On Gaussian Brunn-Minkowski inequalities

Franck Barthe and Nolwen Huet

July 30, 2008

Abstract

In this paper, we are interested in Gaussian versions of the classical Brunn-Minkowski inequality. We prove in a streamlined way a semigroup version of the Ehrard inequality for m Borel or convex sets based on a previous work by Borell. Our method also allows us to have semigroup proofs of the geometric Brascamp-Lieb inequality and of the reverse one which follow exactly the same lines.

2000 Mathematics Subject Classification: 60E15, 60G15, 52A40, 35K05.
Keywords: Brunn-Minkowski, Gaussian measure, Heat equation, BrascampLieb inequalities.

1 Introduction

In this paper, we are interested in Gaussian versions of the classical BrunnMinkowski inequality on the Lebesgue measure of sum-sets (see e.g. 19, [20]). On \mathbb{R}^{n} with its canonical Euclidean structure $(\langle\cdot, \cdot\rangle,|\cdot|)$ we consider the standard Gaussian measure $\gamma_{n}(d x)=(2 \pi)^{-n / 2} \exp \left(-|x|^{2} / 2\right) d x, x \in$ \mathbb{R}^{n}. Given $\alpha, \beta \in \mathbb{R}$ and sets $A, B \subset \mathbb{R}^{n}$, we recall that their Minkowski combination is defined by

$$
\alpha A+\beta B=\{\alpha a+\beta b ; \quad(a, b) \in A \times B\} .
$$

Using symmetrization techniques, Ehrhard [15] proved a sharp lower bound on the Gaussian measure of a convex combination of convex sets. Namely: if $\alpha, \beta \geq 0$ satisfy $\alpha+\beta=1$ and if $A, B \subset \mathbb{R}^{n}$ are convex, then

$$
\Phi^{-1} \circ \gamma_{n}(\alpha A+\beta B) \geq \alpha \Phi^{-1} \circ \gamma_{n}(A)+\beta \Phi^{-1} \circ \gamma_{n}(B)
$$

where Φ is the cumulative distribution function of γ_{1}. This inequality becomes an equality when A and B are parallel half-spaces or the same convex set. Latała [17] showed that the inequality remains valid when A is convex and B is an arbitrary Borel set. In the remarkable paper [9], Borell was able to remove the remaining convexity assumption. He actually derived a functional version of the inequality (in the spirit of the Prékopa-Leindler inequality) by a wonderful interpolation technique based on the heat equation. In a series of papers, Borell extended the inequality to more general combinations:

Theorem (Borell 11]). Let $\alpha_{1}, \ldots, \alpha_{m}>0$. The inequality

$$
\begin{equation*}
\Phi^{-1} \circ \gamma_{n}\left(\sum \alpha_{i} A_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ \gamma_{n}\left(A_{i}\right) \tag{1}
\end{equation*}
$$

holds for all Borel sets A_{1}, \ldots, A_{m} in \mathbb{R}^{n} if and only if

$$
\sum \alpha_{i} \geq 1 \quad \text { and } \quad \forall j, \alpha_{j}-\sum_{i \neq j} \alpha_{i} \leq 1
$$

Moreover, it holds for all convex sets A_{1}, \ldots, A_{m} in \mathbb{R}^{n} if and only if

$$
\sum \alpha_{i} \geq 1
$$

Borell established the case $m=2$ for Borel sets in [10] thanks to his semigroup argument. His proof in [11] of the general case relies on a tricky and somewhat complicated induction. Remark that a linear combination of Borel sets need not be a Borel set; however it is analytic or Suslin, hence universally measurable, see e.g. [16].

In this note we give a slight extension of the above statement (which can actually be derived directly from the theorem of Borell, as pointed out by the referee). More importantly we propose a streamlined version of the semigroup argument for m functions directly, which allows to take advantage of convexity type assumptions. This better understanding of the semigroup technique also allows to study more general situations. The main result is stated next. It involves the heat semigroup, for which we recall the definition: given a Borel nonnegative function f on \mathbb{R}^{n}, its evolute at time $t \geq 0$ is the function $P_{t} f$ given by

$$
P_{t} f(x)=\int f(x+\sqrt{t} y) \gamma_{n}(d y)=\mathrm{E}\left(f\left(x+B_{t}\right)\right)
$$

where B is an n-dimensional Brownian motion. By convention $\infty-\infty=$ $-\infty$ so that inequalities like Inequality (11), or the one introduced in the next theorem, make sense.

Theorem 1. Let $I_{\text {conv }} \subset\{1, \ldots, m\}, \alpha_{1}, \ldots, \alpha_{m}>0$. The following assertions are equivalent:

1. The parameter α satisfies

$$
\begin{equation*}
\sum \alpha_{i} \geq 1 \quad \text { and } \quad \forall j \notin I_{\text {conv }}, \alpha_{j}-\sum_{i \neq j} \alpha_{i} \leq 1 \tag{2}
\end{equation*}
$$

2. For all Borel sets A_{1}, \ldots, A_{m} in \mathbb{R}^{n} such that A_{i} is convex when $i \in$ $I_{\text {conv }}$,

$$
\Phi^{-1} \circ \gamma\left(\sum \alpha_{i} A_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ \gamma\left(A_{i}\right)
$$

3. For all Borel functions h, f_{1}, \ldots, f_{m} from \mathbb{R}^{n} to $[0,1]$ such that $\Phi^{-1} \circ f_{i}$ is concave when $i \in I_{\text {conv }}$, if

$$
\forall x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}, \quad \Phi^{-1} \circ h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ f_{i}\left(x_{i}\right),
$$

then

$$
\Phi^{-1}\left(\int h d \gamma\right) \geq \sum \alpha_{i} \Phi^{-1}\left(\int f_{i} d \gamma\right)
$$

4. For all Borel functions h, f_{1}, \ldots, f_{m} from \mathbb{R}^{n} to $[0,1]$ such that $\Phi^{-1} \circ f_{i}$ is concave when $i \in I_{\text {conv }}$, if

$$
\forall x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}, \quad \Phi^{-1} \circ h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ f_{i}\left(x_{i}\right)
$$

then for all $t \geq 0$

$$
\forall x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}, \quad \Phi^{-1} \circ P_{t} h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ P_{t} f_{i}\left(x_{i}\right) .
$$

Remark. Condition (22) can be rephrased as

$$
\sum \alpha_{i} \geq \max \left(1, \max \left\{2 \alpha_{j}-1 ; j \notin I_{\text {conv }}\right\}\right)
$$

Actually the condition will come up in our argument in the following geometric form: there exist vectors $u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}$ such that for all $i \in I_{\text {conv }}$, $\left|u_{i}\right| \leq 1$, for all $i \notin I_{\text {conv }},\left|u_{i}\right|=1$, and $\left|\sum \alpha_{i} u_{i}\right|=1$.

In the next section we show that the condition on α implies the fourth (and formally strongest) assumption in the latter theorem, when restricted to smooth enough functions. The third section completes the proof of the theorem. In the final section we discuss related problems.

Before going further, let us introduce some notation.

- We consider functions depending on a time variable t and a space variable x. The time derivative is denoted by ∂_{t}, while the gradient, Hessian, and Laplacian in x are denoted by $\nabla_{x}, \operatorname{Hess}_{x}$, and Δ_{x}, omitting the index x when there is no ambiguity.
- The unit Euclidean (closed) ball and sphere of \mathbb{R}^{d} are denoted respectively by \mathbb{B}^{d} and \mathbb{S}^{d-1}.
- For $A \subset \mathbb{R}^{d}$, we set $A^{\varepsilon}=A+\varepsilon \mathbb{B}^{d}$. The notation A_{i}^{ε} means $\left(A_{i}\right)^{\varepsilon}$.

2 Functional and semigroup approach

As already mentioned we follow Borell's semigroup approach of the Gaussian Brunn-Minkowski inequalities (see [9] and [10]): for parameters α verifying (2), the plan is two show the functional version of the inequality (the third assertion of Theorem (1), by means of the heat semigroup. Note that the fourth assertion implies the third one when choosing $t=1$ and $x_{i}=0$ in the last equation. So our aim is to establish the fourth assumption. More precisely, given Borel functions h, f_{1}, \ldots, f_{m} from \mathbb{R}^{n} taking into $(0,1)$, we define C on $[0, T] \times\left(\mathbb{R}^{n}\right)^{m}$ by

$$
C(t, x)=C\left(t, x_{1}, \ldots, x_{m}\right)=\Phi^{-1} \circ P_{t} h\left(\sum \alpha_{i} x_{i}\right)-\sum \alpha_{i} \Phi^{-1} \circ P_{t} f_{i}\left(x_{i}\right) .
$$

Since $P_{0} f=f$ the assumption

$$
\begin{equation*}
\forall x_{i} \in \mathbb{R}^{n}, \quad \Phi^{-1} \circ h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ f_{i}\left(x_{i}\right) \tag{3}
\end{equation*}
$$

translates as $C(0,) \geq$.0 . Our task is to prove

$$
C(0, .) \geq 0 \quad \Longrightarrow \quad \forall t \geq 0, C(t, .) \geq 0
$$

2.1 Preliminaries

When the functions h and f_{i} are smooth enough, the time evolution of $P_{t} h$ and $P_{t} f_{i}$ is described by the heat equation. This yields a differential equation satisfied by C. Our problem boils down to determine whether this evolution equation preserves nonnegative functions. This is clearly related to the maximum principle for parabolic equations (see e.g. [13). We will use the following lemma.

