ε(τ ) be an arbitrary function, strictly increasing and continuous on [0, 1], such that ε(0) = 0. Let also 1 < r < 2 and u be a function satisfying, for 0 < t ′ < t,

u(t) L r,∞ ≤ Ct -1+ 1 r , u(t) -u(t ′ ) L r,∞ ≤ C(t -t ′ ) 1 2 (t ′ ) -3 2 + 1 r , ( 32 
)
with a constant C independent of t, t ′ . Then, for all t > 0, τ ∈ [0, 1], and for another constant C, independent of t and τ ,

ε(τ ) sup t>0 t 1 2 (W τ (u) -W 0 (u)) (t) ∞ ≤ Cτ 1 r -1 2 . ( 33 
)
In particular, if u 0 ∈ E is small enough (for example, u 0 E ≤ ǫ 3/2 ), then the corresponding solution u of (PE) constructed in Proposition 4.1 satisfies

lim τ →0 sup t>0 t 1 2 (W τ (u) -W 0 (u)) (t) ∞ = 0. ( 34 
)
Proof. Without any restriction we can assume that 0 < ε(τ ) < 1 2 for positive τ . Define ε(τ ) such that ε = ε 1 r -1 2 . Borrowing from [START_REF] Raczyński | Stability property of the two-dimensional Keller-Segel model[END_REF] the idea of splitting the time integral using intervals depending on τ , we write

W τ (u) -W 0 (u) ≡ J 1 + J 2 + J 3 ,
where

J 1 (t) = t(1-ε(τ )) 0 1 τ G t -s τ * u(s) ds, next J 2 (t) = t t(1-ε(τ )) 1 τ G t -s τ * u(t) ds -W 0 (u)(t),
and

J 3 (t) = t t(1-ε(τ )) 1 τ G t -s τ * u(s) -u(t) ds.
From the first relation of (32) and the Young inequality in Lorentz space (using that, by (7), G(•, t) ∈ L r ′ ,1 (R 2 ), where r ′ is the conjugate exponent), we get

J 1 (t) ∞ ≤ Cτ 1 r -1 2 t(1-ε(τ )) 0 (t -s) -1 2 -1 r s -1+ 1 r ds ≤ C τ ε(τ ) 1 r -1 2 t -1 2 .
Notice that this estimate of J 1 is exactly what we need for (33). As for J 2 , we see from a simple computation via the Fourier transform that J 2 (t) = -g tε(τ )/τ * W 0 (u)(t).

If 1 α = 1 r -1 2
, then we deduce from the usual weak-convolution estimates that

W 0 (u) = ∇(-∆) -1 u is bounded in the L α,∞ -norm, by Ct -1+ 1
r . Applying once more the Young inequality (using now g tε(τ )/τ ∈ L α ′ ,1 ), we get, as before,

J 2 (t) ∞ ≤ C τ ε(τ ) 1 r -1 2 t -1 2 .
Applying the second of inequalities (32), we obtain immediately

J 3 (t) ∞ ≤ Cτ 1 r -1 2 t -1 2 ,
which is even better than what we need. This proves the inequality (33). Choosing, for example, r = 3 2 and ε(τ ) = 1 2 τ 1/12 proves the last claim (34) of Lemma 4.2.

We are now in the position of establishing our first main result Theorem 4.1 There exists an absolute constant ǫ ′ > 0 (a priori smaller than the constants ǫ, ǫ * > 0 in Theorems 2.1 and 3.1), such that if u 0 ∈ E, u 0 E < ǫ ′ , then denoting by u ∈ X the solution of (PE) and u τ ∈ X the solution of (PP) constructed in the previous theorems, we have as τ ց 0

u τ → u in X .
Proof. The proof follows easily from Lemma 4.2. Indeed, from the integral equations ( 4) and ( 19), the bilinearity of B τ and B 0 , and the smallness of the solutions u τ and u, we have (similarly as in [START_REF] Raczyński | Stability property of the two-dimensional Keller-Segel model[END_REF], where two terms in the bilinear expansion can be absorbed by the left hand side)

u τ -u X ≤ C B τ (u, u) -B 0 (u, u) X .
But, by the definition of W τ and W 0 (see (18a)-(18b)),

