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The asymptotic behavior of a subcritical Branching Process in Random Environment (BPRE) starting with several particles depends on whether the BPRE is strongly subcritical (SS), intermediate subcritical (IS) or weakly subcritical (WS). In the (SS+IS) case, the asymptotic probability of survival is proportional to the initial number of particles, and conditionally on the survival of the population, only one initial particle survives a.s. These two properties do not hold in the (WS) case and different asymptotics are established, which require new results on random walks with negative drift. We provide an interpretation of these results by characterizing the sequence of environments selected when we condition on the survival of particles. This also raises the problem of the dependence of the Yaglom quasistationary distributions on the initial number of particles and the asymptotic behavior of the Q-process associated with a subcritical BPRE.

Introduction

Let f be the generating function of a random probability measure on N and (f n ) n∈N a sequence of iid copies of f which serve as random environment. We consider a Branching Process in Random Environment (BPRE) (Z n ) n∈N induced by (f n ) n∈N [START_REF] Afanasyev | Criticality for branching processes[END_REF][START_REF] Afanasyev | Branching processes in random environment[END_REF][START_REF] Athreya | On branching processes with random environments, I and II : Extinction probability[END_REF][START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF][START_REF] Smith | On branching processes in random environments[END_REF]. This means that conditionally on the environment (f n ) n∈N , particles at generation n reproduce independently of each other and their offsprings have generating function f n .

We can think of a population of plants which have a one year life-cycle. Each year the weather conditions (the environment) vary, which impacts the reproductive success of the plant. Given the climate, all the plants reproduce according to the same mechanism.

Then Z n is the number of particles at generation n and Z n+1 is the sum of Z n independent random variables with generating function f n . That is, for every n ∈ N, E s Z n+1 |Z 0 , . . . , Z n ; f 0 , . . . , f n = f n (s) Zn (0 ≤ s ≤ 1).

In the whole paper, we denote by P k the probability associated with k initial particles and

F n := f 0 • • • • • f n-1 .
Then, we have for every k ∈ N,

E k (s Z n+1 | f 0 , ..., f n ) = F n+1 (s) k (0 ≤ s ≤ 1).
When the environment is deterministic (i.e. f is a deterministic generating function), this process is the Galton Watson process (GW) and f is the generating function of the reproduction law.

In this paper, we consider the subcritical case :

E log(f ′ (1)) < 0.
Then extinction occurs a.s., that is

P(∃n ∈ N : Z n = 0) = 1.
For a subcritical GW process, if further E(Z 1 log + (Z 1 )) < ∞, then there exists c > 0 such that P(Z n > 0) ∼ cf ′ (1) n when n tends to infinity [START_REF] Athreya | Branching processes[END_REF]. In random environments, the asymptotic depends on whether the BPRE is strongly subcritical (SS), intermediate subcritical (IS) or weakly subcritical (WS) (see [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF] or the Preliminaries Section for details). A subcritical GW process is always strongly subcritical (SS).

In this paper, we study the role of the initial number of particles in such limit theorems. For a GW process, particles are independent. As a consequence, limit theorems starting with several initial particles derive from those for a single initial particle. In random environment, particles do not reproduce independently. Independence holds only conditionally on the environment and asymptotics may differ from the GW case.

First, we determine the dependence of the asymptotic survival probability in terms of the initial number of particles. In that view, we define

α k := lim n→∞ P k (Z n > 0)/P 1 (Z n > 0).
For a GW process, α k = k and the asymptotic survival probability is proportional to the initial number of particles. This equality still holds in the (SS+IS) case for BPRE, but not in the (WS) case where a different asymptotic as k → ∞ is established. For the proof, we need an asymptotic result on random walks with negative drift, which gives the sum of the logarithms of the mean number of offsprings for the of successive environments. We refer to [START_REF] Grey | The asymptotic behaviour of extinction probability in the Smith Wilkinson branching processes[END_REF] for asymptotics of the extinction probability when the number of initial particles tends to infinity in the supercritical case. Moreover, when the BPRE is (SS) or (IS), if we condition on the survival of the population at generation n, then only one initial particle survives at generation n when n → ∞, just as for a GW process. But this does not hold in the (WS) case, as stated in Section 2.2. Thus, (WS) BPRE conditioned to survive has a supercritical behavior, as previously observed in [START_REF] Afanasyev | Branching processes in random environment[END_REF].