Lemma 1. Assume that C is twice differentiable. If

$$
\left\{\begin{array}{l}
\operatorname{Hess}(C) \geq 0 \tag{4}\\
\nabla C=0 \\
C \leq 0
\end{array} \quad \Longrightarrow \quad \partial_{t} C \geq 0\right.
$$

and if for some $T>0$

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty}\left(\inf _{0 \leq t \leq T} C(x, t)\right) \geq 0 \tag{5}
\end{equation*}
$$

then

$$
C(0, .) \geq 0 \quad \Longrightarrow \quad \forall t \in[0, T], C(t, .) \geq 0 .
$$

Proof. For $\varepsilon>0$, set $C_{\varepsilon}(t, x)=C(t, x)+\varepsilon t$ on $[0, T] \times\left(\mathbb{R}^{n}\right)^{m}$. If $C_{\varepsilon}<0$ at some point, then C_{ε} reaches its minimum at a point $\left(t_{0}, x_{0}\right)$ where $\nabla C=0$, $\operatorname{Hess}(C) \geq 0, C<0$, and $\partial_{t} C+\varepsilon \leq 0\left(=0\right.$ if $\left.t_{0}<T\right)$. By the hypotheses, it implies $\partial_{t} C \geq 0$ which is in contradiction with $\partial_{t} C \leq-\varepsilon$. So for all $\varepsilon>0$ and $T>0, C_{\varepsilon}$ is non-negative on $[0, T] \times\left(\mathbb{R}^{n}\right)^{m}$, thus C is non-negative everywhere.

Property (5) is true under mild assumptions on h and f_{i} which are related to the initial condition $C(0,) \geq$.0 in the large:

Lemma 2. If there exist $a_{1}, \ldots, a_{m} \in \mathbb{R}$ such that

- $\limsup f_{i}(x) \leq \Phi\left(a_{i}\right)$
$|x| \rightarrow \infty$
- $h \geq \Phi\left(\sum \alpha_{i} a_{i}\right)$
then for all $T>0$,

$$
\liminf _{|x| \rightarrow \infty}\left(\inf _{0 \leq t \leq T} C(x, t)\right) \geq 0
$$

Proof. Let $\delta>0$. By continuity of Φ^{-1}, there exists $\varepsilon>0$ such that

$$
\Phi^{-1}\left(\Phi\left(a_{i}\right)+2 \varepsilon\right) \leq a_{i}+\frac{\delta}{\sum \alpha_{j}}
$$

Let $r>0$ be such that $\gamma_{n}\left(r \mathbb{B}^{n}\right)=1-\varepsilon$. Then, for $0 \leq t \leq T$,

$$
\begin{aligned}
P_{t} f_{i}\left(x_{i}\right) & =\int_{r \mathbb{B}^{n}} f_{i}\left(x_{i}+\sqrt{t} y\right) \gamma_{n}(d y)+\int_{\left(r \mathbb{B}^{n}\right)^{\mathrm{c}}} f_{i}\left(x_{i}+\sqrt{t} y\right) \gamma_{n}(d y) \\
& \leq(1-\varepsilon) \sup _{x_{i}+r \sqrt{t} \mathbb{B}^{n}} f_{i}+\varepsilon \sup f_{i} \\
& \leq \sup _{x_{i}+r \sqrt{T} \mathbb{B}^{n}} f_{i}+\varepsilon \\
& \leq \Phi\left(a_{i}\right)+2 \varepsilon \quad \text { for }\left|x_{i}\right| \text { large enough. }
\end{aligned}
$$

Moreover $P_{t} h \geq \Phi\left(\sum \alpha_{i} a_{i}\right)$ so for $|x|$ large enough and for $0 \leq t \leq T$, it holds $C(t, x) \geq-\delta$. As $\delta>0$ was arbitrary, the proof is complete.

Checking Property (\mathbb{T}^{2}) of Lemma 1 requires the following lemma:
Lemma 3. Let $d \geq 2, \alpha_{1}, \ldots, \alpha_{m}>0$. Let k be an integer with $0 \leq k \leq m$ and

$$
\begin{aligned}
& \varphi:\left(\mathbb{S}^{d-1}\right)^{k} \times\left(\mathbb{B}^{d}\right)^{m-k} \rightarrow \\
&\left(v_{1}, \ldots, v_{m}\right) \mapsto \mid \sum \mathbb{R}_{+} \\
& v_{i} \mid
\end{aligned}
$$

Then the image of φ is the interval

$$
J:=\left[\max \left(\{0\} \cup\left\{\alpha_{j}-\sum_{i \neq j} \alpha_{i}, 1 \leq j \leq k\right\}\right), \sum \alpha_{i}\right] .
$$

Proof. As φ is continuous on a compact connected $\operatorname{set}, \operatorname{Im}(\varphi)=[\min \varphi, \max \varphi]$. Plainly $\left|\sum \alpha_{i} v_{i}\right| \leq \sum \alpha_{i}$, with equality if $v_{1}=\cdots=v_{m}$ is a unit vector. So $\max \varphi=\sum_{i} \alpha_{i}$. For all $j \leq k$, since $\left|v_{j}\right|=1$, the triangle inequality gives

$$
\left|\sum \alpha_{i} v_{i}\right| \geq \alpha_{j}\left|v_{j}\right|-\sum_{i \neq j} \alpha_{i}\left|v_{i}\right| \geq \alpha_{j}-\sum_{i \neq j} \alpha_{i}
$$

Hence $\operatorname{Im}(\varphi) \subset J$ and these two segments have the same upper bound. Next we deal with the lower bound. Let us consider a point $\left(v_{1}, \ldots, v_{m}\right)$ where φ achieves its minimum, and differentiate:

For $j \leq k, v_{j}$ lies in the unit sphere. Applying Lagrange multipliers theorem to φ^{2} with respect to v_{j} gives a real number λ_{j} such that,

$$
\begin{equation*}
\alpha_{j} \sum_{i} \alpha_{i} v_{i}=\lambda_{j} v_{j} \tag{6}
\end{equation*}
$$

For $j>k$, the j-th variable lives in \mathbb{B}^{d}. If $\left|v_{j}\right|<1$ the minimum is achieved at an interior point and the full gradient on φ^{2} with respect to the j-th variable is zero. Hence $\sum_{i} \alpha_{i} v_{i}=0$. On the other hand if at the minimum $\left|v_{j}\right|=1$, differentiating in the j-th variable only along the unit sphere gives again the existence of $\lambda_{j} \in \mathbb{R}$ such that (6) is verified.

Eventually, we face 2 cases:

1. Either $\sum \alpha_{i} v_{i}=0$ and $\min \varphi=0$. In this case, the triangle inequality gives $0=\left|\sum \alpha_{i} v_{i}\right| \geq \alpha_{j}-\sum_{i \neq j} \alpha_{i}$ whenever $j \leq k$.
2. Or the v_{i}^{\prime} 's are colinear unit vectors and there exists a partition $S_{+} \cup$ $S_{-}=\{1, \ldots, m\}$ and a unit vector v such that

$$
\min \varphi=\left|\sum_{S_{+}} \alpha_{i} v-\sum_{S_{-}} \alpha_{i} v\right|=\sum_{S_{+}} \alpha_{i}-\sum_{S_{-}} \alpha_{i}>0 .
$$

Assume that S_{+}contains 2 indices j and ℓ. Let e_{1} and e_{2} be 2 orthonormal vectors of \mathbb{R}^{d} and let us denote by $R(\theta)$ the rotation in the plane $\operatorname{Vect}\left(e_{1}, e_{2}\right)$ of angle θ. The length of the vector $\alpha_{j} R(\theta) e_{1}+\alpha_{\ell} e_{1}$ is a decreasing and continuous function of $\theta \in[0, \pi]$. Denote by $U(\theta)$ the rotation in the plane $\operatorname{Vect}\left(e_{1}, e_{2}\right)$ which maps this vector to $\left|\alpha_{j} R(\theta) e_{1}+\alpha_{\ell} e_{1}\right| e_{1}$. Then

$$
\alpha_{j} U(\theta) R(\theta) e_{1}+\alpha_{\ell} U(\theta) e_{1}+\sum_{S_{+} \backslash\{j, \ell\}} \alpha_{i} e_{1}-\sum_{S_{-}} \alpha_{i} e_{1}=\lambda(\theta) e_{1},
$$

where $\lambda(0)=\sum_{S_{+}} \alpha_{i}-\sum_{S_{-}} \alpha_{i}=\min \varphi>0$ and λ is continuous and decreasing in $\theta \in[0, \pi]$. This contradicts the minimality of $\min \varphi$. So S_{+}contains a single index j and

$$
\min \varphi=\left|\alpha_{j} v-\sum_{i \neq j} \alpha_{i} v\right|=\alpha_{j}-\sum_{i \neq j} \alpha_{i}>0 .
$$

Note that necessarily $j \leq k$, otherwise one could get a shorter vector by replacing $v_{j}=v$ by $(1-\varepsilon) v$. Besides, the condition $\alpha_{j}-\sum_{i \neq j} \alpha_{i}>0$
ensures that $\alpha_{j}>\alpha_{\ell}$ for $\ell \neq j$. This implies that for $\ell \neq j$,

$$
\alpha_{\ell}-\sum_{i \neq \ell} \alpha_{i} \leq \alpha_{\ell}-\alpha_{j}<0<\alpha_{j}-\sum_{i \neq j} \alpha_{i}
$$

So $\min \varphi=\max \left(\{0\} \cup\left\{\alpha_{j}-\sum_{i \neq j} \alpha_{i}, 1 \leq j \leq k\right\}\right)$ as claimed.