B τ (u, u)(t) -B 0 (u, u)(t) = t 0 G(t -s) * u(W τ (u) -W 0 (u)) (s) ds.
Argueing as in the proof of Lemma 2.3, we obtain

B τ (u, u) -B 0 (u, u) X ≤ C u X sup t>0 t 1 2 W τ (u) -W 0 (u)(t) ∞ .
If ǫ ′ > 0 is small enough, then Lemma 4.2 can be applied to the solution u of (PE), implying that the right hand side of the above inequality has a vanishing limit for small τ . This finally gives u τ -u X → 0 as τ ց 0.

Remark 4.1 Notice that, the smaller the norm u 0 E , the faster the convergence u τ → u as τ → 0. This is due to the fact that for very small data it is possible to apply Lemma 4.2 with r close to 1 (despite the constants in our estimates blow up as r ց 1). More precisely, our arguments show that for any 0 < δ < 1 2 , one can find a constant C > 0 and ǫ(δ) > 0 such that, for u 0 E ≤ ǫ(δ), one has u τ -u X ≤ Cτ 

The parabolic-elliptic limit in stronger topologies

If u 0 ≥ 0 is small in the E-norm, and belongs to a smaller space, for example, u 0 ∈ E ∩ L 1 , then the solutions u τ and u of (PP) and (PE) will remain in L 1 , uniformly in time, during their evolution. Hence, it is natural to ask whether the convergence u τ → u holds also in the natural norm of L ∞ ((0, ∞); L 1 ). Our next theorem provides a positive answer. As the proof of this fact does not really depend on a particular topology under consideration, it seems appropriate to consider a more abstract setting.

We denote by L any shift invariant Banach space of local measures, see [START_REF] Lemarié-Rieusset | Recent Development in the Navier-Stokes Problem[END_REF]Ch. 4] for their definition and main properties. These are Banach spaces of distributions, continuously embedded in D ′ (R 2 ). Moreover, they are known to satisfy the following properties (for some constant C > 0 depending only on L),

1. For all f ∈ L, g ∈ L 1 (R 2 ), the convolution product f * g is well defined in L and f * g L ≤ C f L g 1 . 2. For all f ∈ L, h ∈ L ∞ (R 2 ), the pointwise product f h is well defined in L and f h L ≤ C f L h ∞ .
3. Each bounded sequence {f k } ⊂ L has a subsequence convergent in L, in the distributional sense.

Obvious examples of spaces satisfying these properties (and which are indeed shift invariant space of local measures) are the L p -spaces, 1 < p ≤ ∞, the Lorentz spaces L p,q , 1 < p < ∞, 1 < q ≤ ∞ and the space of bounded Borel measures M(R 2 ) = C 0 (R 2 ) * . In the latter case, such duality relations ensures Property 3. Other interesting examples include the Morrey-Campanato spaces M p,q , (1 < p ≤ q < ∞) and suitable multiplier spaces, see [START_REF] Lemarié-Rieusset | Recent Development in the Navier-Stokes Problem[END_REF]Ch. 17].

On the other hand, the space of pseudomeasures, i.e., the space of tempered distributions f such that f ∈ L ∞ ) does not fulfill the second requirement. Therefore, the stability result in the pseudomeasure topology will not be encompassed by our next Theorem, but requires a specific (and more involved) treatment, see [START_REF] Raczyński | Stability property of the two-dimensional Keller-Segel model[END_REF].

