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In this paper, we are interested in Gaussian versions of the classical Brunn-Minkowski inequality. We prove in a streamlined way a semigroup version of the Ehrard inequality for m Borel or convex sets based on a previous work by Borell. Our method also allows us to have semigroup proofs of the geometric Brascamp-Lieb inequality and of the reverse one which follow exactly the same lines.

Introduction

In this paper, we are interested in Gaussian versions of the classical Brunn-Minkowski inequality on the Lebesgue measure of sum-sets (see e.g. [START_REF] Pisier | The volume of convex bodies and Banach space geometry[END_REF][START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF]). On R n with its canonical Euclidean structure ( • , • , | • |) we consider the standard Gaussian measure γ n (dx) = (2π) -n/2 exp(-|x| 2 /2) dx, x ∈ R n . Given α, β ∈ R and sets A, B ⊂ R n , we recall that their Minkowski combination is defined by

αA + βB = {αa + βb; (a, b) ∈ A × B}.
Using symmetrization techniques, Ehrhard [START_REF] Ehrhard | Symétrisation dans l'espace de gauss[END_REF] proved a sharp lower bound on the Gaussian measure of a convex combination of convex sets. Namely: if α, β ≥ 0 satisfy α + β = 1 and if A, B ⊂ R n are convex, then

Φ -1 • γ n (αA + βB) ≥ αΦ -1 • γ n (A) + βΦ -1 • γ n (B),
where Φ is the cumulative distribution function of γ 1 . This inequality becomes an equality when A and B are parallel half-spaces or the same convex set. Lata la [START_REF] Lata La | A note on the Ehrhard inequality[END_REF] showed that the inequality remains valid when A is convex and B is an arbitrary Borel set. In the remarkable paper [START_REF] Borell | The Ehrhard inequality[END_REF], Borell was able to remove the remaining convexity assumption. He actually derived a functional version of the inequality (in the spirit of the Prékopa-Leindler inequality) by a wonderful interpolation technique based on the heat equation. In a series of papers, Borell extended the inequality to more general combinations:

Theorem (Borell [START_REF] Borell | Inequalities of the Brunn-Minkowski type for gaussian measures[END_REF]). Let α 1 , . . . , α m > 0. The inequality

Φ -1 • γ n α i A i ≥ α i Φ -1 • γ n (A i ) (1) 
holds for all Borel sets A 1 , . . . , A m in R n if and only if

α i ≥ 1 and ∀j, α j - i =j α i ≤ 1.
Moreover, it holds for all convex sets A 1 , . . . , A m in R n if and only if

α i ≥ 1.
Borell established the case m = 2 for Borel sets in [START_REF] Borell | Minkowski sums and Brownian exit times[END_REF] thanks to his semigroup argument. His proof in [START_REF] Borell | Inequalities of the Brunn-Minkowski type for gaussian measures[END_REF] of the general case relies on a tricky and somewhat complicated induction. Remark that a linear combination of Borel sets need not be a Borel set; however it is analytic or Suslin, hence universally measurable, see e.g. [START_REF] Federer | Geometric Measure Theory[END_REF].

In this note we give a slight extension of the above statement (which can actually be derived directly from the theorem of Borell, as pointed out by the referee). More importantly we propose a streamlined version of the semigroup argument for m functions directly, which allows to take advantage of convexity type assumptions. This better understanding of the semigroup technique also allows to study more general situations. The main result is stated next. It involves the heat semigroup, for which we recall the definition: given a Borel nonnegative function f on R n , its evolute at time t ≥ 0 is the function P t f given by

P t f (x) = f x + √ t y γ n (dy) = E f (x + B t )
where B is an n-dimensional Brownian motion. By convention ∞ -∞ = -∞ so that inequalities like Inequality [START_REF] Ball | Volumes of sections of cubes and related problems[END_REF], or the one introduced in the next theorem, make sense.

Theorem 1. Let I conv ⊂ {1, . . . , m}, α 1 , . . . , α m > 0. The following assertions are equivalent:

1. The parameter α satisfies

α i ≥ 1 and ∀j / ∈ I conv , α j - i =j α i ≤ 1. ( 2 
)
2. For all Borel sets A 1 , . . . ,

A m in R n such that A i is convex when i ∈ I conv , Φ -1 • γ α i A i ≥ α i Φ -1 • γ(A i ) 3. For all Borel functions h, f 1 , . . . , f m from R n to [0, 1] such that Φ -1 •f i is concave when i ∈ I conv , if ∀x 1 , . . . , x m ∈ R n , Φ -1 • h α i x i ≥ α i Φ -1 • f i (x i ), then Φ -1 h dγ ≥ α i Φ -1 f i dγ .

For all Borel functions

h, f 1 , . . . , f m from R n to [0, 1] such that Φ -1 •f i is concave when i ∈ I conv , if ∀x 1 , . . . , x m ∈ R n , Φ -1 • h α i x i ≥ α i Φ -1 • f i (x i ), then for all t ≥ 0 ∀x 1 , . . . , x m ∈ R n , Φ -1 • P t h α i x i ≥ α i Φ -1 • P t f i (x i ).
Remark. Condition (2) can be rephrased as

α i ≥ max 1, max{2α j -1; j ∈ I conv } .
Actually the condition will come up in our argument in the following geometric form: there exist vectors u 1 , . . . , u m ∈ R m such that for all i ∈ I conv ,

|u i | ≤ 1, for all i ∈ I conv , |u i | = 1, and | α i u i | = 1.
In the next section we show that the condition on α implies the fourth (and formally strongest) assumption in the latter theorem, when restricted to smooth enough functions. The third section completes the proof of the theorem. In the final section we discuss related problems.

Before going further, let us introduce some notation.