2.2 Semigroup proof for smooth functions

We deal with smooth functions first, in order to ensure that $P_{t} f_{i}$ and $P_{t} h$ verify the heat equation. This restrictive assumption will be removed in Section 3 where the proof of Theorem 11 is completed.

Theorem 2. Let $f_{i}, i=1, \ldots, m$, and h be twice continuously differentiable functions from \mathbb{R}^{n} to $(0,1)$ satisfying the hypotheses of Lemma 园. Assume moreover that for $f=f_{i}$ or h,

$$
\forall t>0, \forall x \in \mathbb{R}^{n}, \quad|\nabla f(x+\sqrt{t} y)| e^{-\frac{|y|^{2}}{2}} \underset{|y| \rightarrow \infty}{\longrightarrow} 0
$$

Let $\alpha_{1}, \ldots, \alpha_{m}$ be positive real numbers such that

$$
\sum \alpha_{i} \geq 1 \quad \text { and } \quad \forall j, \alpha_{j}-\sum_{i \neq j} \alpha_{i} \leq 1
$$

If

$$
\forall x_{i} \in \mathbb{R}^{n}, \quad \Phi^{-1} \circ h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ f_{i}\left(x_{i}\right)
$$

then

$$
\forall t \geq 0, \forall x_{i} \in \mathbb{R}^{n}, \quad \Phi^{-1} \circ P_{t} h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ P_{t} f_{i}\left(x_{i}\right)
$$

Proof. Let us recall that C is defined by

$$
C(t, x)=C\left(t, x_{1}, \ldots, x_{m}\right)=H\left(t, \sum \alpha_{i} x_{i}\right)-\sum \alpha_{i} F_{i}\left(t, x_{i}\right)
$$

where we have set

$$
H(t, y)=\Phi^{-1} \circ P_{t} h(y) \quad \text { and } \quad F_{i}(t, y)=\Phi^{-1} \circ P_{t} f_{i}(y)
$$

In what follows, we omit the variables and write H for $H\left(t, \sum \alpha_{i} x_{i}\right)$ and F_{i} instead of $F_{i}\left(t, x_{i}\right)$. With this simplified notation,

$$
\begin{array}{ll}
C & =H-\sum \alpha_{i} F_{i} \\
\nabla_{x_{i}} C & =\alpha_{i}\left(\nabla H-\nabla F_{i}\right) \\
\nabla_{x_{i}} \nabla_{x_{j}}^{*} C & =\alpha_{i} \alpha_{j} \operatorname{Hess}(H)-\delta_{i j} \alpha_{i} \operatorname{Hess}\left(F_{i}\right) .
\end{array}
$$

Moreover, one can use the property of heat kernel to derive a differential equation for F_{i} and H. Indeed, for any f satisfying hypotheses of the theorem, we can perform an integration by parts so that it holds

$$
\partial_{t} P_{t} f=\frac{1}{2} \Delta P_{t} f .
$$

Then we set $F=\Phi^{-1} \circ P_{t} f$ and use the identity $\left(1 / \Phi^{\prime}(x)\right)^{\prime}=x / \Phi^{\prime}(x)$ to show

$$
\begin{aligned}
\partial_{t} F & =\frac{\partial_{t} P_{t} f}{\Phi^{\prime}(F)}=\frac{\Delta P_{t} f}{2 \Phi^{\prime}(F)} \\
\nabla F & =\frac{\nabla P_{t} f}{\Phi^{\prime}(F)} \\
\Delta F & =\frac{\Delta P_{t} f}{\Phi^{\prime}(F)}+F \frac{\left|\nabla P_{t} f\right|^{2}}{\left(\Phi^{\prime}(F)\right)^{2}}
\end{aligned}
$$

We put all together to get

$$
\partial_{t} F=\frac{1}{2}\left(\Delta F-F|\nabla F|^{2}\right)
$$

and to deduce the following differential equation for C :

$$
\partial_{t} C=\frac{1}{2}(\mathcal{S}+\mathcal{P})
$$

where the second order part is

$$
\mathcal{S}=\Delta H-\sum \alpha_{i} \Delta F_{i}
$$

and the terms of lower order are

$$
\mathcal{P}=-\left(H|\nabla H|^{2}-\sum \alpha_{i} F_{i}\left|\nabla F_{i}\right|^{2}\right) .
$$

We will conclude using Lemma 1]. So we need to check Condition (4). First we note that \mathcal{P} is non-negative when $\nabla C=0$ and $C \leq 0$, regardless of α. Indeed, $\nabla C=0$ implies that $\nabla F_{i}=\nabla H$ for all i. So $\mathcal{P}=-|\nabla H|^{2} C$ which is non-negative if $C \leq 0$.

It remains to deal with the second order part. It is enough to express \mathcal{S} as $\mathcal{E} C$ for some elliptic operator \mathcal{E}, since then $\operatorname{Hess}(C) \geq 0$ implies $\mathcal{S} \geq 0$. Such a second order operator can be written as $\mathcal{E}=\nabla^{*} A \nabla$ where A is a symmetric matrix $n m \times n m$. Moreover \mathcal{E} is elliptic if and only if A is positive semi-definite. In view of the structure of the problem, it is natural to look for matrices of the following block form

$$
A=B \otimes I_{n}=\left(b_{i j} I_{n}\right)_{1 \leq i, j \leq m},
$$

where I_{n} is the identity $n \times n$ matrix and B is a positive semi-definite matrix of size m. Denoting $x_{i}=\left(x_{i, 1}, \ldots, x_{i, n}\right)$,

$$
\begin{aligned}
\mathcal{E} C & =\sum_{i, j=1}^{m} b_{i, j}\left(\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{i, k} \partial x_{j, k}} C\right)=\sum_{i, j=1}^{m} b_{i, j}\left(\alpha_{i} \alpha_{j} \Delta H-\delta_{i, j} \alpha_{i} \Delta F_{i}\right) \\
& =\langle\alpha, B \alpha\rangle \Delta H-\sum_{i=1}^{m} b_{i, i} \alpha_{i} \Delta F_{i} .
\end{aligned}
$$

Hence there exists an elliptic operator \mathcal{E} of the above form such that $\mathcal{E} C=$ $\mathcal{S}=\Delta H-\sum_{i=1}^{m} \alpha_{i} \Delta F_{i}$ if there exits a positive semi-definite matrix B of size m such that

$$
\langle\alpha, B \alpha\rangle=\left\langle e_{1}, B e_{1}\right\rangle=\cdots=\left\langle e_{m}, B e_{m}\right\rangle=1
$$

where $\left(e_{i}\right)_{i}$ is the canonical basis of \mathbb{R}^{m}. Now a positive semi-definite matrix B can be decomposed into $B=V^{*} V$ where V is a square matrix of size m. Calling $v_{1}, \ldots, v_{m} \in \mathbb{R}^{m}$ the columns of V, we can translate the latter into conditions on vectors v_{i}. Actually, we are looking for vectors $v_{1}, \ldots, v_{m} \in$ \mathbb{R}^{m} with

$$
\left|v_{1}\right|=\cdots=\left|v_{m}\right|=\left|\sum \alpha_{i} v_{i}\right|=1
$$

By Lemma 0 for $k=m$, this is possible exactly when α satisfies the claimed condition:

$$
\sum \alpha_{i} \geq 1 \quad \text { and } \quad \forall j, \alpha_{j}-\sum_{i \neq j} \alpha_{i} \leq 1
$$

The following corollary will be useful in the next section.
Corollary 1. Let f be a function on \mathbb{R}^{n} taking values in $(0,1)$ and vanishing at infinity, i.e. $\lim _{|x| \rightarrow \infty} f(x)=0$. Assume also that

$$
\forall t>0, \forall x \in \mathbb{R}^{n}, \quad|\nabla f(x+\sqrt{t} y)| e^{-\frac{|y|^{2}}{2}} \underset{|y| \rightarrow \infty}{ } 0 .
$$

If $\Phi^{-1} \circ f$ is concave, then $\Phi^{-1} \circ P_{t} f$ is concave for all $t \geq 0$.
Proof. Let $1>\varepsilon>0$ and $\alpha_{i}>0$ with $\sum \alpha_{i}=1$. Choosing $h=\varepsilon+(1-\varepsilon) f \geq$ f and $f_{i}=f$ for $i \geq 1$, one can check that the latter theorem applies. Hence for all $t \geq 0$ and $x_{i} \in \mathbb{R}^{n}$:

$$
\Phi^{-1} \circ P_{t}(\varepsilon+(1-\varepsilon) f)\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ P_{t} f\left(x_{i}\right)
$$

Letting ε go to 0 , we get by monotone convergence that $\Phi^{-1} \circ P_{t} f$ is concave.

