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Abstract

We establish new convergence results, in strong topologies, for so-
lutions of the parabolic-parabolic Keller–Segel system in the plane, to
the corresponding solutions of the parabolic-elliptic model, as a phys-
ical parameter goes to zero. Our main tools are suitable space-time
estimates, implying the global existence of slowly decaying (in general,
nonintegrable) solutions for these models, under a natural smallness
assumption.

Key words and phrases: chemotaxis system, local and global in time
solutions, convergence of solutions

AMS subject classification: 35K55, 35Q80, 46E35

1 Introduction

We consider two related nonlinear parabolic systems which are frequently
used as models for a description of chemotactic phenomena, including the
aggregation of microorganisms caused by a chemoattractant, i.e. a chem-
ical whose concentration gradient governs the oriented movement of those
microorganisms. The parabolic character of the systems comes from the dif-
fusion described by the Laplacians. A version of the system (PE) below is also

1



used in astrophysics as a model of the evolution of a cloud of self-gravitating
particles in the mean field approximation.

The first one is the classical parabolic-elliptic Keller–Segel system





ut = ∆u −∇ · (u∇ϕ),

∆ϕ + u = 0,

u(0) = u0.

x ∈ R
2, t > 0, (PE)

Here, u = u(x, t), ϕ = ϕ(x, t) are either functions or suitable (tempered)
distributions. When u ≥ 0, ϕ ≥ 0, they may be interpreted as concentrations
(densities) of microorganisms and chemicals, respectively.

The second one is the parabolic-parabolic system





ut = ∆u −∇ · (u∇ϕ),

τϕt = ∆ϕ + u,

u(0) = u0, ϕ(0) = 0,

x ∈ R
2, t > 0, (PP)

where τ > 0 is a fixed parameter. Each of the models can be considered as
a single nonlinear parabolic equation for u with a nonlocal (either in x or in
(x, t)) nonlinearity since the term ∇ϕ can be expressed as a linear integral
operator acting on u. In the latter model, the variations of the concentration
ϕ are governed by the linear nonhomogeneous heat equation, and therefore
are slower than in the former system, where the response of ϕ to the variations
of u is instantaneous, and described by the integral operator (−∆)−1 whose
kernel has a singularity. Thus, one may expect that the evolution described
by (PE) might be faster than that for (PP), especially for large values of τ
when the diffusion of ϕ is rather slow compared to that of u. Moreover, the
nonlinear effects for (PE) should manifest themselves faster than for (PP).

The theory of the system (PE) is relatively well developed, in particular
when this is studied in a bounded domain in R

d, d = 1, 2, 3, with the ho-
mogeneous Neumann conditions for u and ϕ at the boundary of the domain.
One of the most intriguing properties of (PE) considered for positive and
integrable solutions u in d = 2 case is the existence of a threshold value 8π
of mass M ≡

∫
u(x, t) dx, see the pioneering work [17] and [1, 3]. Namely, if

u0 ≥ 0 is such that
∫

u0(x) dx > 8π, then any regular, positive solution u of
(PE) cannot be global in time. We refer the reader for a fine description of
the asymptotic behaviour of integrable solutions of (PE) in the subcritical
case M < 8π to [11] and to [10] for the limit case M = 8π. See also [8, 9]
in the radially symmetric case. The higher dimensional versions of (PE)
have been also extensively studied, cf., e.g., [2, 6, 5], and [1] for blow up
phenomena.

The doubly parabolic system (PP) has been a bit less studied. For in-
stance, it is known that if for the initial data u0 one has M < 8π, then
positive solutions are global in time, see [12] in the case of a bounded planar
domain, and also [3, Theorem 5]. However, it is not known whether M ≤ 8π
is, in general, a necessary condition for the existence of global in time so-
lutions. That is, it is not known whether the blow up occurs for solutions,
except for a specific example in [16] of a particular blowing up solution for
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a system close to (PP). Even, it is an open question what is the exact range
of M guaranteeing the existence of integrable self-similar solutions. For the
system (PE) it is proved that M ∈ [0, 8π), and the self-similar solutions
(unique for a given M ∈ [0, 8π)) describe the generic asymptotic behaviour
of global in time, positive and integrable solutions of (PE). Concerning (PP),
it is known that M < M(τ) with M(τ) linear in τ , is a necessary condition
for the existence of self-similar solutions, cf. [4]. For (PP) with small M
such special solutions are also important in the study of space-time decay of
general solutions, see [24]. The analysis if any M > 8π may correspond to a
self-similar solution is under way, see [7]. For a different point of view about
self-similar solutions for higher dimensional models of (PP), see also [18].
Usual proofs of a blow up for (PE) involve calculations of moments of a so-
lution and then symmetrization, cf. [11, 1]. These methods seem do not
work for (PP), hence another approach is needed to show a blow up for that
system. For a numerical insight on blow-up issues we refer, e.g., to [14].

A nice result in [25] shows that the solutions of the systems (PP) and
(PE) enjoy a kind of stability property as τ ց 0: solutions of (PP) converge
in a suitable sense to those of (PE). It had been an old question raised by
J. J. L. Velázquez and D. Wrzosek, recently solved in [25]. However, this
result obtained for suitably small solutions in quite a big functional space of
pseudomeasures, gives no indication on the behaviour of possible (“large”)
blowing up solutions.

The solvability of the systems (PE), (PP) has been studied in various
classes of functions and distributions, like Lebesgue, Morrey, Besov, etc.,
with an immediate motivation to include the a priori strongest possible crit-
ical singularities of either solutions or initial data which appear to be point
measures in the two-dimensional case and the multiples of |x|−2 function in
the higher dimensional case. In particular, “vast” functional spaces suitable
for analysis of the two-dimensional systems include measure and pseudomea-
sure spaces, cf. [2, 3, 6, 25].