• We consider functions depending on a time variable t and a space variable x. The time derivative is denoted by ∂ t , while the gradient, Hessian, and Laplacian in x are denoted by ∇ x , Hess x , and ∆ x , omitting the index x when there is no ambiguity.

• The unit Euclidean (closed) ball and sphere of R d are denoted respectively by B d and S d-1 .

• For A ⊂ R d , we set A ε = A + εB d . The notation A ε i means (A i ) ε .

Functional and semigroup approach

As already mentioned we follow Borell's semigroup approach of the Gaussian Brunn-Minkowski inequalities (see [START_REF] Borell | The Ehrhard inequality[END_REF] and [START_REF] Borell | Minkowski sums and Brownian exit times[END_REF]): for parameters α verifying (2), the plan is two show the functional version of the inequality (the third assertion of Theorem 1), by means of the heat semigroup. Note that the fourth assertion implies the third one when choosing t = 1 and x i = 0 in the last equation. So our aim is to establish the fourth assumption. More precisely, given Borel functions h, f 1 , . . . , f m from R n taking into (0, 1), we define

C on [0, T ] × (R n ) m by C(t, x) = C(t, x 1 , . . . , x m ) = Φ -1 • P t h α i x i - α i Φ -1 • P t f i (x i ).
Since P 0 f = f the assumption

∀x i ∈ R n , Φ -1 • h α i x i ≥ α i Φ -1 • f i (x i ) (3) 
translates as C(0, . ) ≥ 0. Our task is to prove

C(0, . ) ≥ 0 =⇒ ∀t ≥ 0, C(t, . ) ≥ 0.

Preliminaries

When the functions h and f i are smooth enough, the time evolution of P t h and P t f i is described by the heat equation. This yields a differential equation satisfied by C. Our problem boils down to determine whether this evolution equation preserves nonnegative functions. This is clearly related to the maximum principle for parabolic equations (see e.g. [START_REF] Brézis | Analyse fonctionnelle, théorie et applications[END_REF]). We will use the following lemma.

Lemma 1. Assume that C is twice differentiable. If    Hess(C) ≥ 0 ∇C = 0 C ≤ 0 =⇒ ∂ t C ≥ 0 ( 4 
)
and if for some

T > 0 lim inf |x|→∞ inf 0≤t≤T C(x, t) ≥ 0, ( 5 
) then C(0, . ) ≥ 0 =⇒ ∀t ∈ [0, T ], C(t, . ) ≥ 0. Proof. For ε > 0, set C ε (t, x) = C(t, x) + εt on [0, T ] × (R n ) m . If C ε <
0 at some point, then C ε reaches its minimum at a point (t 0 , x 0 ) where ∇C = 0, Hess(C) ≥ 0, C < 0, and ∂ t C + ε ≤ 0 (= 0 if t 0 < T ). By the hypotheses, it implies ∂ t C ≥ 0 which is in contradiction with ∂ t C ≤ -ε. So for all ε > 0 and T > 0, C ε is non-negative on [0, T ] × (R n ) m , thus C is non-negative everywhere.

Property [START_REF] Barthe | Semigroup proofs of Brascamp-Lieb inequalities[END_REF] is true under mild assumptions on h and f i which are related to the initial condition C(0, . ) ≥ 0 in the large:

Lemma 2. If there exist a 1 , . . . , a m ∈ R such that • lim sup |x|→∞ f i (x) ≤ Φ(a i ) • h ≥ Φ α i a i then for all T > 0, lim inf |x|→∞ inf 0≤t≤T C(x, t) ≥ 0.
Proof. Let δ > 0. By continuity of Φ -1 , there exists ε > 0 such that

Φ -1 Φ(a i ) + 2ε ≤ a i + δ α j .
Let r > 0 be such that γ n (rB n ) = 1 -ε. Then, for 0 ≤ t ≤ T ,

P t f i (x i ) = rB n f i (x i + √ t y) γ n (dy) + (rB n ) ∁ f i (x i + √ t y) γ n (dy) ≤ (1 -ε) sup x i +r √ t B n f i + ε sup f i ≤ sup x i +r √ T B n f i + ε ≤ Φ(a i ) + 2ε for |x i | large enough.
Moreover P t h ≥ Φ α i a i so for |x| large enough and for 0 ≤ t ≤ T , it holds C(t, x) ≥ -δ. As δ > 0 was arbitrary, the proof is complete.

Checking Property (4) of Lemma 1 requires the following lemma:

Lemma 3. Let d ≥ 2, α 1 , . . . , α m > 0. Let k be an integer with 0 ≤ k ≤ m and ϕ : (S d-1 ) k × (B d ) m-k → R + (v 1 , . . . , v m ) → | α i v i | .
Then the image of ϕ is the interval

J := max 0 ∪ α j - i =j α i , 1 ≤ j ≤ k , α i . Proof. As ϕ is continuous on a compact connected set, Im(ϕ) = [min ϕ, max ϕ]. Plainly | α i v i | ≤ α i , with equality if v 1 = • • • = v m is a unit vector. So max ϕ = i α i . For all j ≤ k, since |v j | = 1, the triangle inequality gives α i v i ≥ α j |v j | - i =j α i |v i | ≥ α j - i =j α i .
Hence Im(ϕ) ⊂ J and these two segments have the same upper bound. Next we deal with the lower bound. Let us consider a point (v 1 , . . . , v m ) where ϕ achieves its minimum, and differentiate: For j ≤ k, v j lies in the unit sphere. Applying Lagrange multipliers theorem to ϕ 2 with respect to v j gives a real number λ j such that,

α j i α i v i = λ j v j . (6) 
For j > k, the j-th variable lives in B d . If |v j | < 1 the minimum is achieved at an interior point and the full gradient on ϕ 2 with respect to the j-th variable is zero. Hence i α i v i = 0. On the other hand if at the minimum |v j | = 1, differentiating in the j-th variable only along the unit sphere gives again the existence of λ j ∈ R such that (6) is verified.