$2.3 \quad \Phi^{-1}$-concave functions

When some of the f_{i} 's are Φ^{-1}-concave, the conditions on the parameters can be relaxed. Such functions allow to approximate characteristic functions of convex sets. They will be useful in Section 3.
Theorem 3. Let $I_{\text {conv }} \subset\{1, \ldots, m\}$. Let $f_{i}, i=1, \ldots, m$, and h be twice continuously differentiable functions from \mathbb{R}^{n} to $(0,1)$ satisfying the hypotheses of Lemma 图. Assume also that for $f=f_{i}$ or h,

$$
\forall t>0, \forall x \in \mathbb{R}^{n}, \quad|\nabla f(x+\sqrt{t} y)| e^{-\frac{|y|^{2}}{2}} \underset{|y| \rightarrow \infty}{\longrightarrow} 0
$$

Assume moreover that $\Phi^{-1} \circ f_{i}$ is concave, decreasing towards $-\infty$ at infinity for all $i \in I_{\text {conv }}$.

Let $\alpha_{1}, \ldots, \alpha_{m}$ be positive numbers satisfying

$$
\sum \alpha_{i} \geq 1 \quad \text { and } \quad \forall j \notin I_{\text {conv }}, \alpha_{j}-\sum_{i \neq j} \alpha_{i} \leq 1
$$

If

$$
\forall x_{i} \in \mathbb{R}^{n}, \quad \Phi^{-1} \circ h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ f_{i}\left(x_{i}\right)
$$

then

$$
\forall t \geq 0, \forall x_{i} \in \mathbb{R}^{n}, \quad \Phi^{-1} \circ P_{t} h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ P_{t} f_{i}\left(x_{i}\right)
$$

Proof. As in the proof of Theorem 2, we try to apply Lemma 1 to the equation satisfied by C :

$$
\partial_{t} C(t, x)=\frac{1}{2}(\mathcal{S}+\mathcal{P}) .
$$

We have already shown that \mathcal{P} is non-negative when $\nabla C=0$ and $C \leq 0$, for any $\alpha_{1}, \ldots, \alpha_{m}$. We would like to prove that the conditions on α in the theorem imply that \mathcal{S} is non-negative whenever $\operatorname{Hess}(C) \geq 0$.

By Corollary 1 , for all $i \in I_{\text {conv }}$ the function F_{i} is concave, hence $\Delta F_{i} \leq 0$. So we are done if we can write

$$
\mathcal{S}=\mathcal{E} C-\sum_{i \in I_{\text {conv }}} \lambda_{i} \Delta F_{i},
$$

for some elliptic operator \mathcal{E} and some $\lambda_{i} \geq 0$. As in the proof of the previous theorem, we are looking for operators of the form $\mathcal{E}=\nabla^{*} A \nabla$ with $A=B \otimes I_{n}=\left(b_{i j} I_{n}\right)_{1 \leq i, j \leq m}$ where B is a symmetric positive semi-definite matrix $m \times m$. Hence our task is to find $B \geq 0$ and $\lambda_{i} \geq 0$ such that $\lambda_{i}=0$ when $i \notin I_{\text {conv }}$ and

$$
\Delta H-\sum \alpha_{i} \Delta F_{i}=\langle\alpha, B \alpha\rangle \Delta H-\sum_{i}\left(b_{i i} \alpha_{i}+\lambda_{i}\right) \Delta F_{i} .
$$

When $i \in I_{\text {conv }}$, we can find $\lambda_{i} \geq 0$ such that $b_{i i} \alpha_{i}+\lambda_{i}=\alpha_{i}$ whenever $b_{i i} \leq 1$. Consequently, the problem reduces to finding a positive semi-definite matrix B of size $m \times m$ such that

$$
\begin{cases}\left\langle e_{i}, B e_{i}\right\rangle \leq 1, & \forall i \in I_{c o n v} \\ \left\langle e_{i}, B e_{i}\right\rangle=1, & \forall i \notin I_{c o n v} \\ \langle\alpha, B \alpha\rangle=1 & \end{cases}
$$

where $\left(e_{i}\right)_{i}$ is the canonical basis of \mathbb{R}^{m}. Equivalently, do there exist $v_{1}, \ldots, v_{m} \in$ \mathbb{R}^{m} such that

$$
\left\{\begin{array}{l}
\left|v_{i}\right| \leq 1, \quad \forall i \in I_{\text {conv }} \\
\left|v_{i}\right|=1, \quad \forall i \notin I_{\text {conv }} \\
\left|\sum \alpha_{i} v_{i}\right|=1
\end{array} ?\right.
$$

We conclude with Lemma 3 .

3 Back to sets

This sections explains how to complete the proof of Theorem 11. The main issue is to get rid of the smoothness assumptions made so far. The plan of the argument is summed up in the next figure. The key point is that the conditions on α do not depend on n.

If we can prove the above implications, we will have shown that

$$
\text { assertion } 1 \Longleftrightarrow \text { assertion } 2 \Longleftrightarrow \text { assertion } 4
$$

in Theorem 1. Moreover, it is clear that assertion $4 \Longrightarrow$ assertion 3. To complete the picture, we can for instance prove assertion $3 \Longrightarrow$ assertion 1 in the same way we do below for the fourth implication.
a- "Conditions on $\alpha_{i} \Rightarrow$ inequality with $P_{t} f_{i}$ for smooth functions on \mathbb{R}^{n} ": This implication is nothing else than Theorem 3. Equivalently, the first assertion in Theorem 1 implies the fourth one restricted to "smooth" functions (i.e. verifying all the assumptions of the first paragraph of Theorem (3).
b - "Inequality with $P_{t} f_{i}$ for smooth functions on $\mathbb{R}^{n} \Rightarrow$ inequality for sets $A_{i} \subset \mathbb{R}^{n "}$: For arbitrary α, let us prove that the fourth assertion in Theorem 1 restricted to smooth functions (in the above-mentioned sense) implies the second assertion of the theorem, involving sets. Let A_{1}, \ldots, A_{m} be Borel sets in \mathbb{R}^{n} with A_{i} convex when $i \in I_{\text {conv }}$. By inner regularity of the measure, we can assume that they are compact. Let $\varepsilon>0$ and $b>a$ be fixed. Then,

- for $i \notin I_{\text {conv }}$: there exists a smooth function f_{i} such that $f_{i}=\Phi(b)$ on $A_{i}, f_{i}=\Phi(a)$ off A_{i}^{ε}, and $0<\Phi(a) \leq f_{i} \leq \Phi(b)<1$.
- for $i \in I_{\text {conv }}$: there exists a smooth function f_{i} such that $F_{i}=\Phi^{-1} \circ f_{i}$ is concave, $F_{i}=b$ on $A_{i}, F_{i} \leq a$ off A_{i}^{ε}, and $F_{i} \leq b$ on \mathbb{R}^{n}.

For instance, take a point x_{i} in A_{i} and define the gauge of $A_{i}^{\varepsilon / 3}$ with respect to x_{i} by

$$
\rho(x)=\inf \left\{\lambda>0, x_{i}+\frac{1}{\lambda}\left(x-x_{i}\right) \in A_{i}^{\varepsilon / 3}\right\} .
$$

We know that ρ is convex since A_{i} is convex (see for instance [20]). Then set

$$
\tilde{F}_{i}(x)=b+c(1-\max (\rho(x), 1))
$$

where $c>0$ is chosen large enough to insure that $\tilde{F}_{i} \leq a$ off $A_{i}^{2 \varepsilon / 3}$. Now, we can take a smooth function g with compact support small enough and of integral 1 , such that $f_{i}=\Phi\left(\tilde{F}_{i} * g\right)$ is a smooth Φ^{-1} concave function satisfying the required conditions.

- for h : set

$$
a_{0}=\max _{\substack{u_{i}=a \text { or } b \\ u \neq(b, \ldots, b)}} \sum \alpha_{i} u_{i} \quad \text { and } \quad b_{0}=\sum \alpha_{i} b .
$$

Again, we can choose a smooth function h such that $h=\Phi\left(b_{0}\right)$ on $\sum \alpha_{i} A_{i}^{\varepsilon}, h=\Phi\left(a_{0}\right)$ off $\left(\sum \alpha_{i} A_{i}^{\varepsilon}\right)^{\varepsilon}$, and $0<\Phi\left(a_{0}\right) \leq h \leq \Phi\left(b_{0}\right)<1$.