We show in this paper a result on the existence of (in general, nonin-
tegrable) solutions in a class X of functions with natural space-time decay
properties, see Theorem 2.1 and 3.1. Here, the space E of admissible initial
conditions also contains Dirac measures. The corresponding solutions may
be positive and “large” in the sense of their nonintegrability. Nevertheless,
they are defined globally in time. Unlike the paper [25], we work in (x, t)
space, when [25] has dealt with the Fourier variables ξ, cf. the formulation
(36) below. Such results are obtained by an extension and refinement of tech-
niques used in [5] for (PE) in higher dimensions, but neither for (PP), nor in
the two-dimensional case of (PE) which often requires a specific treatement.
Moreover, the function spaces that we employ here allow us to deal with data
that can be more singular than those considered in [5]. The spaces X and E
defined in the next section are, in a sense, critical for that analysis, and have
been already considered, in slightly different forms, e.g. in the studies of the
Navier–Stokes system in [13, 22].

Our main results are contained in Section 4, where we address the problem
of the convergence as τ ց 0 of solutions uτ of the system (PP) to the
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corresponding solutions u of (PE), in the space X , arising from small data
in E. Mathematically, our stability result is not included in, and does not
imply, that of [25]. However, it seems to us that the use of the natural (x, t)
variables provides a more immediate physical interpretation. Furthermore,
our method looks more flexible, and can be used to prove the stability of the
system with respect to stronger topologies. For example, we establish also
the convergence in the L∞

t (L1
x)-norm for data belonging to E∩L1, and in the

L∞
t,x -norm for data in E ∩ L∞. Motivated by [19], we will also address this

issue in the more general setting of shift invariant spaces of local measures.
The main difficulty for obtaining the convergence uτ → u in strong norms is
that ∇ϕτ enjoys some kind of instability as τ → 0, in particular in weighted
spaces.

Moreover, we give a nonexistence (blow up) result for solutions of (PP) in
R

d, d ≥ 1, with the positive Fourier transform of û0 in the spirit of [23], see
Theorem 5.1. These are complex valued solutions with no straightforward
physical/biological interpretation. However, such a result tells us that there
is no hope to prove the global existence of solutions to (PP) and similar
models for arbitrarily large data relying only on size estimates.

2 The parabolic-elliptic system

In order to study the systems (PE) and (PP) we introduce the Banach space
X of functions u = u(x, t) and the Banach space E of tempered distributions
u0 ∈ S ′(R2) by defining the norms

‖u‖X = ess supt>0,x∈R2 (t + |x|2) |u(x, t)|, (1)

and
‖u0‖E = ‖et∆u0‖X . (2)

Here, et∆ denotes the heat semigroup defined by the Gaussian kernel gt,
gt(x) = 1

4πt
e−

1

4t
|x|2. For example, the Dirac mass u0 = δ in R

2 is an element of
E. Notice that, by the definition, E is continuously embedded into the weak
Hardy space H1

w, which is the space consisting of all tempered distributions f
such that supt>0 |e

t∆f | belongs to the Lorentz space L1,∞(R2). See [21].

Let us define the bilinear form B0 by

B0(u, v)(t) ≡

∫ t

0

e(t−s)∆∇ · (u∇(−∆)−1v)(s) ds. (3)

Here, (−∆)−1 is the convolution operator on functions defined on R
2 with

the kernel K(x) = − 1
2π

log |x|. With this notation, the equivalent integral
(mild) formulation to (PE), called also the Duhamel formula, reads

u(t) = et∆u0 − B0(u, u). (4)

We begin by establishing the following simple result
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Theorem 2.1 There exist two absolute constants ǫ, β > 0 with the following
property. Let u0 ∈ E be such that ‖u0‖E < ǫ. Then there exists a unique
(mild) solution u ∈ X of (PE) such that ‖u‖X ≤ ǫβ.

The proof of Theorem 2.1 will follow from a series of lemmata.

First, we have the following estimate of the leading term in ∇ϕ

Lemma 2.1 Let u ∈ X and ϕ be such that ∆ϕ + u = 0. Then

∇ϕ(x, t) =
c0 x

|x|2

∫

|y|≤|x|/2

u(y, t) dy + R(x, t) (5)

with c0 = − 1
2π

and the remainder R satisfying

|R(x, t)| ≤ C‖u‖X

(
t

1

2 + |x|
)−1

.

Proof. Indeed, let us represent the partial derivatives of ϕ, for j = 1, 2, as

∂jϕ =
c0xj

|x|2
∗ u ≡ I1 + I2 + I3,

where

I1 =

∫

|y|≤|x|/2

c0(xj − yj)

|x − y|2
u(y, t) dy.

The terms I2 and I3 are obtained by taking the integration domains {|x−y| ≤
|x|/2} and {|x − y| ≥ |x|/2, |y| ≥ |x|/2}, respectively, in the convolution
integrals defining ∂jϕ. It is straightforward to prove that I2 and I3 can be

bounded by C‖u‖X

(
t

1

2 + |x|
)−1

. On the other hand, we can rewrite I1 as

c0xj

|x|2

∫

|y|≤|x|/2

u(y, t) dy + R1(x, t).

An application of the Taylor formula shows that the above bound holds also
for R1.

We immediately deduce from (5) the following useful estimate

Lemma 2.2 Let u ∈ X and ∆ϕ + u = 0. Then

‖∇ϕ(t)‖L∞ ≤ C‖u‖X t−
1

2 .

The last lemma that we need is the following

Lemma 2.3 Let u, v ∈ X . Then, for some constant C0 independent of u, v

‖B0(u, v)‖X ≤ C0‖u‖X‖v‖X .
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Proof. We can assume, without any restriction, that ‖u‖X = ‖v‖X = 1.
Lemma 2.2 implies

|u∇(−∆)−1v|(x, t) ≤ C|x|−
3

2 t−
3

4 , (6a)

and also
|u∇(−∆)−1v|(x, t) ≤ C|x|−2t−

1

2 . (6b)

We denote the gradient of the heat semigroup kernel gt by

G(·, t) ≡ ∇x

(
1

4πt
e−

1

4t
| · |2

)
. (7)

Then we may represent B0 as

B0(u, v)(x, t) =

∫ t

0

∫
G(x − y, t − s)(u∇(−∆)−1v)(y, s) dy ds

≡ J1 + J2,

where J1 =
∫ t

0

∫
|y|≤|x|/2

. . . and J2 =
∫ t

0

∫
|y|≥|x|/2

. . . . Using the estimate

|G(x − y, t − s)| ≤ C|x − y|−
5

2 (t − s)−
1

4

and inequality (6a), we get the bound

|J1(x, t)| ≤ C|x|−2. (8)

Another possible estimate is

|J1(x, t)| ≤ C|x|−
3

2 t−
1

4 , (9)

which is obtained using the bound

|G(x − y, t − s)| ≤ C|x − y|−2(t − s)−
1

2 .