Notice that, because of the conservation of the total mass for positive solutions of (PE) and (PP), the L 1 -norm remains constant during the evolution. This observation will allow us to handle the case of data u 0 ∈ E ∩ L 1 , despite Property 3 breaks down for L 1 . Theorem 4.2 Let u 0 ∈ E ∩ L, where L is either a shift invariant Banach space of local measures, or L = L 1 . In the latter case we require either u 0 ≥ 0 or, for signed u 0 , that u 0 1 is sufficiently small. Then there exists a positive constant ǫ , depending only on L, such that, if

u 0 E < ǫ,
then the systems (PE) and (PP) possess unique solutions u and u τ , respectively, such that for an absolute constant β > 0, u X ≤ βǫ and u τ X ≤ βǫ. In addition,

sup t>0 u(t) L < ∞ and sup t>0 u τ (t) L < ∞.
Moreover, the conclusion u τ (t)-u(t) X → 0 of Theorem 4.1 is strengthened

sup t>0 u τ (t) -u(t) L → 0 as τ ց 0.
Proof. Obviously we have, for some constant C 0 > 0 independent of t e t∆ u 0 L ≤ C 0 .

Moreover, for each τ ≥ 0 (we include in this way the analysis of (PE)), we have the estimate

B τ (u, v)(t) L ≤ C sup t>0 u(t) L v X , (35) 
We now discuss the stability, including also the case L = L 1 . From the bilinearity of B τ , the mixed estimate (35) and the smallness of the solutions u and u τ (allowing two terms of the bilinear expansions to be absorbed by the left hand side), we obtain

u τ (t) -u(t) L ≤ C sup t>0 B τ (u, u) -B 0 (u, u)(t) L .
Argueing as at the end of the proof of Theorem 4.1, we arrive at

B τ (u, u)-B 0 (u, u)(t) L ≤ C sup t>0 u(t) L sup t>0 t 1 2 (W τ (u)-W 0 (u))(t) ∞ ,
and the conclusion follows from Lemma 4.2.

Remark. As an application of this general result, let us observe that taking L = L ∞ , we obtain for u 0 ∈ E ∩ L ∞ , with u 0 small in the E-norm,

u τ → u as τ ց 0, uniformly in (x, t) ∈ R 2 × [0, ∞).
5 Blow up of complex valued solutions of the parabolic-parabolic system

Consider the system (PP) in the space R d with any d ≥ 1. Passing to the Fourier transforms, we may write the Duhamel formula [START_REF] Herrero | A blow-up mechanism for a chemotaxis model[END_REF] in the form u(ξ, t) = e -t|ξ| 2 u 0 (ξ)

+ t 0 s 0 R d ξ • η τ e -(t-s)|ξ| 2 e -1 τ (s-σ)|η| 2 u(ξ -η, s) u(η, σ) dη dσ ds. ( 36 
)
Our goal is to construct a class of complex valued initial data, such that the corresponding solutions blow up in finite time, in any classical norm. For a ∈ R, we denote by Ḃa,∞ ∞ the homogeneous Besov space, which can also be identified with the Hölder-Zygmund space Ċa . As it is well known (see [START_REF] Lemarié-Rieusset | Recent Development in the Navier-Stokes Problem[END_REF][START_REF] Montgomery-Smith | Finite time blow up for a Navier-Stokes like equations[END_REF]), most of the classical functional spaces (including all homogeneous Triebel-Lizorkin, and thus Lebesgue or Sobolev spaces) are continuously embedded in Ḃa,∞ ∞ for some real a.

Theorem 5.1 There exists w 0 ∈ S(R d ) such that w 0 (ξ) ≥ 0, w 0 L 1 = 1.