From these definitions, the functions h and f_{i} are "smooth" and satisfy

$$
\forall x_{i} \in \mathbb{R}^{n}, \quad \Phi^{-1} \circ h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ f_{i}\left(x_{i}\right)
$$

By our hypothesis, the inequality remains valid with $P_{t} h$ and $P_{t} f_{i}$ for all $t>0$. Choosing $t=1, x_{i}=0$ yields

$$
\Phi^{-1}\left(\int h d \gamma_{n}\right) \geq \sum \alpha_{i} \Phi^{-1}\left(\int f_{i} d \gamma_{n}\right)
$$

Remark here that the functions depends actually of a (respectively a_{0}), b (respectively b_{0}), and ε, possibly in a precise way with a procedure like described above for f_{i}. We could then write $h\left(a_{0}, b_{0}, \varepsilon,.\right)$ and $f_{i}(a, b, \varepsilon,$.$) .$

Letting first $a \rightarrow-\infty$ so that $a_{0} \rightarrow-\infty$, we get by dominated convergence

$$
\Phi^{-1}\left(\int h\left(-\infty, b_{0}, \varepsilon, .\right) d \gamma_{n}\right) \geq \sum \alpha_{i} \Phi^{-1}\left(\int f_{i}(-\infty, b, \varepsilon, .) d \gamma_{n}\right)
$$

Now let (b, ε) tend to $(\infty, 0)$. Notice that $f_{i}(-\infty, \infty, 0,$.$) and h(-\infty, \infty, 0,$. are characteristic functions. Eventually we obtain, again by dominated convergence, that

$$
\Phi^{-1} \circ \gamma_{n}\left(\sum \alpha_{i} A_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ \gamma_{n}\left(A_{i}\right)
$$

c- "Inequality for sets $A_{i} \subset \mathbb{R}^{n+1} \Rightarrow$ inequality with $P_{t} f_{i}$ for Borel functions on \mathbb{R}^{n} ". Here we assume that the second assumption of Theorem $\mathbb{\square}$ is valid for all Borel sets in \mathbb{R}^{n+1} and we derive the fourth assumption of the theorem for functions defined on \mathbb{R}^{n}.

For any Borel function f on \mathbb{R}^{n} taking values in $[0,1], t>0$, and $x \in \mathbb{R}^{n}$, we define

$$
B_{f}^{t, x}=\left\{(u, y) \mid u \leq \Phi^{-1} \circ f(x+\sqrt{t} y)\right\} \subset \mathbb{R} \times \mathbb{R}^{n}
$$

Then it holds

$$
\gamma_{n+1}\left(B_{f}^{t, x}\right)=P_{t} f(x)
$$

Let h, f_{1}, \ldots, f_{n} be Borel functions on \mathbb{R}^{n} with values in $[0,1]$, such that $\Phi^{-1} \circ f_{i}$ is concave when $i \in I_{\text {conv }}$. Assume that

$$
\forall x_{i} \in \mathbb{R}^{n}, \quad \Phi^{-1} \circ h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ f_{i}\left(x_{i}\right)
$$

Then for $\left(u_{i}, y_{i}\right)$ in $B_{f_{i}}^{t, x_{i}}$, we get

$$
\sum \alpha_{i} u_{i} \leq \sum \alpha_{i} \Phi^{-1} \circ f_{i}\left(x_{i}+\sqrt{t} y_{i}\right) \leq \Phi^{-1} \circ h\left(\sum \alpha_{i}\left(x_{i}+\sqrt{t} y_{i}\right)\right)
$$

which means that

$$
\sum \alpha_{i} B_{f_{i}}^{t, x_{i}} \subset B_{h}^{t, \sum \alpha_{i} x_{i}}
$$

The same argument shows that $B_{f}^{t, x}$ is convex if $\Phi^{-1} \circ f$ is concave. Thus, the result for sets in \mathbb{R}^{n+1} implies that

$$
\Phi^{-1} \circ P_{t} h\left(\sum \alpha_{i} x_{i}\right) \geq \Phi^{-1} \circ \gamma_{n+1}\left(\sum \alpha_{i} B_{f_{i}}^{t, x_{i}}\right) \geq \sum \alpha_{i} \Phi^{-1} \circ P_{t} f_{i}\left(x_{i}\right)
$$

d- "Inequality with $P_{t} f_{i}$ for Borel functions on $\mathbb{R}^{n} \Rightarrow$ conditions on α_{i} ": We will prove the contraposed assertion: if the conditions on α_{i} are violated, then there exists Borel functions h and f_{i} such that $\Phi^{-1} \circ f_{i}$ is concave for $i \in I_{\text {conv }}$, which verify for all x_{i} the relation $\Phi^{-1} \circ h\left(\sum \alpha_{i} x_{i}\right) \geq \sum \Phi^{-1} \circ f_{i}\left(x_{i}\right)$
but for which this inequality is not preserved by P_{t} for some t. Actually since $P_{1} f(0)=\int f d \gamma$, it will be enough to exhibit functions such that

$$
\Phi^{-1}\left(\int h d \gamma\right)<\sum \alpha_{i} \Phi^{-1}\left(\int f_{i} d \gamma\right)
$$

Let $f: \mathbb{R}^{n} \rightarrow(0,1)$ be an even Borel function such that

$$
f(0)>\frac{1}{2}, \quad \int f d \gamma<\frac{1}{2}, \quad \text { and } \quad F=\Phi^{-1} \circ f \quad \text { is concave. }
$$

For instance, we may take $f(x)=\Phi\left(1-|a x|^{2}\right)$ for a large enough. Note that for $0 \leq t \leq 1$,

$$
\begin{equation*}
F(t x) \geq t F(x)+(1-t) F(0) \geq t F(x) \tag{7}
\end{equation*}
$$

Assume first that $\sum \alpha_{i}<1$. Then by concavity and the latter bound, we get for all x_{i},

$$
\begin{aligned}
\Phi^{-1} \circ f\left(\sum_{i} \alpha_{i} x_{i}\right) & =F\left(\sum_{i} \alpha_{i} x_{i}\right) \geq \sum_{i} \frac{\alpha_{i}}{\sum_{j} \alpha_{j}} F\left(\left(\sum_{j} \alpha_{j}\right) x_{i}\right) \\
& \geq \sum_{i} \alpha_{i} F\left(x_{i}\right)=\sum_{i} \alpha_{i} \Phi^{-1} \circ f\left(x_{i}\right) .
\end{aligned}
$$

However since $1>\sum \alpha_{i}$ and $\Phi^{-1}\left(\int f d \gamma\right)<0$, it holds

$$
\Phi^{-1}\left(\int f d \gamma\right)<\sum_{i} \alpha_{i} \Phi^{-1}\left(\int f d \gamma\right) .
$$

Assume now that there exists $j \notin I_{\text {conv }}$ such that $\alpha_{j}-\sum_{i \neq j} \alpha_{i}>1$. Then using ($\mathbb{Z})$ and concavity again, we obtain for all x_{i},

$$
\begin{aligned}
\alpha_{j} F\left(x_{j}\right) & \geq\left(1+\sum_{i \neq j} \alpha_{i}\right) F\left(\frac{\alpha_{j} x_{j}}{1+\sum_{i \neq j} \alpha_{i}}\right) \\
& \geq F\left(\alpha_{j} x_{j}-\sum_{i \neq j} \alpha_{i} x_{i}\right)+\sum_{i \neq j} \alpha_{i} F\left(x_{i}\right)
\end{aligned}
$$

Let $g=1-f$. Since $-F=-\Phi^{-1} \circ f=\Phi^{-1} \circ(1-f)=\Phi^{-1} \circ g$ and f is even we may rewrite the latter as

$$
\Phi^{-1} \circ g\left(\alpha_{j} x_{j}+\sum_{i \neq j} \alpha_{i}\left(-x_{i}\right)\right) \geq \alpha_{j} \Phi^{-1} \circ g\left(x_{j}\right)+\sum_{i \neq j} \alpha_{i} \Phi^{-1} \circ f\left(-x_{i}\right) .
$$

However, since $\Phi^{-1}\left(\int g d \gamma\right)=-\Phi^{-1}\left(\int f d \gamma\right)>0$ and $\alpha_{j}-\sum_{i \neq j} \alpha_{i}>1$ it also holds

$$
\Phi^{-1}\left(\int g d \gamma\right)<\alpha_{j} \Phi^{-1}\left(\int g d \gamma\right)+\sum_{i \neq j} \alpha_{i} \Phi^{-1}\left(\int f d \gamma\right) .
$$

Therefore the proof is complete.

4 Further remarks

4.1 Brascamp-Lieb type inequalities

In the previous papers [7, 8], Borell already used his semigroup approach to derive variants of the Prékopa-Leindler inequality. The later is a functional counterpart to the Brunn-Minkowski inequality for the Lebesgue measure and reads as follows: if $\lambda \in(0,1)$ and $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$are Borel functions such that for all $x, y \in \mathbb{R}^{n}$,

$$
h(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} g(y)^{1-\lambda}
$$

then $\int h \geq\left(\int f\right)^{\lambda}\left(\int g\right)^{1-\lambda}$ where the integrals are with respect to Lebesgue's measure. Borell actually showed the following stronger fact: for all $t>0$ and all $x, y \in \mathbb{R}^{n}$

$$
P_{t} h(\lambda x+(1-\lambda) y) \geq P_{t} f(x)^{\lambda} P_{t} g(y)^{1-\lambda} .
$$

Setting $H(t, \cdot)=\log P_{t} h$ and defining F, G similarity, it is proved that $C(t, x, y):=H(t, \lambda x+(1-\lambda) y)-\lambda F(t, x)+(1-\lambda) G(t, y)$ satisfies a positivity-preserving evolution equation. The argument is simpler than for Ehrhard's inequality since the evolution equation of individual functions is simpler: $2 \partial_{t} H=\Delta H+|\nabla H|^{2}$.