In Section 3.3, we give an interpretation of these results in terms of environments. Conditioning on non-extinction induces a selection of environments with high reproduction law. In the (SS+IS) case, we prove that the survival probability of the branching process in the selected environments is still zero. This is obvious if environments are a.s. subcritical, i.e. f ′ (1) < 1 a.s. But in the (WS) case, conditioning on the survival of the population selects only supercritical environments, which means that the sequence of selected environments has a.s. a positive survival probability. Finally letting the initial number of particles tend to infinity, the sequence of environments selected by conditioning on the survival of the population becomes subcritical again.

Finally, in Section 3.4, we consider the size of the population conditioned to survive and we are interested in the characterization of the Yaglom quasistationary distributions starting from k particles :

lim n→∞ P k (Z n = i | Z n > 0) (i ≥ 1).
In Section 3.5, we focus on the Q-process associated to the subcritical BPRE, which is defined for all l 1 , l 2 , ..., l n ∈ N, by

P k (Y 1 = l 1 , ..., Y n = l n ) = lim p→∞ P k (Z 1 = l 1 , ..., Z n = l n | Z n+p > 0).
See [START_REF] Athreya | Branching processes[END_REF] for details on the Q-process associated to GW. Again, these results depend on the subcritical regime.

Preliminaries

We start by recalling some known results for subcritical BPRE. Note that s ∈ R + → E(f ′ (1) s ) is a convex function and define γ and α in [0, 1] such that

γ := inf θ∈[0,1] E f ′ (1) θ = E f ′ (1) α . (1) 
From now on, we assume

E(f ′ (1)| log(f ′ (1))|) < ∞. Note that 0 < γ < 1, γ ≤ E(f ′ (1)), and γ = E(f ′ (1)) ⇔ E f ′ (1)log(f ′ (1)) ≤ 0.
There are three subcritical regimes (see [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF]).

⋆ The strongly subcritical case (SS), where E(f ′ (1)log(f ′ (1))) < 0. In this case, assuming further

E(Z 1 log + (Z 1 )) < ∞,
then there exist c, α k > 0 such that, as n → ∞ :

P k (Z n > 0) ∼ cα k E(f ′ (1)) n , α 1 = 1. (2) 
⋆ The intermediate subcritical case (IS), where E(f ′ (1)log(f ′ (1))) = 0. In this case, assuming further

E f ′ (1) log 2 (f ′ (1)) < ∞, E [1 + log -(f ′ (1))]f ′′ (1) < ∞,
then there exist c, α k > 0 such that as n → ∞ :

P k (Z n > 0) ∼ cα k n -1/2 E(f ′ (1)) n , α 1 = 1. (3) 
⋆ The weakly subcritical case (WS), where 0 < E(f ′ (1)log(f ′ (1))) < ∞. In this case, assuming further

E(f ′′ (1)/f ′ (1) 1-α ) < ∞, E(f ′′ (1)/f ′ (1) 2-α ) < ∞,
then there exist c, α k > 0 such that as n → ∞ :

P k (Z n > 0) ∼ cα k n -3/2 γ n , α 1 = 1. (4) 
In the rest of the paper, we take the integrability assumptions above for granted for each case. See [START_REF] Vatutin | A limit theorem for an intermediate subcritical branching process in a random environment[END_REF] for asymptotics with a weaker hypothesis in the (IS) case.