On the other hand, from the property

‖G(·, t− s)‖L1 = c(t − s)−
1

2 (10)

and inequality (6b), we obtain

|J2(x, t)| ≤ C|x|−2. (11)

As before, we have also the bound

|J2(x, t)| ≤ C|x|−
3

2 t−
1

4 . (12)

This second estimate is deduced from (6a).
Then, using (8), (11), we obtain the space decay estimate

|B0(u, v)|(x, t) ≤ C|x|−2 (13)

and from (9), (12) — a provisory (not optimal) time decay estimate

‖B0(u, v)(t)‖
L

4
3

,∞ ≤ Ct−
1

4 .
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But we may represent B0 as

B0(u, v)(t) = e
t
2
∆B(u, v)(t/2) +

∫ t

t/2

G(t − s) ∗ (u∇(−∆)−1v)(s) ds.

Thus, applying the weak Young-type inequality for convolutions in Lorentz
spaces L

4

3
,∞ ∗L4,1 ⊂ L∞, see [19], and the equality obtained from the scaling

laws in Lorentz spaces,
∥∥∥∥

1

4πt
e−

1

4t
| · |2

∥∥∥∥
L4,1

= ct−
3

4 , (14)

we finally get

‖B0(u, v)(t)‖L∞ ≤ Ct−1 + C

∫ t

t/2

(t − s)−
1

2‖u∇(−∆)−1v(s)‖L∞ ds

≤ Ct−1.

(15)

Combining inequalities (13) and (15) we get B(u, v) ∈ X , together with its
continuity with respect to u and v.

Proof. Note that (using the duality S − S ′) we have et∆u0 → u0 in S ′ as
t → 0. The conclusion of Theorem 2.1 follows in a standard way (cf., e.g.,
[19, 2, 6]) from the contraction fixed point theorem.

3 The parabolic-parabolic system

Let τ > 0 be a fixed parameter. We consider the system (PP) whose equiv-
alent integral formulation reads

u(t) = et∆u0 −

∫ t

0

∇ · e(t−s)∆

[
u(s)

1

τ
∇

∫ s

0

e
1

τ
(s−σ)∆u(σ) dσ

]
ds. (16)

We introduce for all τ ≥ 0 the bilinear form Bτ (recall that G is defined by
the expression (7))

Bτ (u, v)(x, t) ≡

∫ t

0

∫
G(x − y, t − s)

(
u Wτ(v)

)
(y, s) dy ds, (17)

where Wτ (v) is the linear operator acting on v

Wτ (v)(x, t) =

∫ t

0

1

τ

[
G

(t − σ

τ

)
∗ v(σ)

]
(x, σ) dσ for τ > 0, (18a)

with a natural convention

W0(v)(x, t) =
(
∇(−∆)−1v

)
(x, t). (18b)

In this way, the system (PP) is also rewritten in a compact form (cf. (4)) as

u = et∆u0 − Bτ (u, u). (19)

We are going to solve (19) in the space X exactly as was in the parabolic-
elliptic case. An additional estimate, however, is needed:
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Lemma 3.1 Let u ∈ X and τ > 0. Then there exists a constant C∗ > 0,
independent of u and τ , such that

‖Wτ (u)(t)‖L∞ ≤ C∗t−
1

2‖u‖X . (20)

Proof. As usual we can and do assume ‖u‖X = 1. Then, for all 1 < p ≤ ∞
we have

|u(x, σ)| ≤ |x|−
2

p σ−1+ 1

p .

This implies, for 1 < p ≤ ∞,

‖u(σ)‖Lp,∞ ≤ σ−1+ 1

p .

Now, we represent
Wτ (u) = I1 + I2,

where I1 =
∫ t/2

0
. . . and I2 =

∫ t

t/2
. . . . Evidently, we obtain the bound

‖I1(t)‖L∞ ≤ C

∫ t/2

0

∥∥∥∥
1

τ
G

(t − σ

τ

)∥∥∥∥
L2,1

‖u(σ)‖L2,∞ dσ

≤ Ct−
1

2 .

For the integral I2, let us begin with a rough bound

‖I2(t)‖L∞ ≤ C

∫ t

t/2

∥∥∥∥
1

τ
G

(t − σ

τ

)∥∥∥∥
L1

‖u(σ)‖L∞ dσ

≤ Cτ− 1

2 t−
1

2 .

(21)

This bound gives the required estimate, excepted when τ belongs to a neigh-
bourhood of the origin. Thus, in the sequel, it is enough to consider the case
0 < τ < 1

2
. Now, we further decompose

I2 ≡ I2,1 + I2,2,

where I2,1 =
∫ t−τt

t/2
. . . and I2,2 =

∫ t

t−τt
. . . . Next, we are going to improve

(21) writing

‖I2,1(t)‖L∞ ≤ C

∫ t−τt

t/2

∥∥∥∥
1

τ
G

(t − σ

τ

)∥∥∥∥
L3,1

‖u(σ)‖
L

3
2

,∞ dσ

≤ Cτ
1

6

∫ t−τt

t/2

(t − σ)−
7

6 σ− 1

3 dσ

≤ Ct−
1

2 .

(22)

The last estimate is

‖I2,2(t)‖L∞ ≤ C

∫ t

t−τt

∥∥∥∥
1

τ
G

(t − σ

τ

)∥∥∥∥
L1

‖u(σ)‖L∞ dσ

≤ Cτ− 1

2

∫ t

t−τt

(t − σ)−
1

2 σ−1 dσ

≤ Ct−
1

2 .

(23)
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The conclusion of Lemma 3.1 follows from (21), (22), (23).