The Brascamp-Lieb [12, 18] inequality is a powerful extension of Hölder's inequality. The so-called reverse Brascamp-Lieb inequality, first proved in [2, 3], appears as an extension of the Prékopa-Leindler inequality. In the paper (1), it was noted that Borell's semigroup method could be used to derive the geometric reverse Brascamp-Lieb inequality (which in some sense is a generic case, see [6]) for functions of one variable. This observation was also motivated by a proof of the Brascamp-Lieb inequalities based on semigroup techniques (Carlen Lieb and Loss [14] for functions of one variable, and Bennett Carbery Christ and Tao [6] for general functions). In this subsection,
we take advantage of our streamlined presentation of Borell's method, and quickly reprove the reverse Brascamp-Lieb inequality in geometric form, but for functions of several variables. More surprisingly we will recover the Brascamp-Lieb from inequalities which are preserved by the Heat flow. The result is not new (the inequality for the law of the semigroup appears in the preprint [5]), but it is interesting to have semigroup proofs of the direct and of the reverse inequalities which follow exactly the same lines. Recall that the transportation argument developed in [3] was providing the direct and the reverse inequality simultaneously.

The setting of the geometric inequalities is as follows: for $i=1, \ldots, m$ let $c_{i}>0$ and let $B_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n_{i}}$ be linear maps such that $B_{i} B_{i}^{*}=I_{n_{i}}$ and

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i} B_{i}^{*} B_{i}=I_{N} \tag{8}
\end{equation*}
$$

These hypotheses were put forward by Ball in connection with volume estimates in convex geometry [1]. Note that B_{i}^{*} is an isometric embedding of $\mathbb{R}^{n_{i}}$ into \mathbb{R}^{N} and that $B_{i}^{*} B_{i}$ is the orthogonal projection from \mathbb{R}^{N} to $E_{i}=\operatorname{Im}\left(B_{i}^{*}\right)$. The Brascamp-Lieb inequality asserts that for all Borel functions $f_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{+}$it holds

$$
\int_{\mathbb{R}^{N}} \prod_{i=1}^{m} f_{i}\left(B_{i} x\right)^{c_{i}} d x \leq \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i}\right)^{c_{i}}
$$

The reverse inequality ensures that

$$
\int_{\mathbb{R}^{N}}^{*} \sup \left\{\prod_{i=1}^{m} f_{i}\left(x_{i}\right)^{c_{i}} ; x_{i} \in \mathbb{R}^{n_{i}} \text { with } \sum c_{i} B_{i}^{*} x_{i}=x\right\} d x \geq \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i}\right)^{c_{i}}
$$

Following [7], we will deduce the later from the following result.
Theorem 4. If $h: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$and $f_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{+}$satisfy

$$
\forall x_{i} \in \mathbb{R}^{n_{i}}, \quad h\left(\sum_{i=1}^{m} c_{i} B_{i}^{*} x_{i}\right) \geq \prod_{i=1}^{m} f_{i}\left(x_{i}\right)^{c_{i}}
$$

then

$$
\forall x_{i} \in \mathbb{R}^{n_{i}}, \quad P_{t} h\left(\sum_{i=1}^{m} c_{i} B_{i}^{*} x_{i}\right) \geq \prod_{i=1}^{m} P_{t} f_{i}\left(x_{i}\right)^{c_{i}}
$$

The reverse inequality is obtained as $t \rightarrow+\infty$ since for f on $\mathbb{R}^{d}, P_{t} f(x)$ is equivalent to $(2 \pi t)^{-d / 2} \int_{\mathbb{R}^{d}} f$. To see it, note that:

$$
P_{t} f(x)=(2 \pi t)^{-d / 2} \int_{\mathbb{R}^{d}} f(y) \exp \left(\frac{|x-y|^{2}}{2 t}\right) d y
$$

Note also that taking traces in the decomposition of the identity map yields $\sum_{i} c_{i} n_{i}=N$.

In order to recover the Brascamp-Lieb inequality, we will show the following theorem.

Theorem 5. If $h: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$and $f_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{+}$satisfy

$$
\forall x \in \mathbb{R}^{N}, \quad h(x) \leq \prod_{i=1}^{m} f_{i}\left(B_{i} x\right)^{c_{i}}
$$

then

$$
\forall x \in \mathbb{R}^{N}, \quad P_{t} h(x) \leq \prod_{i=1}^{m} P_{t} f_{i}\left(B_{i} x\right)^{c_{i}}
$$

Again, the limit $t \rightarrow+\infty$ yields the Brascamp-Lieb inequality when choosing $h(x)=\prod_{i=1}^{m} f_{i}\left(B_{i} x\right)^{c_{i}}$. We sketch the proofs the the above two statements, omitting the truncation arguments needed to ensure Condition (5).

Proof of Theorem (4. Set $H(t, \cdot)=\log P_{t} h(\cdot)$ and $F_{i}(t, \cdot)=\log P_{t} f_{i}(\cdot)$. As said above, the functions H and F_{i} satisfy the equation $2 \partial_{t} U=\Delta U+|\nabla U|^{2}$. Set for $\left(t, x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{+} \times \mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{m}}$

$$
C\left(t, x_{1}, \ldots, x_{m}\right):=H\left(t, \sum_{i=1}^{m} c_{i} B_{i}^{*} x_{i}\right)-\sum_{i=1}^{m} c_{i} F_{i}\left(t, x_{i}\right)
$$

By hypothesis $C(0, \cdot) \geq 0$ and we want to prove that $C(t, \cdot)$ is non-negative as well. As before, we are done if we can show that the three conditions $C \leq 0, \nabla C=0$, and $\operatorname{Hess}(C) \geq 0$ imply that $\partial_{t} C \geq 0$. Actually one can see that the condition $C \leq 0$ will not be used in the following. Omitting variables,

$$
2 \partial_{t} C=\left(\Delta H-\sum c_{i} \Delta F_{i}\right)+\left(|\nabla H|^{2}-\sum c_{i}\left|\nabla F_{i}\right|^{2}\right)=: \mathcal{S}+\mathcal{P}
$$

Straightforward calculations give

$$
\begin{aligned}
\nabla_{x_{i}} C & =c_{i} B_{i} \nabla H-c_{i} \nabla F_{i} \quad \text { and } \\
\operatorname{Hess}_{x_{i}, x_{j}}(C) & =c_{i} c_{j} B_{i} \operatorname{Hess}(H) B_{j}^{*}-\delta_{i, j} c_{i} \operatorname{Hess}\left(F_{i}\right) .
\end{aligned}
$$

Note that the decomposition (8) implies for all $v \in \mathbb{R}^{N}$

$$
|v|^{2}=\left\langle v, \sum c_{i} B_{i}^{*} B_{i} v\right\rangle=\sum c_{i}\left|B_{i} v\right|^{2} .
$$

Hence, if $\nabla C=0$, the above calculation gives $\nabla F_{i}=B_{i} \nabla H$. Consequently $|\nabla H|^{2}=\sum c_{i}\left|B_{i} \nabla H\right|^{2}=\sum c_{i}\left|\nabla F_{i}\right|^{2}$. So $\nabla C=0 \Longrightarrow \mathcal{P}=0$.

Next, we deal with the second order term. Using (8) again

$$
\begin{aligned}
\Delta H & =\operatorname{Tr}(\operatorname{Hess}(H))=\operatorname{Tr}\left(\left(\sum_{i} c_{i} B_{i}^{*} B_{i}\right) \operatorname{Hess}(H)\left(\sum_{j} c_{j} B_{j}^{*} B_{j}\right)\right) \\
& =\sum_{i, j} \operatorname{Tr}\left(B_{i}^{*}\left(c_{i} c_{j} B_{i} \operatorname{Hess}(H) B_{j}^{*}\right) B_{j}\right) .
\end{aligned}
$$

Also note that

$$
\begin{aligned}
\sum_{i, j} \operatorname{Tr}\left(B_{i}^{*}\left(\delta_{i, j} c_{i} \operatorname{Hess}\left(F_{i}\right)\right) B_{j}\right) & =\sum_{i} \operatorname{Tr}\left(B_{i}^{*} c_{i} \operatorname{Hess}\left(F_{i}\right) B_{i}\right) \\
& =\sum_{i} c_{i} \operatorname{Tr}\left(\operatorname{Hess}\left(F_{i}\right) B_{i} B_{i}^{*}\right)=\sum_{i} c_{i} \Delta F_{i}
\end{aligned}
$$

since $B_{i} B_{i}^{*}=I_{n_{i}}$. Combining the former and the later and denoting by J_{i} the canonical embedding of $\mathbb{R}^{n_{i}}$ into $\mathbb{R}^{n_{1}+\cdots+n_{m}}$ we get that

$$
\begin{aligned}
\mathcal{S} & =\Delta H-\sum c_{i} \Delta F_{i}=\sum_{i, j} \operatorname{Tr}\left(B_{i}^{*} \operatorname{Hess}_{x_{i}, x_{j}}(C) B_{j}\right) \\
& =\sum_{i, j} \operatorname{Tr}\left(B_{i}^{*}\left(J_{i}^{*} \operatorname{Hess}(C) J_{j}\right) B_{j}\right)=\operatorname{Tr}\left(\left(\sum_{i} J_{i} B_{i}\right)^{*} \operatorname{Hess}(C)\left(\sum_{j} J_{j} B_{j}\right)\right)
\end{aligned}
$$

is non-negative when $\operatorname{Hess}(C) \geq 0$. This is enough to conclude that C remains non-negative.