It is also known that the process Z n starting from k particles and conditioned to be non zero converges to a finite positive random variable Υ k , called the Yaglom quasistationary distribution (see [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF]) :

E k s Zn | Z n > 0) n→∞ -→ E s Υ k .
See Section 3.3 for discussions about (Υ k ) k∈N . Actually, in [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF], the result and the proof of the convergence is given for k = 1. It can be generalized to k ≥ 1 with the following modifications. We borrow Notations from [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF] f k,l := [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF] still holds replacing f 0,n by f k 0,n and P(Z n > 0) by P k (Z n > 0). Lemma 2.2 also still holds and results of Lemma 2.3 can now be stated as follows. By convexity of [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF] (noting also that this implies f n,0 (s) → 0 a.s. as n → ∞).

   f k • f k+1 • • • • • f l-1 , k < l f k-1 • f k-2 • • • • • f l , k > l id, k = l. Then 1 -E k (s Zn |Z n > 0) = E(1 -f k 0,n (s))/P k (Z n > 0). Lemma 2.1 of
x ∈ [0, 1] → x k and (f n ) n∈N , for every n ≥ 0, we have a.s. exp(-S i )(1 -f i,0 (s) k ) ≤ 1 (0 ≤ s ≤ 1), where S i = log(k) + log(f ′ 0 (1)) + ... + log(f ′ n-1 (1)). Moreover exp(-S n )(1 -f n,0 (s) k ) converges a.s. as n → ∞, which is a direct consequence of the convergence for k = 1 given in Lemma 2.3 in
Finally, we consider the case where the generating functions of the reproduction laws are a.s. linear fractional. Indeed in this case the survival probability in a given environment can be computed explicitly since linear fractional generating functions are stable by composition. Specifically, we suppose that

f (s) = 1 - A 1 -B + As 1 -Bs a.s. (0 ≤ s ≤ 1), (5) 
where A, B are two r.v. such that A ∈ [0, 1], B ∈ [0, 1) and A + B ≤ 1. In this case, setting for every i ∈ N,

P i := f ′ n-i (1)...f ′ n-1 (1), (P 0 = 1),
we have (see [START_REF] Agresti | On the extinction times of varying and random environment branching processes[END_REF], [START_REF] Guivarc'h | Asymptotic properties of branching processes in random environment[END_REF] or [START_REF] Kozlov | On the asymptotic behaviour of the probability of nonextinction for critical branching processes in a random environment[END_REF])

P 1 (Z n > 0 | f 0 , ..., f n-1 ) = 1 -F n (0) = 1 + n-1 i=0 f ′′ n-i-1 (1) 2f ′ n-i-1 (1) 
P i -1 P n . (6) 
Let us label by i ∈ N the initial particles and denote by Z

(i)
n the number of descendants of particle i at generation n. As conditionally on (f 0 , ..., f n-1 ), (Z

(i) n , i ≥ 1
) is an iid sequence, we get

P k (Z (1) n > 0, ..., Z (k) n > 0 | f 0 , ..., f n-1 ) = 1 + n-1 i=0 f ′′ n-i-1 (1) 2f ′ n-i-1 (1) 
P i -k P k n . (7) 
We can get now lower bounds for survival probabilities of a general BPRE by a coupling argument. We use that for every probability generating function f i , we can find a linear fractional probability generating function fi such that for every s ∈

[0, 1], fi (s) ≥ f i (s), f ′ i (1) = f ′ i (1), f ′′ i (1) = 2f ′′ i (1) 
(see [START_REF] Guivarc'h | Asymptotic properties of branching processes in random environment[END_REF] or [START_REF] Kozlov | On the asymptotic behaviour of the probability of nonextinction for critical branching processes in a random environment[END_REF]). Then, Fn (0) ≥ F n (0) a.s. ensures that

P 1 (Z n > 0 | f 0 , ..., f n-1 ) ≥ P 1 ( Zn > 0 | f0 , ..., fn-1 ) a.s. (8) 
More generally, for every k ≥ 1,

P k (Z (1) n > 0, Z (2) n > 0, ..., Z (k) n > 0 | f 0 , ..., f n-1 ) = (1 -F n (0)) k ≥ (1 -Fn (0)) k = P k ( Z(1) n > 0, Z(2) n > 0, ..., Z(k) n > 0 | f0 , ..., fn-1 ) a.s. (9) 
3 Subcriticality starting from several particles

We specify here the asymptotics of survival probabilities starting with k particles. Then we determine how many initial particles survive conditionally on non extinction of particles and we characterize the sequence of environments which are selected by this conditioning. Finally we consider the Yaglom quasistationary distributions of (Z n ) n∈N and the associated Q-process. In the (SS) case, results are those expected, i.e. they are analogous to those of a GW process. In the (IS) case, results are different for the Yaglom quasistationary distribution and the Q-process. In the (WS) case, all results are different.