Lemma 3.1 allows us to see that, if u, v ∈ X with ‖u‖X = ‖v‖X = 1, then

|u Wτ(v)|(x, t) ≤ C|x|−
3

2 t−
3

4 , (24a)

and
|u Wτ(v)|(x, t) ≤ C|x|−2t−

1

2 , (24b)

for some constant C > 0 independent of τ > 0. These are the analogous esti-
mates as those we obtained in the parabolic-elliptic case (see inequalities (6a)
and (6b)). Then, using exactly the same arguments as in the previous section,
we arrive at the following existence result

Theorem 3.1 There exist two absolute constants ǫ∗, β∗ > 0 with the follow-
ing property. Let u0 ∈ E be such that ‖u0‖E < ǫ∗. Then there exists a unique
(mild) solution u ∈ X of (PP) such that ‖u‖X ≤ ǫ∗β∗.

Remark. The case of nonzero initial data ϕ(0) can be studied in a quite
similar way.

Remark. A closer look at the proofs of estimates for ∇ϕ in (PE) and
(PP) reveals that the behaviour of ∇ϕ is a bit different in these two cases.
Namely, if 0 6≡ u and u(x, t) ∼ (t + |x|2)−1 (in the sense that c1(t + |x|2)−1 ≤
u(x, t) ≤ c2(t + |x|2)−1 for some c1, c2 > 0), then it follows from (5) that
∇ϕ(x, t) ∼ |x|−1 log(t+|x|2) for (PE), while ∇ϕ is more regular: |∇ϕ(x, t)| ≤

c
(
t

1

2 + |x|
)−1

in (PP) case. In other words, letting Y be the space of func-

tions f = f(x, t) such that f 2 ∈ X , we have ϕτ ∈ Y for τ > 0, but (ϕτ ) does
not converge in Y as τ → 0. However, such an instability does not prevent
from the convergence of the densities uτ → u for vanishing τ .

4 Study of the τ ց 0 limit

We now study the convergence as τ ց 0 of solutions uτ of the system (PP)
to the corresponding solution u of (PE). A result in this direction has been
obtained recently by A. Raczyński in [25], who established the convergence
uτ → u in the norm Yα, for α ∈ (1, 2), defined as

‖u‖Yα = ess sup
t>0, x∈R2

(
1 + t

1

2 |ξ|
)α

|û(ξ, t)|. (25)

We will obtain in subsection 4.2 a similar result using the X -norm.

4.1 Regularity properties of solutions of (PE)

In this subsection we prepare some preliminary material. The first Propo-
sition consists of a regularity result with respect to the space variable for
solutions of (PE). The second Proposition describes their regularity proper-
ties with respect to the time variable.

9



Proposition 4.1 For all r ∈ (1, 2) there exists a constant ǫr, with 0 < ǫr ≤ ǫ
(the absolute constant of Theorem 2.1) such that, if ‖u0‖E < ǫr, then the
solution of (PE) constructed in Theorem 2.1 satisfies

‖∇u(t)‖Lr,∞ ≤ Ct−
3

2
+ 1

r , (26)

for some constant C = C(u0, r) independent of t.

Proof. We use a standard argument involving the subspace Xr ⊂ X defined
by

Xr =
{
u ∈ X , ∃C : ‖∇u(t)‖Lr,∞ ≤ Ct−

3

2
+ 1

r

}
,

and equipped with its natural norm. Recalling that the kernel c0x
|x|2

of the

operator ∇(−∆)−1 belongs to L2,∞, first we deduce from the Young inequality

∥∥∇2(−∆)−1v(t)
∥∥

Lα,∞ ≤ Ct−
3

2
+ 1

r ‖v‖Xr ,
1
α

= 1
r
− 1

2
. (27)

Next, from the Hölder inequality (noticing that ‖u(t)‖L2,∞ ≤ Ct−
1

2‖u‖X ),

‖u∇2(−∆)−1v(t)‖Lr,∞ ≤ Ct−2+ 1

r ‖u‖X‖v‖Xr . (28)

The generalization of the classical inequalities to Lorentz spaces can be found,
e.g., in [19].

We claim that the bilinear operator B0 introduced in (3) is boundedly
defined: B0 : Xr ×Xr → Xr. Indeed, for ‖u‖Xr = ‖v‖Xr = 1, we combine the
estimates

‖∇G(t − s)‖1 ≤ C(t − s)−1

and (10) with the inequality (a consequence of u ∈ X )

‖u(s)‖Lr,∞ ≤ Cs−1+ 1

r , (29)

the estimate ‖∇(−∆)−1v(s)‖∞ ≤ Cs−
1

2 obtained from Lemma 2.2, and (28).
Then we arrive at

‖∇B0(u, v)(t)‖Lr,∞

≤ C

∫ t/2

0

(t − s)−1‖u(s)‖Lr,∞‖∇(−∆)−1v(s)‖∞ ds

+ C

∫ t

t/2

(t − s)−
1

2

(
‖∇u(s)‖Lr,∞‖∇(−∆)−1v(s)‖∞ + s−2+ 1

r

)
ds

≤ Ct−
3

2
+ 1

r .

Moreover, for u0 ∈ E, we have |e
t
2
∆u0(x)| ≤ C(t + |x|2)−1. Hence,

‖e
t
2
∆u0‖Lγ,∞ ≤ Ct−1+ 1

γ for 1 < γ < ∞. We now choose β, γ ∈ (1,∞)
such that 1 + 1

r
= 1

β
+ 1

γ
. Then, the semigroup property of the heat kernel

gt, and the fact that ∇gt/2 ∈ Lβ,1, imply

‖∇et∆u0‖Lr,∞ ≤ Ct−
3

2
+ 1

r .
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Now the usual the application of the contraction mapping theorem, in a closed
ball of small radius in the space Xr, allows us to conclude.

The following proposition is the first crucial tool for our stability result. It
provides the Hölder regularity, with respect to the time variable, of solutions
of (PE) in Lorentz spaces.