Eventually, we face 2 cases:

1. Either α i v i = 0 and min ϕ = 0. In this case, the triangle inequality gives 0 = | α i v i | ≥ α ji =j α i whenever j ≤ k.

2.

Or the v i 's are colinear unit vectors and there exists a partition S + ∪ S -= {1, . . . , m} and a unit vector v such that

min ϕ = S + α i v - S - α i v = S + α i - S - α i > 0.
Assume that S + contains 2 indices j and ℓ. Let e 1 and e 2 be 2 orthonormal vectors of R d and let us denote by R(θ) the rotation in the plane Vect(e 1 , e 2 ) of angle θ. The length of the vector α j R(θ)e 1 + α ℓ e 1 is a decreasing and continuous function of θ ∈ [0, π]. Denote by U(θ) the rotation in the plane Vect(e 1 , e 2 ) which maps this vector to |α j R(θ)e 1 + α ℓ e 1 |e 1 . Then

α j U(θ)R(θ)e 1 + α ℓ U(θ)e 1 + S + \{j,ℓ} α i e 1 - S - α i e 1 = λ(θ)e 1 ,
where λ(0) = S + α i -S -α i = min ϕ > 0 and λ is continuous and decreasing in θ ∈ [0, π]. This contradicts the minimality of min ϕ. So S + contains a single index j and

min ϕ = α j v - i =j α i v = α j - i =j α i > 0.
Note that necessarily j ≤ k, otherwise one could get a shorter vector by replacing v j = v by (1-ε)v. Besides, the condition α ji =j α i > 0 ensures that α j > α ℓ for ℓ = j. This implies that for ℓ = j,

α ℓ - i =ℓ α i ≤ α ℓ -α j < 0 < α j - i =j α i . So min ϕ = max 0 ∪ α j -i =j α i , 1 ≤ j ≤ k as claimed.

Semigroup proof for smooth functions

We deal with smooth functions first, in order to ensure that P t f i and P t h verify the heat equation. This restrictive assumption will be removed in Section 3 where the proof of Theorem 1 is completed.

Theorem 2. Let f i , i = 1, . . . , m, and h be twice continuously differentiable functions from R n to (0, 1) satisfying the hypotheses of Lemma 2. Assume moreover that for f = f i or h,

∀t > 0, ∀x ∈ R n , ∇f (x + √ t y) e -|y| 2 2 ----→ |y|→∞ 0.
Let α 1 , . . . , α m be positive real numbers such that

α i ≥ 1 and ∀j, α j - i =j α i ≤ 1. If ∀x i ∈ R n , Φ -1 • h α i x i ≥ α i Φ -1 • f i (x i ), then ∀t ≥ 0, ∀x i ∈ R n , Φ -1 • P t h α i x i ≥ α i Φ -1 • P t f i (x i ).
Proof. Let us recall that C is defined by

C(t, x) = C(t, x 1 , . . . , x m ) = H t, α i x i - α i F i (t, x i )
where we have set

H(t, y) = Φ -1 • P t h(y) and F i (t, y) = Φ -1 • P t f i (y).
In what follows, we omit the variables and write H for H t, α i x i and F i instead of F i (t, x i ). With this simplified notation,

C = H - α i F i , ∇ x i C = α i (∇H -∇F i ), ∇ x i ∇ * x j C = α i α j Hess(H) -δ ij α i Hess(F i ).
Moreover, one can use the property of heat kernel to derive a differential equation for F i and H. Indeed, for any f satisfying hypotheses of the theorem, we can perform an integration by parts so that it holds

∂ t P t f = 1 2 ∆P t f.
Then we set F = Φ -1 • P t f and use the identity

(1/Φ ′ (x)) ′ = x/Φ ′ (x) to show ∂ t F = ∂ t P t f Φ ′ (F ) = ∆P t f 2 Φ ′ (F ) , ∇F = ∇P t f Φ ′ (F ) , ∆F = ∆P t f Φ ′ (F ) + F |∇P t f | 2 (Φ ′ (F )) 2 .
We put all together to get

∂ t F = 1 2 ∆F -F |∇F | 2
and to deduce the following differential equation for C:

∂ t C = 1 2 (S + P)
where the second order part is

S = ∆H - α i ∆F i
and the terms of lower order are

P = -H |∇H| 2 - α i F i |∇F i | 2 .
We will conclude using Lemma 1. So we need to check Condition (4). First we note that P is non-negative when ∇C = 0 and C ≤ 0, regardless of α. Indeed, ∇C = 0 implies that ∇F i = ∇H for all i.

So P = -|∇H| 2 C which is non-negative if C ≤ 0.
It remains to deal with the second order part. It is enough to express S as EC for some elliptic operator E, since then Hess(C) ≥ 0 implies S ≥ 0. Such a second order operator can be written as E = ∇ * A∇ where A is a symmetric matrix nm × nm. Moreover E is elliptic if and only if A is positive semi-definite. In view of the structure of the problem, it is natural to look for matrices of the following block form

A = B ⊗ I n = (b ij I n ) 1≤i,j≤m ,
where I n is the identity n×n matrix and B is a positive semi-definite matrix of size m. Denoting

x i = (x i,1 , . . . , x i,n ), EC = m i,j=1 b i,j n k=1 ∂ 2 ∂x i,k ∂x j,k C = m i,j=1 b i,j α i α j ∆H -δ i,j α i ∆F i = α , Bα ∆H - m i=1 b i,i α i ∆F i .
Hence there exists an elliptic operator E of the above form such that EC = S = ∆H -m i=1 α i ∆F i if there exits a positive semi-definite matrix B of size m such that

α , Bα = e 1 , Be 1 = • • • = e m , Be m = 1
where (e i ) i is the canonical basis of R m . Now a positive semi-definite matrix B can be decomposed into B = V * V where V is a square matrix of size m. Calling v 1 , . . . , v m ∈ R m the columns of V , we can translate the latter into conditions on vectors v i . Actually, we are looking for vectors v

1 , . . . , v m ∈ R m with |v 1 | = • • • = |v m | = α i v i = 1.
By Lemma 3 for k = m, this is possible exactly when α satisfies the claimed condition:

α i ≥ 1 and ∀j, α j - i =j α i ≤ 1.
The following corollary will be useful in the next section.