Recall that we label by i ∈ N each particle of the initial population and denote by Z (i) n the number of descendants of particle i at generation n. Thus (Z (i) n ) n∈N are identically distributed BPRE (i ∈ N), with common distribution (Z n ) n∈N starting with one particle. Conditionally on the environments, these processes are independent : for all n, k, l i ∈ N,

P k (Z (i) n = l i , 1 ≤ i ≤ k | f 0 , ..., f n-1 ) = Π k i=1 P 1 (Z n = l i |f 0 , ..., f n-1 ).
Moreover, under P k , (Z n ) n∈N is a.s. equal to

k i=1 Z (i) n n∈N .
3.1 Survival probabilities starting with several particles

Note that x → E f ′ (1) x log(f ′ (1)) increases with x. Proposition 1. For every k ∈ N * , (i) If E f ′ (1) k log(f ′ (1)
) < 0, then there exists c k > 0 such that

P k (Z (1) n > 0, Z (2) n > 0, ..., Z (k) n > 0) n→∞ ∼ c k E(f ′ (1) k ) n and E(f ′ (1) k ) < E(f ′ (1) k-1 ) < ... < E(f ′ (1)). (ii) If E f ′ (1) k log(f ′ (1)) = 0, then there exists c k > 0 such that P k (Z (1) n > 0, Z (2) n > 0, ..., Z (k) n > 0) n→∞ ∼ c k n -1/2 E(f ′ (1) k ) n . (iii) If E f ′ (1) k log(f ′ (1)) > 0, then there exists c k > 0 such that P k (Z (1) n > 0, Z (2) n > 0, ..., Z (k) n > 0) n→∞ ∼ c k n -3/2 γn , with γ = inf u∈R + {E(f ′ (1) u )} ∈ (0, 1) and c = c 1 ≥ c 2 ≥ ... ≥ c k .
Moreover, in the (IS+WS) case, γ = γ. In the (SS) case, γ < γ = E(f ′ (1)).

The proof is given in Section 4.1 and uses the case where the probability generating function f is a.s. linear fractional.

In the (SS+IS) case, the asymptotic probability of survival of particles is proportional to the number of initial particles, as stated below. This is not surprising and well know for subcritical GW process. But this does not hold in the (WS) case. Recall that α k is defined as lim n→∞ P k (Z n > 0)/P 1 (Z n > 0). Theorem 2. In the (SS+IS) case, for every k ∈ N, α k = k.

In the (WS) case, α k → ∞ as k → ∞ and there exists M + > 0 such that

α k ≤ M + k α log(k), (k ≥ 2),
where α ∈ (0, 1) is given by (1). Assuming further E(f ′ (1) 1/2 log(f ′ (1))) > 0 (i.e. α < 1/2) and that f ′′ (1)/f ′ (1) is bounded by a constant, there exists M > 0 such that

α k ≥ M k α log(k), (k ∈ N).
One can naturally conjecture that the last result still holds for 1/2 ≤ α < 1. The proof also uses the linear fractional case where, conditionally on the environments, the survival probability is related to a random walk whose jumps are the log of the means of the reproduction law of the environments. This is why we need to prove a result about random walk with negative drift conditioned to be larger than -x < 0 (see Appendix). One way to generalize the last result of the theorem above to the case E(f ′ (1) 1/2 log(f ′ (1))) > 0 (i.e. α < 1/2) would be to improve Lemma 11.