Proposition 4.2 Let 1 < r < 2 and u0 ∈ E, such that ‖u0‖E < ǫr. Then the
solution u of (PE) constructed in Proposition 4.1 satisfies for all 0 < t′ < t

‖u(t) − u(t′)‖Lr,∞ ≤ C(t − t′)
1

2 (t′)−
3

2
+ 1

r , (30)

for some C = C(u0, r) independent of t and t′.

Proof. It is enough to show that both et∆u0 − et′∆u0 and B0(u, u)(t) −
B0(u, u)(t′) satisfy the required bound in the Lr,∞-norm.

From the identity

et∆u0(x) − et′∆u0(x) =

∫ (
et′∆u0(x − y) − et′∆u0(x)

)
gt−t′(y) dy

= −

∫ ∫ 1

0

∇et′∆u0(x − θy) · ygt−t′(y) dy dθ,

we get

‖et∆u0 − et′∆u0‖Lr,∞ ≤ C‖∇et′∆u0‖Lr,∞‖ygt−t′‖1

≤ C(t − t′)
1

2 (t′)−
3

2
+ 1

r .

Now, we can write

B0(u, u)(t) − B0(u, u)(t′) = A1 + A2,

with

A1 ≡

∫ t′

0

(
G(t − s) − G(t′ − s)

)
∗

(
u∇(−∆)−1u

)
(s) ds

and

A2 ≡

∫ t

t′
G(t − s) ∗

(
u∇(−∆)−1u

)
(s) ds.

Recall that from u ∈ X we deduce (29). Combining this with the estimate
of Lemma 2.2 we get

∥∥u∇(−∆)−1u(s)
∥∥

Lr,∞ ≤ Cs−
3

2
+ 1

r . (31)

This immediately yields

‖A2‖Lr,∞ ≤

∫ t

t′
(t − s)−

1

2 s−
3

2
+ 1

r ds ≤ C(t − t′)
1

2

(
t′
)− 3

2
+ 1

r .

The estimate of A1 is slightly more involved. We start with the identity

G(t − s) − G(t′ − s) =
(
e(t−t′)∆ − Id

)
G(t′ − s).

The action of the convolution operator with the function on the right hand
side is studied via the following variant of a result established in [20].
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Lemma 4.1 Denote the Calderón operator by Λ = (−∆)
1

2 . Then, for some
constant C depending only on r ∈ (1,∞)

∥∥(
et∆ − Id

)
f
∥∥

Lr,∞ ≤ Ct
1

2‖Λf‖Lr,∞.

Proof. Writing f = Λ−1Λf , we see that
(
et∆ − Id

)
f = Φt ∗ (Λf),

where,
Φ̂t(ξ) = t

1

2 Φ̂(t
1

2 ξ),

and
Φ̂(ξ) = (e−|ξ|2 − 1)|ξ|−1.

It only remains to show that Φ ∈ L1(R2), which is immediate. Indeed, it

is well known, and easy to check, that Ψ̂(ξ) = |ξ|e−|ξ|2 defines a function
Ψ ∈ L1(R2) (for example, with the method described in [15], one obtains
|Ψ(x)| ≤ C(1 + |x|)−3 and |∇Ψ(x)| ≤ C(1 + |x|)−4). We conclude applying
the Bochner inequality to the identity

Φ(x) = −2

∫ ∞

1

Ψ(η x) dη.

Using this Lemma we deduce

‖A1‖Lr,∞ ≤ C(t − t′)
1

2

∫ t′

0

‖Λ∇gt′−s ∗
(
u∇(−∆)−1u

)
(s)‖Lr,∞ ds

= C(t − t′)
1

2 (A1,1 + A1,2),

where A1,1 and A1,2 are obtained splitting the integral at s = t′/2.
But, as the function Ψ introduced in the proof of Lemma 4.1 satisfies

∇Ψ ∈ L1(R2), we see by a simple rescaling that

‖Λ∇gt′−s‖1 ≤ C(t′ − s)−1.

Combining this estimate with inequality (31), we get

A1,1 ≤ C(t′)−
3

2
+ 1

r , 1 < r < 2.

For treating A1,2, we combine the estimate

‖Λgt′−s‖1 ≤ C(t′ − s)−
1

2

with the inequality (for 1 < r < 2)

‖(∇u)
(
∇(−∆)−1u

)
(s)‖Lr,∞ + ‖u

(
∇2(−∆)−1u

)
(s)‖Lr,∞ ≤ Cs−2+ 1

r ,

obtained by applying (26), Lemma 2.2, and (28) with u = v. We get as
before

A1,2 ≤ C(t′)−
3

2
+ 1

r , 1 < r < 2,

and this concludes the proof of Proposition 4.2.
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4.2 The vanishing τ limit

After Proposition 4.2, the second crucial step for the study of the limit as
τ ց 0 consists in the asymptotic analysis of the linear operators Wτ , τ ≥ 0,
introduced in (18a)–(18b). This is the purpose of the following lemma.

Lemma 4.2 Let ε = ε(τ) be an arbitrary function, strictly increasing and
continuous on [0, 1], such that ε(0) = 0. Let also 1 < r < 2 and u be
a function satisfying, for 0 < t′ < t,

‖u(t)‖Lr,∞ ≤ Ct−1+ 1

r ,

‖u(t) − u(t′)‖Lr,∞ ≤ C(t − t′)
1

2 (t′)−
3

2
+ 1

r ,
(32)

with a constant C independent of t, t′. Then, for all t > 0, τ ∈ [0, 1], and for
another constant C, independent of t and τ ,

ε(τ) sup
t>0

t
1

2 ‖(Wτ (u) − W0(u)) (t)‖∞ ≤ Cτ
1

r
− 1

2 . (33)

In particular, if u0 ∈ E is small enough (for example, ‖u0‖E ≤ ǫ3/2), then
the corresponding solution u of (PE) constructed in Proposition 4.1 satisfies

lim
τ→0

sup
t>0

t
1

2 ‖(Wτ (u) − W0(u)) (t)‖∞ = 0. (34)

Proof. Without any restriction we can assume that 0 < ε(τ) < 1
2

for pos-

itive τ . Define ε̃(τ) such that ε = ε̃
1

r
− 1

2 . Borrowing from [25] the idea of
splitting the time integral using intervals depending on τ , we write

Wτ (u) − W0(u) ≡ J1 + J2 + J3,

where

J1(t) =

∫ t(1−ε̃(τ))

0

[
1

τ
G

(t − s

τ

)
∗ u(s)

]
ds,

next

J2(t) =

∫ t

t(1−ε̃(τ))

1

τ
G

(t − s

τ

)
∗ u(t) ds − W0(u)(t),

and

J3(t) =

∫ t

t(1−ε̃(τ))

1

τ
G

(t − s

τ

)
∗

[
u(s) − u(t)

]
ds.