Corollary 1. Let f be a function on R n taking values in (0, 1) and vanishing at infinity, i.e. lim |x|→∞ f (x) = 0. Assume also that

∀t > 0, ∀x ∈ R n , ∇f (x + √ t y) e -|y| 2 2 ----→ |y|→∞ 0. If Φ -1 • f is concave, then Φ -1 • P t f is concave for all t ≥ 0. Proof. Let 1 > ε > 0 and α i > 0 with α i = 1. Choosing h = ε+(1-ε)f ≥ f and f i = f for i ≥ 1
, one can check that the latter theorem applies. Hence for all t ≥ 0 and

x i ∈ R n : Φ -1 • P t (ε + (1 -ε)f ) α i x i ≥ α i Φ -1 • P t f (x i ).
Letting ε go to 0, we get by monotone convergence that Φ -1 •P t f is concave.

Φ -1 -concave functions

When some of the f i 's are Φ -1 -concave, the conditions on the parameters can be relaxed. Such functions allow to approximate characteristic functions of convex sets. They will be useful in Section 3.

Theorem 3. Let I conv ⊂ {1, . . . , m}. Let f i , i = 1, . . . , m, and h be twice continuously differentiable functions from R n to (0, 1) satisfying the hypotheses of Lemma 2. Assume also that for f = f i or h,

∀t > 0, ∀x ∈ R n , ∇f (x + √ t y) e -|y| 2 2 ----→ |y|→∞ 0.
Assume moreover that Φ -1 •f i is concave, decreasing towards -∞ at infinity for all i ∈ I conv . Let α 1 , . . . , α m be positive numbers satisfying

α i ≥ 1 and ∀j / ∈ I conv , α j - i =j α i ≤ 1. If ∀x i ∈ R n , Φ -1 • h α i x i ≥ α i Φ -1 • f i (x i ), then ∀t ≥ 0, ∀x i ∈ R n , Φ -1 • P t h α i x i ≥ α i Φ -1 • P t f i (x i ).
Proof. As in the proof of Theorem 2, we try to apply Lemma 1 to the equation satisfied by C:

∂ t C(t, x) = 1 2 (S + P).
We have already shown that P is non-negative when ∇C = 0 and C ≤ 0, for any α 1 , . . . , α m . We would like to prove that the conditions on α in the theorem imply that S is non-negative whenever Hess(C) ≥ 0. By Corollary 1, for all i ∈ I conv the function F i is concave, hence ∆F i ≤ 0. So we are done if we can write

S = EC - i∈Iconv λ i ∆F i ,
for some elliptic operator E and some λ i ≥ 0 . As in the proof of the previous theorem, we are looking for operators of the form

E = ∇ * A∇ with A = B ⊗ I n = (b ij I n ) 1≤i,j≤m
where B is a symmetric positive semi-definite matrix m × m. Hence our task is to find B ≥ 0 and λ i ≥ 0 such that λ i = 0 when i / ∈ I conv and ∆H -

α i ∆F i = α , Bα ∆H - i (b ii α i + λ i )∆F i .
When i ∈ I conv , we can find λ i ≥ 0 such that b ii α i +λ i = α i whenever b ii ≤ 1.

Consequently, the problem reduces to finding a positive semi-definite matrix B of size m × m such that

   e i , Be i ≤ 1, ∀i ∈ I conv e i , Be i = 1, ∀i / ∈ I conv α , Bα = 1
where (e i ) i is the canonical basis of R m . Equivalently, do there exist v

1 , . . . , v m ∈ R m such that    |v i | ≤ 1, ∀i ∈ I conv |v i | = 1, ∀i / ∈ I conv | α i v i | = 1 ?
We conclude with Lemma 3.

Back to sets

This sections explains how to complete the proof of Theorem 1. The main issue is to get rid of the smoothness assumptions made so far. The plan of the argument is summed up in the next figure . The key point is that the conditions on α do not depend on n. conditions on α i a q y j j j j j j j j j j j j j j j j j j inequality with

P t f i for smooth functions on R n+1 b $ , R R R R R R R R R R R R R R R R R R R R inequality with P t f i for Borel functions on R n d e m R R R R R R R R R R R R R R R R inequality for sets A i ⊂ R n+1 c 2 : n n n n n n n n n n n n n n n n n n
If we can prove the above implications, we will have shown that assertion 1 ⇐⇒ assertion 2 ⇐⇒ assertion 4 in Theorem 1. Moreover, it is clear that assertion 4 =⇒ assertion 3. To complete the picture, we can for instance prove assertion 3 =⇒ assertion 1 in the same way we do below for the fourth implication. a-"Conditions on α i ⇒ inequality with P t f i for smooth functions on R n ": This implication is nothing else than Theorem 3. Equivalently, the first assertion in Theorem 1 implies the fourth one restricted to "smooth" functions (i.e. verifying all the assumptions of the first paragraph of Theorem 3). b-"Inequality with P t f i for smooth functions on R n ⇒ inequality for sets A i ⊂ R n ": For arbitrary α, let us prove that the fourth assertion in Theorem 1 restricted to smooth functions (in the above-mentioned sense) implies the second assertion of the theorem, involving sets. Let A 1 , . . . , A m be Borel sets in R n with A i convex when i ∈ I conv . By inner regularity of the measure, we can assume that they are compact. Let ε > 0 and b > a be fixed. Then,