Survival of initial particles conditionally on non-extinction

We turn our attention to the number of particles that survive when we condition on the survival of the whole population of particles. More precisely, denote by N n the number of particles in generation 0 whose descendance is alive at generation n. That is, starting with k particles :

N n := #{1 ≤ i ≤ k : Z (i) n > 0}.
We have the following elementary consequence of Proposition 1.

Proposition 3. In the (SS+IS) case, for every k ≥ 1,

lim n→∞ P k (N n > 1 | Z n > 0) = 0.
In the (WS) case, for every k ≥ 1,

lim n→∞ P k (N n = k| Z n > 0) > 0.
Thus, for (SS+IS) BPRE, conditionally on the survival of the population, only one initial particle survives, as for GW. But for (WS) BPRE, several initial particles survive with positive probability. Forthcoming Theorem 5 gives an interpretation of this property in terms of selection of favorable environments by conditioning on non-extinction. This result has an application to the branching model for cell division with parasite infection considered in [START_REF] Bansaye | Proliferating parasites in dividing cells : Kimmel's branching model revisited[END_REF]. In particular it ensures that the separation of descendances of parasites (see Section 6.3 in [START_REF] Bansaye | Proliferating parasites in dividing cells : Kimmel's branching model revisited[END_REF]) holds only in the (SS+IS) case. In the same vein, we refer to [START_REF] Fleischmann | Reduced subcritical Galton-Watson processes in a random environment[END_REF] for results on the reduced process associated with subcritical BPRE in the linear fractional case : In the (WS) case, the number of particles of the reduced process is not a.s. equal to 1 in the first generations.

We next consider the situation when the number of initial particles tends to infinity in the (WS) case. We shall see that the number of initial particles which survive conditionally on non-extinction is finite a.s. but not bounded. Theorem 4. In the (WS) case, assuming

E(f ′ (1) 1/2 log(f ′ (1))) > 0 (i.e. α < 1/2) and f ′′ (1)/f ′ (1) is bounded by a constant, there exist A l ↓ l→∞ 0 such that for all k ≥ l ≥ 0, lim sup n→∞ P k (N n ≥ l | Z n > 0) ≤ A l . Moreover, for every l ∈ N * , lim inf k→∞ lim inf n→∞ P k (N n = l | Z n > 0) > 0.
Thus, under the conditions of the theorem, lim sup

k→∞ lim sup n→∞ P k (N n ≥ l | Z n > 0) ≤ A l , with A l ↓ l→∞ 0.

Selection of environments conditionally on non-extinction

We characterize here the sequence of environments which are selected by conditioning on the survival of particles.

We denote by F the set of generating functions and for every g n = (g 0 , . . . , g n-1 ) ∈ F n , by Z gn the value at generation n of the branching process in varying environment whose reproduction law at generation l ≤ n -1 has generating function g l . Thus, for every k ≥ 1,

E k (s Zg n ) = [g 0 • g 1 • • • • • g n-1 (s)] k (0 ≤ s ≤ 1). ( 10 
)
Then we denote by p(g n ) the survival probability of a particle in environment g n :

p(g n ) := P 1 (Z gn > 0). (11) 
Denote by f n the sequence of environments until time n, i.e.

f n := (f 0 , f 1 , . . . , f n-1 ).

In the subcritical case, p(f n ) → 0 a.s. as n → ∞ since (Z n ) n∈N becomes extinct a.s.

Roughly speaking, the sequences of environments have a.s. zero survival probability. In the (SS+IS) case, conditioning on the survival of particles does not change this fact, but it does in the (WS) case, as we can guess using Proposition 3. Coming back to the model of plants in random weather, the survival of flowers in the (SS+IS) case is due to the exceptional reproduction of plants (despite the weather), whereas in the (WS) case it is due to nice weather (and regular reproduction of plants). More precisely, we prove that in the (WS) case, the sequence of environments which are selected by conditioning on Z n > 0 have a.s. a positive survival probability. Thus, they are 'supercritical'. In [START_REF] Afanasyev | Branching processes in random environment[END_REF], the authors had already remarked this supercritical behavior of the BPRE (Z n ) n∈N in the (WS) case by giving an analog of the Kesten-Stigum theorem, i.e. the convergence of Z n /m n .