From the first relation of (32) and the Young inequality in Lorentz space
(using that, by (7), G(·, t) ∈ Lr′,1(R2), where r′ is the conjugate exponent),
we get

‖J1(t)‖∞ ≤ Cτ
1

r
− 1

2

∫ t(1−ε̃(τ))

0

(t − s)−
1

2
− 1

r s−1+ 1

r ds

≤ C

(
τ

ε̃(τ)

) 1

r
− 1

2

t−
1

2 .

Notice that this estimate of J1 is exactly what we need for (33).
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As for J2, we see from a simple computation via the Fourier transform
that

J2(t) = −gtε̃(τ)/τ ∗ W0(u)(t).

If 1
α

= 1
r
− 1

2
, then we deduce from the usual weak-convolution estimates that

W0(u) = ∇(−∆)−1u is bounded in the Lα,∞-norm, by Ct−1+ 1

r . Applying once
more the Young inequality (using now gtε̃(τ)/τ ∈ Lα′,1), we get, as before,

‖J2(t)‖∞ ≤ C

(
τ

ε̃(τ)

) 1

r
− 1

2

t−
1

2 .

Applying the second of inequalities (32), we obtain immediately

‖J3(t)‖∞ ≤ Cτ
1

r
− 1

2 t−
1

2 ,

which is even better than what we need. This proves the inequality (33).
Choosing, for example, r = 3

2
and ε(τ) = 1

2
τ 1/12 proves the last claim (34) of

Lemma 4.2.

We are now in the position of establishing our first main result

Theorem 4.1 There exists an absolute constant ǫ′ > 0 (a priori smaller
than the constants ǫ, ǫ∗ > 0 in Theorems 2.1 and 3.1), such that if u0 ∈ E,
‖u0‖E < ǫ′, then denoting by u ∈ X the solution of (PE) and uτ ∈ X the
solution of (PP) constructed in the previous theorems, we have as τ ց 0

uτ → u in X .

Proof. The proof follows easily from Lemma 4.2. Indeed, from the integral
equations (4) and (19), the bilinearity of Bτ and B0, and the smallness of
the solutions uτ and u, we have (similarly as in [25], where two terms in the
bilinear expansion can be absorbed by the left hand side)

‖uτ − u‖X ≤ C‖Bτ (u, u) − B0(u, u)‖X .

But, by the definition of Wτ and W0 (see (18a)-(18b)),

Bτ (u, u)(t) − B0(u, u)(t) =

∫ t

0

G(t − s) ∗
(
u(Wτ (u) − W0(u))

)
(s) ds.

Argueing as in the proof of Lemma 2.3, we obtain

‖Bτ (u, u) − B0(u, u)‖X ≤ C‖u‖X

(
sup
t>0

t
1

2‖Wτ (u) − W0(u)(t)‖∞

)
.

If ǫ′ > 0 is small enough, then Lemma 4.2 can be applied to the solution u
of (PE), implying that the right hand side of the above inequality has a
vanishing limit for small τ . This finally gives

‖uτ − u‖X → 0 as τ ց 0.

Remark 4.1 Notice that, the smaller the norm ‖u0‖E, the faster the con-
vergence uτ → u as τ → 0. This is due to the fact that for very small data
it is possible to apply Lemma 4.2 with r close to 1 (despite the constants in
our estimates blow up as r ց 1). More precisely, our arguments show that
for any 0 < δ < 1

2
, one can find a constant C > 0 and ǫ(δ) > 0 such that, for

‖u0‖E ≤ ǫ(δ), one has ‖uτ − u‖X ≤ Cτ
1

2
−δ for all 0 ≤ τ ≤ 1.
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4.3 The parabolic-elliptic limit in stronger topologies

If u0 ≥ 0 is small in the E-norm, and belongs to a smaller space, for example,
u0 ∈ E∩L1, then the solutions uτ and u of (PP) and (PE) will remain in L1,
uniformly in time, during their evolution. Hence, it is natural to ask whether
the convergence uτ → u holds also in the natural norm of L∞((0,∞); L1).
Our next theorem provides a positive answer. As the proof of this fact does
not really depend on a particular topology under consideration, it seems
appropriate to consider a more abstract setting.

We denote by L any shift invariant Banach space of local measures, see
[19, Ch. 4] for their definition and main properties. These are Banach
spaces of distributions, continuously embedded in D′(R2). Moreover, they are
known to satisfy the following properties (for some constant C > 0 depending
only on L),

1. For all f ∈ L, g ∈ L1(R2), the convolution product f ∗ g is well defined
in L and ‖f ∗ g‖L ≤ C‖f‖L‖g‖1.

2. For all f ∈ L, h ∈ L∞(R2), the pointwise product fh is well defined
in L and ‖fh‖L ≤ C‖f‖L‖h‖∞.

3. Each bounded sequence {fk} ⊂ L has a subsequence convergent in L,
in the distributional sense.

Obvious examples of spaces satisfying these properties (and which are indeed
shift invariant space of local measures) are the Lp-spaces, 1 < p ≤ ∞, the
Lorentz spaces Lp,q, 1 < p < ∞, 1 < q ≤ ∞ and the space of bounded Borel
measures M(R2) = C0(R

2)∗. In the latter case, such duality relations en-
sures Property 3. Other interesting examples include the Morrey–Campanato
spaces Mp,q, (1 < p ≤ q < ∞) and suitable multiplier spaces, see [19, Ch. 17].