• for i / ∈ I conv : there exists a smooth function f i such that

f i = Φ(b) on A i , f i = Φ(a) off A ε i , and 0 < Φ(a) ≤ f i ≤ Φ(b) < 1. • for i ∈ I conv : there exists a smooth function f i such that F i = Φ -1 • f i is concave, F i = b on A i , F i ≤ a off A ε i , and F i ≤ b on R n .
For instance, take a point x i in A i and define the gauge of A ε/3 i with respect to x i by

ρ(x) = inf λ > 0, x i + 1 λ (x -x i ) ∈ A ε/3 i .
We know that ρ is convex since A i is convex (see for instance [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF]).Then set Fi

(x) = b + c 1 -max ρ(x) , 1
where c > 0 is chosen large enough to insure that Fi ≤ a off A 2ε/3 i . Now, we can take a smooth function g with compact support small enough and of integral 1, such that f i = Φ Fi * g is a smooth Φ -1concave function satisfying the required conditions.

• for h: set

a 0 = max u i = a or b u = (b, . . . , b) α i u i and b 0 = α i b.
Again, we can choose a smooth function h such that h = Φ(b 0 ) on

α i A ε i , h = Φ(a 0 ) off α i A ε i ε , and 0 < Φ(a 0 ) ≤ h ≤ Φ(b 0 ) < 1.
From these definitions, the functions h and f i are "smooth" and satisfy

∀x i ∈ R n , Φ -1 • h α i x i ≥ α i Φ -1 • f i (x i ).
By our hypothesis, the inequality remains valid with P t h and P t f i for all t > 0. Choosing t = 1,

x i = 0 yields Φ -1 h dγ n ≥ α i Φ -1 f i dγ n .
Remark here that the functions depends actually of a (respectively a 0 ), b (respectively b 0 ), and ε, possibly in a precise way with a procedure like described above for f i . We could then write h(a 0 , b 0 , ε, .) and f i (a, b, ε, .).

Letting first a → -∞ so that a 0 → -∞, we get by dominated convergence

Φ -1 h(-∞, b 0 , ε, .) dγ n ≥ α i Φ -1 f i (-∞, b, ε, .) dγ n .
Now let (b, ε) tend to (∞, 0). Notice that f i (-∞, ∞, 0, .) and h(-∞, ∞, 0, .) are characteristic functions. Eventually we obtain, again by dominated convergence, that

Φ -1 • γ n α i A i ≥ α i Φ -1 • γ n (A i ).
c-"Inequality for sets A i ⊂ R n+1 ⇒ inequality with P t f i for Borel functions on R n ". Here we assume that the second assumption of Theorem 1 is valid for all Borel sets in R n+1 and we derive the fourth assumption of the theorem for functions defined on R n .

For any Borel function f on R n taking values in [0, 1], t > 0, and x ∈ R n , we define

B t,x f = (u, y) u ≤ Φ -1 • f x + √ t y ⊂ R × R n .
Then it holds

γ n+1 B t,x f = P t f (x). Let h, f 1 , . . . , f n be Borel functions on R n with values in [0, 1], such that Φ -1 • f i is concave when i ∈ I conv . Assume that ∀x i ∈ R n , Φ -1 • h α i x i ≥ α i Φ -1 • f i (x i ).
Then for (u i , y i ) in B t,x i f i , we get

α i u i ≤ α i Φ -1 • f i (x i + √ t y i ) ≤ Φ -1 • h α i (x i + √ t y i ) which means that α i B t,x i f i ⊂ B t, α i x i h .
The same argument shows that B t,x f is convex if Φ -1 • f is concave. Thus, the result for sets in R n+1 implies that

Φ -1 • P t h α i x i ≥ Φ -1 • γ n+1 α i B t,x i f i ≥ α i Φ -1 • P t f i (x i ).
d-"Inequality with P t f i for Borel functions on R n ⇒ conditions on α i ": We will prove the contraposed assertion: if the conditions on α i are violated, then there exists Borel functions h and f i such that Φ -1 • f i is concave for i ∈ I conv , which verify for all x i the relation Φ

-1 •h( α i x i ) ≥ Φ -1 •f i (x i )
but for which this inequality is not preserved by P t for some t. Actually since P 1 f (0) = f dγ, it will be enough to exhibit functions such that

Φ -1 h dγ < α i Φ -1 f i dγ .
Let f : R n → (0, 1) be an even Borel function such that

f (0) > 1 2 , f dγ < 1 2
, and

F = Φ -1 • f is concave.
For instance, we may take f (x) = Φ 1 -|ax| 2 for a large enough. Note that for 0 ≤ t ≤ 1,

F (tx) ≥ tF (x) + (1 -t)F (0) ≥ tF (x). ( 7 
)
Assume first that α i < 1. Then by concavity and the latter bound, we get for all x i ,

Φ -1 • f i α i x i = F i α i x i ≥ i α i j α j F j α j x i ≥ i α i F (x i ) = i α i Φ -1 • f (x i ).
However since 1 > α i and Φ -1 f dγ < 0, it holds

Φ -1 f dγ < i α i Φ -1 f dγ .
Assume now that there exists j / ∈ I conv such that α ji =j α i > 1. Then using [START_REF] Borell | Geometric properties of some familiar diffusions in R n[END_REF] and concavity again, we obtain for all x i ,

α j F (x j ) ≥ 1 + i =j α i F α j x j 1 + i =j α i ≥ F α j x j -i =j α i x i + i =j α i F (x i ). Let g = 1 -f . Since -F = -Φ -1 • f = Φ -1 • (1 -f ) = Φ -1
• g and f is even we may rewrite the latter as

Φ -1 • g α j x j + i =j α i (-x i ) ≥ α j Φ -1 • g(x j ) + i =j α i Φ -1 • f (-x i ).
However, since Φ -1 ( g dγ) = -Φ -1 ( f dγ) > 0 and α ji =j α i > 1 it also holds

Φ -1 g dγ < α j Φ -1 g dγ + i =j α i Φ -1 f dγ .
Therefore the proof is complete.