Theorem 5. In the (SS+IS) case, for all k ≥ 1, ǫ > 0,

lim n→∞ P k (p(f n ) ≥ ǫ | Z n > 0) = 0.
In the (WS) case, for every k ≥ 1,

lim inf n→∞ P k (p(f n ) ≥ ǫ | Z n > 0) ǫ→0+ -→ 1.
This supercritical behavior in the (WS) case disappears as k tends to infinity. That is, the survival probability of selected sequences of environments tends to 0 as the number of particles grows to infinity. Proposition 6. In the (WS) case, for every ǫ > 0, lim sup

n→∞ P k (p(f n ) ≥ ǫ | Z n > 0) k→∞ -→ 0.
In other words, conditionally on the survival of Z n , the more initial particles there are, the less environments need to be favorable to allow the survival of the population, and the less likely it is for a given particle to survive. This explains why letting the number of initial particles tend to infinity does not make the number of surviving initial particles tend to infinity, as stated in Theorem 4.

Yaglom quasistationary distributions

We focus now on the Yaglom quasistationary distribution of (Z n ) n∈N (see Preliminaries for existence and references). For the GW process, this distribution does not depend on the initial number of particles and is characterized by a functional equation. This result still holds for (SS) BPRE. Indeed, starting with several particles, conditionally on the survival of one given particle, the others become extinct (see Proposition 3). Recalling that in the (SS+IS) case, γ = E(f ′ (1)), and writing p.g.f. for probability generating function, we have the following statement. Theorem 7. For every k ≥ 1, the BPRE Z n starting from k and conditioned to be positve converges in distribution as n → ∞ to a r.v. Υ k , whose p.g.f. G k verifies

E(G k (f (s))) = γG k (s) + 1 -γ (0 ≤ s ≤ 1).
In the (SS+IS) case, the distribution of Υ k does not depend on k . Moreover, in the (SS) case, the common p.g.f. of (Υ k : k ≥ 1) is the unique p.g.f. G which satisfies the functional equation above and G ′ (1) < ∞.

In the (WS) case, we leave open the question of determining whether the quasistationary distribution Υ k depends on the initial number k of particles. We know that for every k ≥ 1, G k verifies the same functional equation given above but we do not know if the solution is unique. Moreover, other observations also lead us to believe that quasistationary distributions Υ k might not depend on k. For example, we can prove that if

Z 1 ∈ {0, 1, N } for some N ∈ N * , then Υ 1 d = Υ N .

Q-process associated with a BPRE

The Q-process (Y n ) n∈N is the BPRE (Z n ) n∈N conditioned to survive in the distant future. See [START_REF] Athreya | Branching processes[END_REF] for details in the case of GW processes. In the (SS) case, the Q-process converges in distribution to the size biased Yaglom distribution, as for GW process and finer results have been obtained in [START_REF] Afanasyev | Functional limit theorems for strongly subcritical branching processes in random environment[END_REF]. In the (IS+WS) case, the Q-process is transient. That is, the population needs to grow largely in the first generations so that it can survive.

Recall that for all l 1 , l 2 , ..., l n ∈ N, by

P k (Y 1 = l 1 , ..., Y n = l n ) = lim p→∞ P k (Z 1 = l 1 , ..., Z n = l n |Z n+p > 0).
Proposition 8. ⋆ In the (SS) case, for every k ∈ N * , for all l 1 , l 2 , ..., l n ∈ N,

P k (Y 1 = l 1 , ..., Y n = l n ) = [E(f ′ (1))] -n l n k P k (Z 1 = l 1 , ..., Z n = l n ).
Moreover (Y n ) n∈N converges in distribution to the size biased Yaglom distribution.