If A is sufficiently large, then any (tempered) distributional solution of (36) with u 0 = Aw 0 (and thus any solution of (PP)) blows up in a finite time. More precisely, for some time t * < ∞ and each a

∈ R, u(t * ) Ḃa,∞ ∞ = ∞ holds.
Our approach is closely related to that in [5, Theorem 3.1] which followed the argument in [START_REF] Montgomery-Smith | Finite time blow up for a Navier-Stokes like equations[END_REF] for the "cheap" Navier-Stokes equations. We produce some estimates from below of the Fourier transform of any solution with u(0) = u 0 that can be obtained via the iteration procedure for (36) with

u k+1 = e t∆ u 0 - t 0 ∇ • e (t-s)∆ 1 τ u k (s)∇ s 0 e 1 τ (s-σ)∆ u k (σ) dσ ds,
for k = 1, 2, . . . . This recurrence relation, in general, does not preserve the positivity of the Fourier transform of u 0 . This leads us to restrict our attention to data of the form u 0 = A w 0 with w 0 ∈ S(R d ), such that supp

w 0 ⊂ ξ ∈ R d : 2 -1 ≤ ξ 1 ≤ |ξ| ≤ 1 . Define, for k = 0, 1, . . . the set E k = ξ ∈ R d : 2 k-1 ≤ ξ 1 ≤ |ξ| ≤ 2 k .
Then we see that for w k = w 2 k 0 , we have w k = (2π) -d w k-1 * w k-1 , and therefore, supp w k ⊂ E k . This implies that if, in addition, w 0 (ξ) ≥ 0, then the positivity of the Fourier transform will be preserved by the sequence u k , and so by u. Next Lemma tells us more: Lemma 5.1 For all k = 0, 1, 2, . . . , we have u(ξ, t) ≥ β k e -2 k t 1 t k ≤t<t * (t) w k (ξ), (37

)
where {β k } and {t k } are two sequences defined below in (38) and (39).

Proof. For k = 0, the conclusion immediately follows from u(ξ, t) ≥ Ae -t|ξ| 2 w 0 (ξ), provided we choose β 0 = A and t 0 = 0. Let k ≥ 1. Assume that the inequality of the lemma holds for k -1. Then, for all t k ≤ t < t This suggests us to set, for some δ > 0, t * -t k-1 = δτ 2 -2k+2 . With this choice, putting t 0 = 0, we have

t * = δτ, t k = δτ (1 -2 -2k ). (38) 
Then, t k -t k-1 = 3δτ 2 -2k . We get, for t k ≤ t < t * , u(ξ, t) ≥ (3δτ -1 + e -4δτ )2 -2k-3 τ -1 e -δ β 2 k-1 e -2 k t w k (ξ).

This inequality is interesting only if the right hand side is positive. Therefore we will assume that 3δτ ≥ 1. We choose {β k } in such a way that β 0 = A, β k = (3δτ -1 + e -4δτ )2 -2k-3 τ -1 e -δ β 2 k-1 , k = 1, 2, . . . .

This choice leads to inequality (37).

In order to compute β k , we introduce M δ,τ , such that 2 M δ,τ = (3δτ -1 + e -4δτ )e -δ 2 -3 τ -1 .

Notice that we have β k = 2 M δ,τ -2k β 2 k-1 . We claim that, for some a, b, c ∈ R,

β k = A 2 k 2 a+bk+c2 k .
Indeed, from an easy calculation we find b = 2, a = 4 -M δ,τ and finally c = M δ,τ -4, which is needed to ensure β 0 = A. Hence, we have

β k = A 2 M δ,τ -4 2 k 2 4-M δ,τ +2k , k = 0, 1, . . . . (39) 
We conclude that when A ≥ 2 4-M δ,τ , we have by (39) β k → ∞ and, in particular, u(t k ) L 1 = u(t k ) ∞ → ∞ for k → ∞. The above size condition on A can be rewritten in an equivalent form as (3δτ -1 + e -4δτ )A ≥ 2 7 e δ τ.

A further analysis of the lower bounds obtained for the Fourier transform of a candidate solution permits us to conclude, as was in [START_REF] Biler | Global existence versus blow up for some models of interacting particles[END_REF], that u(t * ) Ḃa,∞ ∞ = ∞ for each a ∈ R, so that all Besov (and also L p or Triebel-Lizorkin) norms of u blow up not later than t * . Notice that, for a blow-up at t * = 1, we need A ≥ Ce 1/τ τ , cf. (38).