4 Further remarks

Brascamp-Lieb type inequalities

In the previous papers [START_REF] Borell | Geometric properties of some familiar diffusions in R n[END_REF][START_REF] Borell | Diffusion equations and geometric inequalities[END_REF], Borell already used his semigroup approach to derive variants of the Prékopa-Leindler inequality. The later is a functional counterpart to the Brunn-Minkowski inequality for the Lebesgue measure and reads as follows: if λ ∈ (0, 1) and f, g, h : R n → R + are Borel functions such that for all x, y ∈ R n ,

h λx + (1 -λ)y ≥ f (x) λ g(y) 1-λ then h ≥ f λ g 1-λ
where the integrals are with respect to Lebesgue's measure. Borell actually showed the following stronger fact: for all t > 0 and all x, y ∈ R n P t h λx + (1 -λ)y ≥ P t f (x) λ P t g(y) 

t H = ∆H + |∇H| 2 .
The Brascamp-Lieb [START_REF] Brascamp | Best constants in Young's inequality, its converse and its generalization to more than three functions[END_REF][START_REF] Lieb | Gaussian kernels have only gaussian maximizers[END_REF] inequality is a powerful extension of Hölder's inequality. The so-called reverse Brascamp-Lieb inequality, first proved in [START_REF] Barthe | Inégalités de Brascamp-Lieb et convexité[END_REF][START_REF] Barthe | On a reverse form of the Brascamp-Lieb inequality[END_REF], appears as an extension of the Prékopa-Leindler inequality. In the paper [START_REF] Barthe | Inverse Brascamp-Lieb inequalities along the Heat equation[END_REF], it was noted that Borell's semigroup method could be used to derive the geometric reverse Brascamp-Lieb inequality (which in some sense is a generic case, see [START_REF] Bennett | The Brascamp-Lieb inequalities: finiteness, structure and extremals[END_REF]) for functions of one variable. This observation was also motivated by a proof of the Brascamp-Lieb inequalities based on semigroup techniques (Carlen Lieb and Loss [START_REF] Carlen | A sharp analog of Young's inequality on S N and related entropy inequalities[END_REF] for functions of one variable, and Bennett Carbery Christ and Tao [START_REF] Bennett | The Brascamp-Lieb inequalities: finiteness, structure and extremals[END_REF] for general functions). In this subsection, we take advantage of our streamlined presentation of Borell's method, and quickly reprove the reverse Brascamp-Lieb inequality in geometric form, but for functions of several variables. More surprisingly we will recover the Brascamp-Lieb from inequalities which are preserved by the Heat flow. The result is not new (the inequality for the law of the semigroup appears in the preprint [START_REF] Barthe | Semigroup proofs of Brascamp-Lieb inequalities[END_REF]), but it is interesting to have semigroup proofs of the direct and of the reverse inequalities which follow exactly the same lines. Recall that the transportation argument developed in [START_REF] Barthe | On a reverse form of the Brascamp-Lieb inequality[END_REF] was providing the direct and the reverse inequality simultaneously.

The setting of the geometric inequalities is as follows: for i = 1, . . . , m let c i > 0 and let B i : R N → R n i be linear maps such that

B i B * i = I n i and m i=1 c i B * i B i = I N . (8) 
These hypotheses were put forward by Ball in connection with volume estimates in convex geometry [START_REF] Ball | Volumes of sections of cubes and related problems[END_REF]. Note that

B * i is an isometric embedding of R n i into R N and that B * i B i is the orthogonal projection from R N to E i = Im(B * i ).
The Brascamp-Lieb inequality asserts that for all Borel functions

f i : R n i → R + it holds R N m i=1 f i (B i x) c i dx ≤ m i=1 R n i f i c i .
The reverse inequality ensures that *

R N sup m i=1 f i (x i ) c i ; x i ∈ R n i with c i B * i x i = x dx ≥ m i=1 R n i f i c i .
Following [START_REF] Barthe | Inverse Brascamp-Lieb inequalities along the Heat equation[END_REF], we will deduce the later from the following result.

Theorem 4. If h : R N → R + and f i : R n i → R + satisfy ∀x i ∈ R n i , h m i=1 c i B * i x i ≥ m i=1 f i (x i ) c i then ∀x i ∈ R n i , P t h m i=1 c i B * i x i ≥ m i=1 P t f i (x i ) c i .
The reverse inequality is obtained as t → +∞ since for

f on R d , P t f (x) is equivalent to (2πt) -d/2
R d f . To see it, note that:

P t f (x) = (2πt) -d/2 R d f (y) exp |x -y| 2 2t dy.
Note also that taking traces in the decomposition of the identity map yields

i c i n i = N.
In order to recover the Brascamp-Lieb inequality, we will show the following theorem.

Theorem 5. If h : R N → R + and f i : R n i → R + satisfy ∀x ∈ R N , h(x) ≤ m i=1 f i (B i x) c i , then ∀x ∈ R N , P t h(x) ≤ m i=1 P t f i (B i x) c i .
Again, the limit t → +∞ yields the Brascamp-Lieb inequality when choosing h(x) = m i=1 f i (B i x) c i . We sketch the proofs the the above two statements, omitting the truncation arguments needed to ensure Condition [START_REF] Barthe | Semigroup proofs of Brascamp-Lieb inequalities[END_REF].