Proof of Theorem 5. As before we set $H(t, \cdot)=\log P_{t} h(\cdot)$ and $F_{i}(t, \cdot)=$ $\log P_{t} f_{i}(\cdot)$. For $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{N}$

$$
C(t, x):=\sum_{i=1}^{m} c_{i} F_{i}\left(t, B_{i} x\right)-H(t, x) .
$$

Omitting variables, C evolves according to the equation

$$
\partial_{t} C=\left(\sum c_{i} \Delta F_{i}-\Delta H\right)+\left(\sum c_{i}\left|\nabla F_{i}\right|^{2}-|\nabla H|^{2}\right)=: \mathcal{S}+\mathcal{P} .
$$

Next
$\nabla C=\sum c_{i} B_{i}^{*} \nabla F_{i}-\nabla H \quad$ and $\quad \operatorname{Hess}(C)=\sum c_{i} B_{i}^{*} \operatorname{Hess}\left(F_{i}\right) B_{i}-\operatorname{Hess}(H)$.
Taking traces in the later equality and since $B_{i} B_{i}^{*}=I_{n_{i}}$ we obtain

$$
\Delta C=\sum_{i} c_{i} \operatorname{Tr}\left(\operatorname{Hess}\left(F_{i}\right) B_{i} B_{i}^{*}\right)-\Delta H=\sum_{i} c_{i} \Delta F_{i}-\Delta H=\mathcal{S}
$$

Therefore the second order term is clearly elliptic.
It remains to check that $\nabla C=0$ implies that the first order term \mathcal{P} is non-negative. We will need the following easy consequence of the decomposition (8): if $x_{i} \in \mathbb{R}^{n_{i}}, i=1, \ldots, m$, then

$$
\left|\sum c_{i} B_{i}^{*} x_{i}\right|^{2} \leq \sum c_{i}\left|x_{i}\right|^{2}
$$

The proof is easy: set $v=\sum c_{i} B_{i}^{*} x_{i}$. Then by Cauchy-Schwarz

$$
\begin{aligned}
|v|^{2} & =\left\langle v, \sum c_{i} B_{i}^{*} x_{i}\right\rangle=\sum c_{i}\left\langle B_{i} v, x_{i}\right\rangle \\
& \leq\left(\sum c_{i}\left|B_{i} v\right|^{2}\right)^{\frac{1}{2}}\left(\sum c_{i}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

But (8) ensures that $|v|^{2}=\sum c_{i}\left|B_{i} v\right|^{2}$ so after simplification we get the claim. Finally, note that $\nabla C=0$ means that $\nabla H=\sum c_{i} B_{i}^{*} \nabla F_{i}$. Hence $|\nabla H|^{2} \leq \sum c_{i}\left|\nabla F_{i}\right|^{2}$. In other words $\mathcal{P} \geq 0$. The proof is therefore complete.

4.2 Looking for Gaussian Brascamp-Lieb inequalities

It is natural to ask about Gaussian versions of the Brascamp-Lieb or inverse Brascamp-Lieb inequalities. For $0 \leq i \leq m$, take a nonzero real d_{i}, a positive integer $n_{i} \leq N$, a linear surjective map $L_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n_{i}}$, and a Borel function f_{i} on $\mathbb{R}^{n_{i}}$ taking value in $(0,1)$. Does the inequality

$$
\forall x \in \mathbb{R}^{N}, \quad \sum_{i=0}^{m} d_{i} \Phi^{-1} \circ f_{i}\left(L_{i} x\right) \geq 0
$$

upgrade for all $t \geq 0$ to

$$
\forall x \in \mathbb{R}^{N}, \quad \sum_{i=0}^{m} d_{i} \Phi^{-1} \circ P_{t} f_{i}\left(L_{i} x\right) \geq 0 \quad ?
$$

This general formulation allows negative d_{i} 's and would encompass Gaussian extensions of Theorem 4 or Theorem 5. It also enables a better understanding of the essential properties in the semigroup argument. Note that from now the index i goes from 0 to m, the function $f_{0}=: h$ playing a priori no particular role anymore.

As before, we define for $t \geq 0$ and $x \in \mathbb{R}^{N}$,

$$
C(t, x)=\sum d_{i} \Phi^{-1} \circ P_{t} f_{i}\left(L_{i} x\right)=\sum d_{i} F_{i}\left(t, L_{i} x\right)
$$

and we are interested in proving that $C(0,) \geq$.0 implies $C(t,) \geq$.0 for all $t \geq 0$. Assume that our functions are smooth enough for the next calculations. It holds

$$
\begin{array}{ll}
C & =\sum d_{i} F_{i} \\
\nabla C & =\sum d_{i} L_{i}^{*} \nabla F_{i}, \\
\operatorname{Hess}(C) & =\sum d_{i} L_{i}^{*} \operatorname{Hess}\left(F_{i}\right) L_{i},
\end{array}
$$

and thanks to the Heat equation, C satisfies the following differential equation $2 \partial_{t} C=(\mathcal{S}+\mathcal{P})$ where

$$
\mathcal{S}=\sum d_{i} \Delta F_{i} \text { and } \mathcal{P}=-\sum d_{i}\left|\nabla F_{i}\right|^{2} F_{i} .
$$

We require that

$$
\left\{\begin{array} { l }
{ \operatorname { H e s s } (C) \geq 0 } \\
{ \nabla C = 0 } \\
{ C \leq 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\mathcal{P} \geq 0 \\
\mathcal{S} \geq 0
\end{array}\right.\right.
$$

in order to apply Lemma (the condition at infinity is verified, provided one restricts to good enough functions f_{i}. We omit the details). This request will translate in terms of conditions on the data $\left(d_{i}, L_{i}\right)$. We deal separately with the condition for each order:

First order terms : note that $\left(F_{i}, \nabla F_{i}\right)_{i=0, \ldots, m}$ can be chosen arbitrarily for fixed x and t; for instance take

$$
f_{i}: x_{i}^{\prime} \mapsto\left\langle\Phi^{\prime}\left(Z_{i}\right) Y_{i}, x_{i}^{\prime}\right\rangle+\Phi\left(Z_{i}\right)-P_{t} \tilde{f}_{i}\left(L_{i} x\right)
$$

with $\tilde{f}_{i}: x_{i}^{\prime} \mapsto\left\langle\Phi^{\prime}\left(Z_{i}\right) Y_{i}, x_{i}^{\prime}\right\rangle$, so that $F_{i}\left(t, L_{i} x\right)=Z_{i}$ and $\nabla F_{i}\left(t, L_{i} x\right)=$ Y_{i}.

Thus the condition $(C \leq 0, \nabla C=0) \Longrightarrow \mathcal{P} \geq 0$ boils down to the following relation between polynomials

$$
\left\{\begin{array}{cc}
\sum d_{i} Z_{i} & \leq 0 \\
\sum d_{i} L_{i}^{*} Y_{i} & =0
\end{array} \quad \Longrightarrow \quad \sum d_{i}\left|Y_{i}\right|^{2} Z_{i} \leq 0\right.
$$

where Z_{i} is a 1 -dimensional unknown and Y_{i} is an n_{i}-dimensional one.
Reasoning for fixed $Y_{i}^{\prime} s$, and viewing the conditions on Z_{i} as equations of half-spaces, we easily see that the later condition is equivalent to

$$
\begin{equation*}
\sum d_{i} L_{i}^{*} Y_{i}=0 \quad \Longrightarrow \quad\left|Y_{0}\right|_{\mathbb{R}^{n_{0}}}^{2}=\ldots=\left|Y_{m}\right|_{\mathbb{R}^{n_{m}}}^{2} \tag{9}
\end{equation*}
$$

This condition can be worked out a bit more. Let $\mathcal{L}: \mathbb{R}^{\sum n_{j}} \rightarrow \mathbb{R}^{N}$ be defined by

$$
\mathcal{L}\left(Y_{0}, \ldots, Y_{m}\right)=\sum d_{i} L_{i}^{*} Y_{i} .
$$

If $a=\left(a_{0}, \ldots, a_{m}\right)$ and $b=\left(b_{0}, \ldots, b_{m}\right)$ belong to ker \mathcal{L} then $\left|a_{i}\right|^{2}$, $\left|b_{i}\right|^{2}$, and by linearity $\left|a_{i}+b_{i}\right|^{2}$ are independent of i. Expanding the square of the sum, we deduce that $\left\langle a_{i}, b_{i}\right\rangle$ is independent of i and therefore equal to the average over i of these quantities. Hence for all $i,(m+1)\left\langle a_{i}, b_{i}\right\rangle=\langle a, b\rangle$. This means that $u_{i}: \operatorname{ker} \mathcal{L} \rightarrow \mathbb{R}^{n_{i}}$ defined by $u_{i}(a)=\sqrt{m+1} a_{i}$ is an isometry. Since $a_{i}=u_{i}\left(u_{0}^{-1}\left(a_{0}\right)\right)$, we conclude that

$$
\operatorname{ker} \mathcal{L}=\left\{\left(a_{0}, u_{1}\left(u_{0}^{-1}\left(a_{0}\right)\right), \ldots, u_{m}\left(u_{0}^{-1}\left(a_{0}\right)\right)\right) ; a_{0} \in \operatorname{Im}\left(u_{0}\right)\right\}
$$