On the other hand, the space of pseudomeasures, i.e., the space of tem-
pered distributions f such that f̂ ∈ L∞) does not fulfill the second require-
ment. Therefore, the stability result in the pseudomeasure topology will not
be encompassed by our next Theorem, but requires a specific (and more
involved) treatment, see [25].

Notice that, because of the conservation of the total mass for positive
solutions of (PE) and (PP), the L1-norm remains constant during the evolu-
tion. This observation will allow us to handle the case of data u0 ∈ E ∩ L1,
despite Property 3 breaks down for L1.

Theorem 4.2 Let u0 ∈ E ∩ L, where L is either a shift invariant Banach
space of local measures, or L = L1. In the latter case we require either u0 ≥ 0
or, for signed u0, that ‖u0‖1 is sufficiently small. Then there exists a positive
constant ǫ̃ , depending only on L, such that, if

‖u0‖E < ǫ̃,

then the systems (PE) and (PP) possess unique solutions u and uτ , respec-
tively, such that for an absolute constant β̃ > 0, ‖u‖X ≤ β̃ǫ̃ and ‖uτ‖X ≤ β̃ǫ̃.
In addition,

sup
t>0

‖u(t)‖L < ∞ and sup
t>0

‖uτ (t)‖L < ∞.
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Moreover, the conclusion ‖uτ (t)−u(t)‖X → 0 of Theorem 4.1 is strengthened

sup
t>0

‖uτ (t) − u(t)‖L → 0 as τ ց 0.

Proof. Obviously we have, for some constant C0 > 0 independent of t

‖et∆u0‖L ≤ C0.

Moreover, for each τ ≥ 0 (we include in this way the analysis of (PE)), we
have the estimate

‖Bτ (u, v)(t)‖L ≤ C̃
(
sup
t>0

‖u(t)‖L

)
‖v‖X , (35)

where C̃ > 0 depends only on L. This follows from (17) written as

Bτ (u, v)(t) =

∫ t

0

G(t − s) ∗
(
uWτ (v)

)
(s) ds

for each τ ≥ 0, with the convention (18b). Therefore, using the usual estimate
(10), we have

‖Bτ (u, v)(t)‖L ≤ C
(
sup
t>0

‖u(t)‖L

)(
sup
t>0

t
1

2‖Wτ (v)(t)‖∞

)
.

The last factor is bounded by ‖v‖X owing to Lemma 2.2 in the case τ = 0,
and to Lemma 2.3 for τ > 0. This yields (35).

Now, we can consider, for τ ≥ 0, the sequence of approximating solutions

uτ
k = et∆u0 − Bτ (u

τ
k−1, u

τ
k−1), k = 1, 2, . . . .

When ǫ̃ < min{ǫ, ǫ∗}, we know by the proofs of Theorems 2.1 and 3.1 that
the sequence uτ

k converges in X to the solution uτ of (PE) or (PP). Here, of
course, u = u0 for the solutions of (PE).

On the other hand, applying recursively (35), we get uτ
k(t) ∈ L for all k

and
sup
t>0

‖uτ
k(y)‖L ≤ C0 + β̃C̃ǫ̃

(
sup
t>0

‖uτ
k−1(y)‖L

)
,

with β̃ = max{β, β∗} (the constants obtained in Theorems 2.1 and 3.1).
Iterating this inequality we arrive at

sup
t>0

‖uτ
k(t)‖L ≤ C ′ < ∞,

provided β̃C̃ǫ̃ < 1. If L is a shift invariant Banach space of local measures,
from Property 3 we get for all τ ≥ 0

sup
t>0

‖uτ (t)‖L ≤ C ′ < ∞,

where C ′ > 0 is independent on τ . Of course, the last claim remains valid in
the case L = L1 and u0 ≥ 0 (notice that the smallness of ‖u0‖E prevents blow
up results that could occur, otherwise, when the second moment of u0 are
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finite and
∫

u0 > 8π. See the introduction and the references therein quoted).
If we remove the assumption u0 ≥ 0, we can obtain the same conclusion
provided ‖u0‖1 is sufficiently small. Indeed, we see from inequality (35) that
the fixed point argument applies in the space L∞

t (L1) ∩ X .

We now discuss the stability, including also the case L = L1. From the
bilinearity of Bτ , the mixed estimate (35) and the smallness of the solutions
u and uτ (allowing two terms of the bilinear expansions to be absorbed by
the left hand side), we obtain

‖uτ(t) − u(t)‖L ≤ C sup
t>0

‖Bτ (u, u) − B0(u, u)(t)‖L.

Argueing as at the end of the proof of Theorem 4.1, we arrive at

‖Bτ (u, u)−B0(u, u)(t)‖L ≤ C
(
sup
t>0

‖u(t)‖L

)(
sup
t>0

t
1

2‖(Wτ (u)−W0(u))(t)‖∞

)
,

and the conclusion follows from Lemma 4.2.

Remark. As an application of this general result, let us observe that taking
L = L∞, we obtain for u0 ∈ E ∩ L∞, with u0 small in the E-norm,

uτ → u

as τ ց 0, uniformly in (x, t) ∈ R
2 × [0,∞).

5 Blow up of complex valued solutions of the

parabolic-parabolic system

Consider the system (PP) in the space R
d with any d ≥ 1. Passing to the

Fourier transforms, we may write the Duhamel formula (16) in the form

û(ξ, t) = e−t|ξ|2û0(ξ)

+

∫ t

0

∫ s

0

∫

Rd

ξ · η

τ
e−(t−s)|ξ|2e−

1

τ
(s−σ)|η|2 û(ξ − η, s)û(η, σ) dη dσ ds.

(36)

Our goal is to construct a class of complex valued initial data, such that
the corresponding solutions blow up in finite time, in any classical norm.
For a ∈ R, we denote by Ḃa,∞

∞ the homogeneous Besov space, which can
also be identified with the Hölder–Zygmund space Ċa. As it is well known
(see [19, 23]), most of the classical functional spaces (including all homoge-
neous Triebel–Lizorkin, and thus Lebesgue or Sobolev spaces) are continu-
ously embedded in Ḃa,∞

∞ for some real a.