Proof of Theorem 4. Set H(t, •) = log P t h(•) and F i (t, •) = log P t f i (•). As said above, the functions H and F i satisfy the equation 2∂

t U = ∆U +|∇U| 2 . Set for (t, x 1 , . . . , x m ) ∈ R + × R n 1 × • • • × R nm C(t, x 1 , . . . , x m ) := H t, m i=1 c i B * i x i - m i=1 c i F i (t, x i ).
By hypothesis C(0, •) ≥ 0 and we want to prove that C(t, •) is non-negative as well. As before, we are done if we can show that the three conditions C ≤ 0, ∇C = 0, and Hess(C) ≥ 0 imply that ∂ t C ≥ 0. Actually one can see that the condition C ≤ 0 will not be used in the following. Omitting variables,

2∂ t C = ∆H - c i ∆F i + |∇H| 2 - c i |∇F i | 2 =: S + P.

Straightforward calculations give

∇ x i C = c i B i ∇H -c i ∇F i and Hess x i ,x j (C) = c i c j B i Hess(H)B * j -δ i,j c i Hess(F i ).
Note that the decomposition ( 8) implies for all v ∈ R N

|v| 2 = v , c i B * i B i v = c i |B i v| 2 .
Hence, if ∇C = 0, the above calculation gives

∇F i = B i ∇H. Consequently |∇H| 2 = c i |B i ∇H| 2 = c i |∇F i | 2
. So ∇C = 0 =⇒ P = 0. Next, we deal with the second order term. Using [START_REF] Borell | Diffusion equations and geometric inequalities[END_REF] again

∆H = Tr Hess(H) = Tr i c i B * i B i Hess(H) j c j B * j B j = i,j Tr B * i c i c j B i Hess(H)B * j B j .
Also note that i,j

Tr B * i δ i,j c i Hess(F i ) B j = i Tr B * i c i Hess(F i )B i = i c i Tr Hess(F i )B i B * i = i c i ∆F i , since B i B * i = I n i .
Combining the former and the later and denoting by J i the canonical embedding of R n i into R n 1 +•••+nm we get that

S = ∆H - c i ∆F i = i,j Tr B * i Hess x i ,x j (C)B j = i,j Tr B * i J * i Hess(C)J j B j = Tr i J i B i * Hess(C) j J j B j
is non-negative when Hess(C) ≥ 0. This is enough to conclude that C remains non-negative.

Proof of Theorem 5. As before we set H(t, •) = log P t h(•) and

F i (t, •) = log P t f i (•). For (t, x) ∈ R + × R N C(t, x) := m i=1 c i F i (t, B i x) -H(t, x).
Omitting variables, C evolves according to the equation

∂ t C = c i ∆F i -∆H + c i |∇F i | 2 -|∇H| 2 =: S + P. Next ∇C = c i B * i ∇F i -∇H and Hess(C) = c i B * i Hess(F i )B i -Hess(H).
Taking traces in the later equality and since

B i B * i = I n i we obtain ∆C = i c i Tr Hess(F i )B i B * i -∆H = i c i ∆F i -∆H = S.
Therefore the second order term is clearly elliptic. It remains to check that ∇C = 0 implies that the first order term P is non-negative. We will need the following easy consequence of the decomposition (8): if

x i ∈ R n i , i = 1, . . . , m, then c i B * i x i 2 ≤ c i |x i | 2 .
The proof is easy: set v = c i B * i x i . Then by Cauchy-Schwarz

|v| 2 = v , c i B * i x i = c i B i v , x i ≤ c i |B i v| 2 1 2 c i |x i | 2 1 2 .
But [START_REF] Borell | Diffusion equations and geometric inequalities[END_REF] ensures that |v| 2 = c i |B i v| 2 so after simplification we get the claim. Finally, note that ∇C = 0 means that ∇H =

c i B * i ∇F i . Hence |∇H| 2 ≤ c i |∇F i | 2 .
In other words P ≥ 0. The proof is therefore complete.

Looking for Gaussian Brascamp-Lieb inequalities

It is natural to ask about Gaussian versions of the Brascamp-Lieb or inverse Brascamp-Lieb inequalities. For 0 ≤ i ≤ m, take a nonzero real d i , a positive integer n i ≤ N, a linear surjective map L i : R N → R n i , and a Borel function f i on R n i taking value in (0, 1). Does the inequality

∀x ∈ R N , m i=0 d i Φ -1 • f i (L i x) ≥ 0 upgrade for all t ≥ 0 to ∀x ∈ R N , m i=0 d i Φ -1 • P t f i (L i x) ≥ 0 ?
This general formulation allows negative d i 's and would encompass Gaussian extensions of Theorem 4 or Theorem 5. It also enables a better understanding of the essential properties in the semigroup argument. Note that from now the index i goes from 0 to m, the function f 0 =: h playing a priori no particular role anymore.