It is then clear that Condition (9) is equivalent to the following: there exists a subspace $X \subset \mathbb{R}^{n_{0}}$ and linear isometries $R_{i}: X \rightarrow \mathbb{R}^{n_{i}}, i \geq 1$ such that

$$
\begin{equation*}
\operatorname{ker} \mathcal{L}=\left\{\left(x, R_{1} x, \ldots, R_{m} x\right) ; x \in X\right\} \tag{10}
\end{equation*}
$$

Second order terms : we are done if we can find an elliptic operator \mathcal{E} such that $\mathcal{S}=\mathcal{E} C$. In other words we are looking for a symmetric positive semi-definite matrix A of size $N \times N$ such that the quantity

$$
\operatorname{Tr}(A \operatorname{Hess}(C))=\sum d_{i} \operatorname{Tr}\left(A L_{i}^{*} \operatorname{Hess}\left(F_{i}\right) L_{i}\right)
$$

coincides with $\mathcal{S}=\sum d_{i} \Delta F_{i}$. As we require this identity for arbitrary functions F_{i}, we can conclude that A does the job if and only if for all $0 \leq i \leq m$,

$$
L_{i} A L_{i}^{*}=I_{n_{i}} .
$$

Eventually, we may look for A in the form $A=\sigma^{*} \sigma$ for some square matrix σ of size N. For $0 \leq i \leq m$ and $1 \leq j \leq n_{i}$, denote by $u_{i}^{j} \in \mathbb{R}^{N}$ the columns of L_{i}^{*}. Rewriting the later conditions in terms of σ we may conclude that: $\operatorname{Hess}(C) \geq 0 \Longrightarrow \mathcal{S} \geq 0$ holds provided there exits a matrix σ of size N such that for all $0 \leq i \leq m$ the vectors $\left(\sigma u_{i}^{j}\right)_{j=1}^{n_{i}}$ form an orthonormal system in \mathbb{R}^{N}. Note that the first order condition requires that the linear relations between the vector u_{i}^{j} should have a particular structure.

The above conditions are quite restrictive. We were able to find data $\left(d_{i}, L_{i}\right)$ verifying them, but all of them could be reduced to the Borell theorem, using the rotation invariance of the Gaussian measure and the fact that its marginals remain Gaussian. To conclude this section let us briefly explain why the method does not allow any new Gaussian improvement of Theorems 0 or 5 .

For $i=1, \ldots, m$, let $c_{i}>0$ and $B_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{i}}$ be linear surjective maps. If we look for Gaussian versions of the Brascamp-Lieb inequality, we are led to apply the previous reasoning to $N=n, B_{0}=I_{N}, d_{0}=-1$, and for $i \geq 1$, $L_{i}=B_{i}$ and $d_{i}=c_{i}$. Now, with the above notation, $\left(Y_{0}, \ldots, Y_{m}\right) \in \operatorname{ker} \mathcal{L}$ is equivalent to $Y_{0}=\sum_{i=1}^{m} c_{i} B_{i}^{*} Y_{i}$. Since this condition can be verified even though $\left|Y_{1}\right| \neq\left|Y_{2}\right|$ we conclude that the first order condition is never satisfied.

Next, we are looking for inequalities of the reverse Brascamp-Lieb type. Hence we choose $N=n_{1}+\cdots+n_{m}, d_{0}=1, L_{0}\left(x_{1}, \ldots, x_{m}\right)=\sum c_{i} B_{i}^{*} x_{i}$, and for $i \geq 1, d_{i}=-c_{i}, L_{i}\left(x_{1}, \ldots, x_{m}\right)=x_{i}$. For $x \in \mathbb{R}^{n}, L_{0}^{*}(x)=$ $\left(c_{1} B_{1} x, \ldots, c_{m} B_{m} x\right)$. For $i \geq 1$ and $x_{i} \in \mathbb{R}^{n_{i}}, L_{i}^{*}\left(x_{i}\right)=\left(0, \ldots, 0, x_{i}, 0, \ldots, 0\right)$ where x_{i} appears at the i-th place. The condition $\left(Y_{0}, \ldots, Y_{m}\right) \in \operatorname{ker} \mathcal{L}$, that is $L_{0}^{*}\left(Y_{0}\right)=\sum_{i \geq 1} c_{i} L_{i}^{*}\left(Y_{i}\right)$ becomes:

$$
\forall i=1, \ldots, m, Y_{i}=B_{i} Y_{0}
$$

Hence $\operatorname{ker} \mathcal{L}=\left\{\left(Y_{0}, B_{1} Y_{0}, \ldots, B_{m} Y_{0}\right) ; Y_{0} \in \mathbb{R}^{n}\right\}$. So the first order condition (ID) is verified only if the B_{i} 's are isometries. This forces $n_{i}=n$ and up to an isometric change of variables, we are back to the setting of the Gaussian Brunn-Minkowski inequality.

Remark. To make use of Lemman, it should be sufficient to prove ($\mathcal{P}+\mathcal{S} \geq$ 0) instead of the stronger condition ($\mathcal{P} \geq 0$ and $\mathcal{S} \geq 0$) as required page 22. However we were not able to translate this into nice conditions on coefficients or functions. In this sense, our semi-group approach fails to extend Theorem [1 into a more general Gaussian Brascamp-Lieb inequality.

References

[1] K. M. Ball. Volumes of sections of cubes and related problems. In J. Lindenstrauss and V. D. Milman, editors, Israel seminar on Geometric Aspects of Functional Analysis, number 1376 in Lectures Notes in Math. Springer-Verlag, 1989.
[2] F. Barthe. Inégalités de Brascamp-Lieb et convexité. C. R. Acad. Sci. Paris Sér. I Math., 324:885-888, 1997.
[3] F. Barthe. On a reverse form of the Brascamp-Lieb inequality. Invent. Math., 134(2):335-361, 1998.
[4] F. Barthe and D. Cordero-Erausquin. Inverse Brascamp-Lieb inequalities along the Heat equation. In V. D. Milman and G. Schechtman, editors, Geometric Aspects of Functional Analysis, number 1850 in Lecture Notes in Math., pages 65-71. Springer, 2004.
[5] F. Barthe, D. Cordero-Erausquin, M. Ledoux, and B. Maurey. Semigroup proofs of Brascamp-Lieb inequalities. Preprint, 2006.
[6] J. Bennett, A. Carbery, M. Christ, and T. Tao. The Brascamp-Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal., 17(5):1343-1415, 2008.
[7] C. Borell. Geometric properties of some familiar diffusions in \mathbf{R}^{n}. Ann. Probab., 21(1):482-489, 1993.
[8] C. Borell. Diffusion equations and geometric inequalities. Potential Anal., 12(1):49-71, 2000.
[9] C. Borell. The Ehrhard inequality. C. R. Math. Acad. Sci. Paris, 337(10):663-666, 2003.
[10] C. Borell. Minkowski sums and Brownian exit times. Ann. Fac. Sci. Toulouse Math. (6), 16(1):37-47, 2007.
[11] C. Borell. Inequalities of the Brunn-Minkowski type for gaussian measures. Probability Theory and Related Fields, 140(1-2), 2008.
[12] H. J. Brascamp and E. H. Lieb. Best constants in Young's inequality, its converse and its generalization to more than three functions. Adv. Math., 20:151-173, 1976.
[13] H. Brézis. Analyse fonctionnelle, théorie et applications. Masson, 1993.
[14] E. A. Carlen, E. H. Lieb, and M. Loss. A sharp analog of Young's inequality on S^{N} and related entropy inequalities. J. Geom. Anal., 14(3):487-520, 2004.
[15] A. Ehrhard. Symétrisation dans l'espace de gauss. Math. Scand., 53:281-301, 1983.
[16] H. Federer. Geometric Measure Theory. Springer-Verlag, New York, 1969.
[17] R. Latała. A note on the Ehrhard inequality. Studia Math., 118(2):169174, 1996.
[18] E. H. Lieb. Gaussian kernels have only gaussian maximizers. Invent. Math., 102:179-208, 1990.
[19] G. Pisier. The volume of convex bodies and Banach space geometry, volume 94 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1989.
[20] R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.
F. BARTHE: Institut de Mathématiques de Toulouse. Université Paul Sabatier. 31062 Toulouse, FRANCE. Email: barthe@math.univ-toulouse.fr
N. HUET: Institut de Mathématiques de Toulouse. Université Paul Sabatier. 31062 Toulouse, FRANCE. Email: huet@math.univ-toulouse.fr