∀ l ≥ 0, P k (Y n = l) n→∞ -→ lP(Υ = l) E(Υ) .
⋆ In the (IS) case, for every k ∈ N * , for all l 1 , l 2 , ..., l n ∈ N,

P k (Y 1 = l 1 , ..., Y n = l n ) = E(f ′ (1)) -n l n k P k (Z 1 = l 1 , ..., Z n = l n ). Moreover Y n → ∞ in probability as n → ∞. ⋆ In the (WS) case, for every k ∈ N * , for all l 1 , l 2 , ..., l n ∈ N, P k (Y 1 = l 1 , ..., Y n = l n ) = γ -n α ln α k P k (Z 1 = l 1 , ..., Z n = l n ).
Moreover Y n tends to infinity a.s.

We focus now on the environments of the Q-process. We endow F with distance d given by the infinity norm d(f, g) = f -g ∞ and we denote by B(F) the Borel σ-field.

We introduce the probability ν k on (F N , B(F) ⊗N ) which gives the distribution of the environments when the BPRE (Z n ) n∈N starting from k particles is conditioned to survive. Using Kolomogorov Theorem, it can be specified by its projection on (F p , B(F) ⊗p ) for every p ∈ N, denoted by

ν k |F p , ν k |F p (dg p ) := lim n→∞ P k f p ∈ dg p |Z n+p > 0 (12) = γ -p P f p ∈ dg p ∞ l=1 P k (Z gp = l) α l α k ,
with f p = (f 0 , . . . , f p-1 ) and γ = E(f ′ (1)) in the (SS+IS) case. The limit is the weak limit of probabilities on (F p , B(F) ⊗p ) (see [START_REF] Billingsley | Convergence of probability measures[END_REF] for definition and Section 4.5 for the proof), which we endow with the distance d p given by d p (g 0 , . . . , g p-1 ), (h 0 , . . . , h p-1 ) = sup{

g i -h i ∞ : 0 ≤ i ≤ p -1}. ( 13 
)
For every g ∈ F N , we denote by g|n the first n coordinates of g ∈ F N and we introduce the survival probability in environment g ∈ F N :

p(g) = lim n→∞ P(Z g|n > 0).
One can naturally conjecture an analog of Theorem 5 and Proposition 6. That is, for every k ∈ N * , In the (SS+IS) case, ν k ({g ∈ F N : p(g) = 0}) = 1.

In the (WS) case,

ν k ({g ∈ F N : p(g) > 0}) = 1 and ν k (p(f ) ∈ dx) k→∞ =⇒ δ 0 (dx).
A perspective is to characterize the tree of particles when we condition by the survival of particles, i.e. the tree of particles of the Q-process. Informally, for GW process, this gives a spine with finite iid subtrees (see [START_REF] Geiger | Elementary new proofs of classical limit theorems for Galton-Watson processes[END_REF][START_REF] Lyons | Conceptual proofs of L log L criteria for mean behavior of branching processes[END_REF]). This fact still holds in the (SS+IS) case but we will observe a 'multispine tree' in the (WS) case.

Proofs

Recall that f n = (f 0 , ...f n-1 ) and set for every n ∈ N,

X n := log(f ′ n (1)), S n := n-1 i=0 X i (S 0 = 0), L n := min{S i : 1 ≤ i ≤ n}.
To get limit theorems starting from k particles, we will work conditionally on the environments so that particles reproduce independently. Thus, we need to control the asymptotic distribution of p(

f n ) = P 1 (Z n > 0 | f n ).
Roughly speaking, we prove now that p(f n ) ≈ exp(L n ) a.s. as n → ∞. The proof relies on the fact that in the fractional linear case, we can compute the survival probability at time n as a function of the random walk (S i , 1 ≤ i ≤ n) (see Preliminaries). We use then a result on random walk with negative drift conditioned to be above x < 0 given in Appendix to get the lower bound in the linear fractional case. The lower bound in the general case follows by a coupling argument, whereas the upper bound is easy.