As before, we define for t ≥ 0 and x ∈ R N ,

C(t, x) = d i Φ -1 • P t f i (L i x) = d i F i (t, L i x)
and we are interested in proving that C(0, . ) ≥ 0 implies C(t, . ) ≥ 0 for all t ≥ 0. Assume that our functions are smooth enough for the next calculations. It holds

C = d i F i , ∇C = d i L * i ∇F i , Hess (C) = d i L * i Hess (F i )L i ,
and thanks to the Heat equation, C satisfies the following differential equation 2∂ t C = (S + P) where

S = d i ∆F i and P = - d i |∇F i | 2 F i .
We require that

   Hess(C) ≥ 0 ∇C = 0 C ≤ 0 =⇒ P ≥ 0 S ≥ 0
in order to apply Lemma 1 (the condition at infinity is verified, provided one restricts to good enough functions f i . We omit the details). This request will translate in terms of conditions on the data (d i , L i ). We deal separately with the condition for each order:

First order terms : note that (F i , ∇F i ) i=0,...,m can be chosen arbitrarily for fixed x and t; for instance take

f i : x ′ i → Φ ′ (Z i )Y i , x ′ i + Φ(Z i ) -P t fi (L i x) with fi : x ′ i → Φ ′ (Z i )Y i , x ′ i , so that F i (t, L i x) = Z i and ∇F i (t, L i x) = Y i .
Thus the condition (C ≤ 0, ∇C = 0) =⇒ P ≥ 0 boils down to the following relation between polynomials

d i Z i ≤ 0 d i L * i Y i = 0 =⇒ d i |Y i | 2 Z i ≤ 0
where Z i is a 1-dimensional unknown and Y i is an n i -dimensional one.

Reasoning for fixed Y ′ i s, and viewing the conditions on Z i as equations of half-spaces, we easily see that the later condition is equivalent to

d i L * i Y i = 0 =⇒ |Y 0 | 2 R n 0 = . . . = |Y m | 2 R nm . (9) 
This condition can be worked out a bit more. Let L : R n j → R N be defined by

L(Y 0 , . . . , Y m ) = d i L * i Y i . If a = (a 0 , . . . , a m ) and b = (b 0 , . . . , b m ) belong to ker L then |a i | 2 , |b i | 2 ,
and by linearity |a i + b i | 2 are independent of i. Expanding the square of the sum, we deduce that a i , b i is independent of i and therefore equal to the average over i of these quantities. Hence for all i, (m + 1) a i , b i = a , b . This means that u i : ker L → R n i defined by u i (a) = √ m + 1 a i is an isometry. Since a i = u i u -1 0 (a 0 ) , we conclude that ker L = a 0 , u 1 u -1 0 (a 0 ) , . . . , u m u -1 0 (a 0 ) ; a 0 ∈ Im(u 0 ) .

It is then clear that Condition ( 9) is equivalent to the following: there exists a subspace X ⊂ R n 0 and linear isometries R i :

X → R n i , i ≥ 1 such that ker L = (x, R 1 x, . . . , R m x); x ∈ X . ( 10 
)
Second order terms : we are done if we can find an elliptic operator E such that S = EC. In other words we are looking for a symmetric positive semi-definite matrix A of size N × N such that the quantity Tr A Hess(C) = d i Tr AL * i Hess(F i )L i coincides with S = d i ∆F i . As we require this identity for arbitrary functions F i , we can conclude that A does the job if and only if for all 0 ≤ i ≤ m, L i AL * i = I n i . Eventually, we may look for A in the form A = σ * σ for some square matrix σ of size N. For 0 ≤ i ≤ m and 1 ≤ j ≤ n i , denote by u j i ∈ R N the columns of L * i . Rewriting the later conditions in terms of σ we may conclude that: Hess(C) ≥ 0 =⇒ S ≥ 0 holds provided there exits a matrix σ of size N such that for all 0 ≤ i ≤ m the vectors (σu j i ) n i j=1 form an orthonormal system in R N . Note that the first order condition requires that the linear relations between the vector u j i should have a particular structure.

The above conditions are quite restrictive. We were able to find data (d i , L i ) verifying them, but all of them could be reduced to the Borell theorem, using the rotation invariance of the Gaussian measure and the fact that its marginals remain Gaussian. To conclude this section let us briefly explain why the method does not allow any new Gaussian improvement of Theorems 4 or 5.

For i = 1, . . . , m, let c i > 0 and B i : R n → R n i be linear surjective maps. Remark. To make use of Lemma 1, it should be sufficient to prove (P +S ≥ 0) instead of the stronger condition (P ≥ 0 and S ≥ 0) as required page 22. However we were not able to translate this into nice conditions on coefficients or functions. In this sense, our semi-group approach fails to extend Theorem 1 into a more general Gaussian Brascamp-Lieb inequality.

  If we look for Gaussian versions of the Brascamp-Lieb inequality, we are led to apply the previous reasoning to N = n, B 0 = I N , d 0 = -1, and for i ≥ 1, L i = B i and d i = c i . Now, with the above notation, (Y 0 , . . . , Y m ) ∈ ker L is equivalent to Y 0 = m i=1 c i B * i Y i . Since this condition can be verified even though |Y 1 | = |Y 2 | we conclude that the first order condition is never satisfied.Next, we are looking for inequalities of the reverse Brascamp-Lieb type. Hence we chooseN = n 1 + • • • + n m , d 0 = 1, L 0 (x 1 , . . . , x m ) = c i B * i x i , and for i ≥ 1, d i = -c i , L i (x 1 , . . . , x m ) = x i . For x ∈ R n , L * 0 (x) = (c 1 B 1 x, . . . , c m B m x). For i ≥ 1 and x i ∈ R n i , L * i (x i ) = (0, . . . , 0, x i , 0, . . . , 0) where x i appears at the i-th place. The condition (Y 0 , . . . , Y m ) ∈ ker L, that is L * 0 (Y 0 ) = i≥1 c i L * i (Y i ) becomes: ∀i = 1, . . . , m, Y i = B i Y 0 . Hence ker L = (Y 0 , B 1 Y 0 , . . . , B m Y 0 ); Y 0 ∈ R n .So the first order condition (10) is verified only if the B i 's are isometries. This forces n i = n and up to an isometric change of variables, we are back to the setting of the Gaussian Brunn-Minkowski inequality.