Lemma 4 . 1

 41 Denote the Calderón operator by Λ = (-∆) 1 2

1 2

 1 -δ for all 0 ≤ τ ≤ 1.

  t) dy. The terms I 2 and I 3 are obtained by taking the integration domains {|x -y| ≤ |x|/2} and {|x -y| ≥ |x|/2, |y| ≥ |x|/2}, respectively, in the convolution integrals defining ∂

j ϕ. It is straightforward to prove that I 2 and I 3 can be bounded by C u X t 1 2 + |x| -1

  2k e -1 τ (t * -t k-1 )2 2k-2 β 2 k-1 e -2 k s w k (ξ) ds -t k-1 )2 2k-2 β 2 k-1 e -2 k t w k (ξ) -t k-1 )2 2k-2 β 2 k-1 e -2 k t w k (ξ) ≥ (t k -t k-1 ) -1 -e -(t * -t k-1 )2 2k 2 2k -t k-1 )2 2k-2 β 2 k-1 e -2 k t w k (ξ).

	Thus, we can bound u(ξ, t) from below as follows
	u(ξ, t) ≥ e -(t-s)2 ≥ t t k-1 (s -t k-1 ) 2 2k-3 τ t t k-1 (s -t k-1 )e -(t-s)2 2k ds 2 2k-3 τ τ (t = e -1 t -t k-1 2 2k -1 -e -(t-t k-1 )2 2k 2 4k 2 2k-3 τ e -1 τ (t 2 -3 τ e -1 τ (t
	u(ξ, t) ≥	t	s	ξ 1 η 1 τ	e -(t-s)|ξ| 2 e -1 τ (s-σ)|η| 2 β 2 k-1 e -2 k-1 s e -2 k-1 σ ×
		t k-1	t k-1 R d		
					×	w k-1 (ξ -η) w k-1 (η) (2π) d	dη dσ ds
		t			
	≥				
		t k-1 R ) (2π) d	dη ds

* , d (s -t k-1 ) ξ 1 2 k-2 τ e -(t-s)|ξ| 2 e -1 τ (t * -t k-1 )2 2k-2 β 2 k-1 e -2 k s × × w k-1 (ξ -η) w k-1 (η* * *

+ 1 r , 1 < r < 2,and this concludes the proof of Proposition 4.2.
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where C > 0 depends only on L. This follows from [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF] written as

for each τ ≥ 0, with the convention (18b). Therefore, using the usual estimate [START_REF] Blanchet | Infinite time aggregation for the critical Patlak-Keller-Segel model in R 2[END_REF], we have

The last factor is bounded by v X owing to Lemma 2.2 in the case τ = 0, and to Lemma 2.3 for τ > 0. This yields (35). Now, we can consider, for τ ≥ 0, the sequence of approximating solutions

When ǫ < min{ǫ, ǫ * }, we know by the proofs of Theorems 2.1 and 3.1 that the sequence u τ k converges in X to the solution u τ of (PE) or (PP). Here, of course, u = u 0 for the solutions of (PE).

On the other hand, applying recursively (35), we get u τ k (t) ∈ L for all k and sup Iterating this inequality we arrive at

where C ′ > 0 is independent on τ . Of course, the last claim remains valid in the case L = L 1 and u 0 ≥ 0 (notice that the smallness of u 0 E prevents blow up results that could occur, otherwise, when the second moment of u 0 are finite and u 0 > 8π. See the introduction and the references therein quoted). If we remove the assumption u 0 ≥ 0, we can obtain the same conclusion provided u 0 1 is sufficiently small. Indeed, we see from inequality (35) that the fixed point argument applies in the space L ∞ t (L 1 ) ∩ X .