Theorem 5.1 There exists w0 ∈ S(Rd) such that ŵ0(ξ) ≥ 0, ‖ŵ0‖L1 = 1.
If A is sufficiently large, then any (tempered) distributional solution of (36)
with u0 = Aw0 (and thus any solution of (PP)) blows up in a finite time.
More precisely, for some time t∗ < ∞ and each a ∈ R, ‖u(t∗)‖Ḃa,∞

∞

= ∞
holds.
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Our approach is closely related to that in [5, Theorem 3.1] which followed
the argument in [23] for the “cheap” Navier–Stokes equations. We produce
some estimates from below of the Fourier transform of any solution with
u(0) = u0 that can be obtained via the iteration procedure for (36) with

uk+1 = et∆u0 −

∫ t

0

∇ · e(t−s)∆ 1

τ

[
uk(s)∇

∫ s

0

e
1

τ
(s−σ)∆uk(σ) dσ

]
ds,

for k = 1, 2, . . . . This recurrence relation, in general, does not preserve
the positivity of the Fourier transform of u0. This leads us to restrict
our attention to data of the form û0 = Aŵ0 with w0 ∈ S(Rd), such that
supp ŵ0 ⊂

{
ξ ∈ R

d : 2−1 ≤ ξ1 ≤ |ξ| ≤ 1
}
. Define, for k = 0, 1, . . . the set

Ek =
{
ξ ∈ R

d : 2k−1 ≤ ξ1 ≤ |ξ| ≤ 2k
}

.

Then we see that for wk = w2k

0 , we have ŵk = (2π)−dŵk−1 ∗ ŵk−1, and
therefore, supp ŵk ⊂ Ek. This implies that if, in addition, ŵ0(ξ) ≥ 0, then
the positivity of the Fourier transform will be preserved by the sequence uk,
and so by u. Next Lemma tells us more:

Lemma 5.1 For all k = 0, 1, 2, . . . , we have

û(ξ, t) ≥ βke
−2kt1tk≤t<t∗(t)ŵk(ξ), (37)

where {βk} and {tk} are two sequences defined below in (38) and (39).

Proof. For k = 0, the conclusion immediately follows from

û(ξ, t) ≥ Ae−t|ξ|2ŵ0(ξ),

provided we choose β0 = A and t0 = 0. Let k ≥ 1. Assume that the
inequality of the lemma holds for k − 1. Then, for all tk ≤ t < t∗,

û(ξ, t) ≥

t∫

tk−1

s∫

tk−1

∫

Rd

ξ1η1

τ
e−(t−s)|ξ|2e−

1

τ
(s−σ)|η|2β2

k−1e
−2k−1se−2k−1σ×

×
ŵk−1(ξ − η)ŵk−1(η)

(2π)d
dη dσ ds

≥

t∫

tk−1

∫

Rd

(s − tk−1)
ξ12

k−2

τ
e−(t−s)|ξ|2e−

1

τ
(t∗−tk−1)22k−2

β2
k−1e

−2ks×

×
ŵk−1(ξ − η)ŵk−1(η)

(2π)d
dη ds
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Thus, we can bound û(ξ, t) from below as follows

û(ξ, t) ≥

t∫

tk−1

(s − tk−1)
22k−3

τ
e−(t−s)22k

e−
1

τ
(t∗−tk−1)22k−2

β2
k−1e

−2ksŵk(ξ) ds

≥

( t∫

tk−1

(s − tk−1)e
−(t−s)22k

ds

)
22k−3

τ
e−

1

τ
(t∗−tk−1)22k−2

β2
k−1e

−2ktŵk(ξ)

=

(
t − tk−1

22k
−

1 − e−(t−tk−1)22k

24k

)
22k−3

τ
e−

1

τ
(t∗−tk−1)22k−2

β2
k−1e

−2ktŵk(ξ)

≥

(
(tk − tk−1) −

1 − e−(t∗−tk−1)22k

22k

)
2−3

τ
e−

1

τ
(t∗−tk−1)22k−2

β2
k−1e

−2ktŵk(ξ).

This suggests us to set, for some δ > 0, t∗ − tk−1 = δτ2−2k+2. With this
choice, putting t0 = 0, we have

t∗ = δτ, tk = δτ(1 − 2−2k). (38)

Then, tk − tk−1 = 3δτ2−2k. We get, for tk ≤ t < t∗,

û(ξ, t) ≥ (3δτ − 1 + e−4δτ )2−2k−3τ−1e−δβ2
k−1e

−2k tŵk(ξ).

This inequality is interesting only if the right hand side is positive. Therefore
we will assume that 3δτ ≥ 1. We choose {βk} in such a way that

β0 = A, βk = (3δτ − 1 + e−4δτ )2−2k−3τ−1e−δβ2
k−1, k = 1, 2, . . . .

This choice leads to inequality (37).
In order to compute βk, we introduce Mδ,τ , such that

2Mδ,τ = (3δτ − 1 + e−4δτ )e−δ 2−3τ−1.

Notice that we have βk = 2Mδ,τ−2kβ2
k−1. We claim that, for some a, b, c ∈ R,

βk = A2k

2a+bk+c2k

.

Indeed, from an easy calculation we find b = 2, a = 4 − Mδ,τ and finally
c = Mδ,τ − 4, which is needed to ensure β0 = A.

Hence, we have

βk =
(
A 2Mδ,τ−4

)2k

24−Mδ,τ+2k, k = 0, 1, . . . . (39)

We conclude that when
A ≥ 24−Mδ,τ ,

we have by (39) βk → ∞ and, in particular, ‖u(tk)‖L1 = ‖û(tk)‖∞ → ∞ for
k → ∞. The above size condition on A can be rewritten in an equivalent
form as

(3δτ − 1 + e−4δτ )A ≥ 27eδ τ.
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A further analysis of the lower bounds obtained for the Fourier transform of
a candidate solution permits us to conclude, as was in [5], that ‖u(t∗)‖Ḃa,∞

∞

=
∞ for each a ∈ R, so that all Besov (and also Lp or Triebel–Lizorkin) norms
of u blow up not later than t∗. Notice that, for a blow-up at t∗ = 1, we need
A ≥ Ce1/ττ , cf. (38).
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