Lemma 9. For every n ∈ N, we have

p(f n ) ≤ exp(L n ) a.s. Moreover if E(f ′ (1) 1/2 log(f ′ (1))) > 0 (i.e. 0 < α < 1/2) and f ′′ (1)/f ′ (1)
is bounded, then there exists µ ≥ 1 such that for all n ∈ N and x ∈ (0, 1],

P(p(f n ) ≥ x) ≥ P(L n ≥ log(µx))/4.
Proof. For the upper bound, note that all n ∈ N and g n ∈ F n , we have,

p(g n ) = P 1 (Z gn > 0) ≤ E 1 (Z gn ) = Π n-1 i=0 g ′ i (1).
Thus p(f n ) ≤ e Sn a.s. Adding that p(f n ) decreases a.s. ensures that p(f n ) ≤ e Ln a.s.

For the lower bound, use ( 8) and ( 6) to get

p(f n ) ≥ p( fn ) = Pn 1 + n-1 i=0 f ′′ n-i-1 (1) 2 f ′ n-i-1 (1) Pi = P n 1 + n-1 i=0 f ′′ n-i-1 (1) f ′ n-i-1 (1) P i a.s.,
where

P i := f ′ n-i (1)...f ′ n-1 (1) (P 0 = 1). Define S ′ i := log(f ′ n-i (1)) + ... + log(f ′ n-1 (1)) (1 ≤ i ≤ n), S ′ 0 = 0.
Then P i = exp(S ′ i ) and assuming that C := 1 + ess sup( f ′′ (1) f ′ (1) ) -1 > 0, we have

p(f n ) ≥ C e S ′ n 2 n-1 i=0 e S ′ i ≥ C 2 e S ′ n -max{S ′ j :0≤j≤n} n i=0 e S ′ i -max{S ′ j :0≤j≤n} a.s.
Thus,

p(f n ) ≥ C 2 e Ln n i=0 e Ln-S i . ( 14 
)
As α < 1/2, the forthcoming Corollary 12 in Appendix (Section 5) ensures that there exists β > 0 such that for all n ∈ N and x ∈ (0, 1],

P(p(f n ) ≥ x) ≥ P(L n ≥ log(2βx/C))P n i=0 e Ln-S i ≤ β | L n ≥ log(2βx/C) ≥ P(L n ≥ log(µx))/4, writing µ = min(1, 2β/C).

Proofs of Section 3.1

First we give the proof of Proposition 1, which is split into three parts. It follows the proof of Theorem 1.2 in [START_REF] Guivarc'h | Asymptotic properties of branching processes in random environment[END_REF]. Using also the Lemma above, we are then able to prove Theorem 2.

Proof of Proposition 1 (i).

We follow the proof of Theorem 1.2 (a) in [START_REF] Guivarc'h | Asymptotic properties of branching processes in random environment[END_REF] and introduce the probability P such that under P, the environments still are iid and their law is given by P

(f ∈ dg) = E(f ′ (1) k ) -1 g ′ (1) k P(f ∈ dg).
Then, writing P n = f ′ 0 (1)...f ′ n-1 (1) (P 0 = 1), we have

P(Z (1) n > 0, ..., Z (k) n > 0) = E((1 -F n (0)) k ) = E(f ′ (1) k ) n Ẽ((1 -F n (0))/P n ) k ).
As E(f ′ (1) k log(f ′ (1))) < 0, then Ẽ(log(f ′ (1))) < 0 and Theorem 5 in [START_REF] Athreya | On branching processes with random environments, I and II : Extinction probability[END_REF] ensures that

C = lim n→∞ 1 -F n (0) P n
exists P a.s. and belongs to ]0, 1]. Thus, as n → ∞,

P k (Z (1) n > 0, ..., Z (k) n > 0) ∼ E(f ′ (1) k ) n Ẽ(C k ).
Add that s → E(f ′ (1) s ) decreases for s ∈ [0, α] and k < α to complete the proof, where α is given by (1).

Proof of Proposition 1 (iii). We follow the proof of Theorem 1.2 (c) in [START_REF] Guivarc'h | Asymptotic properties of branching processes in random environment[END_REF].

STEP 1. First we consider the linear fractional case. In that case, by [START_REF] Bansaye | Proliferating parasites in dividing cells : Kimmel's branching model revisited[END_REF],

P k (Z (1) n > 0, ..., Z (k) n > 0| f 0 , ..., f n-1 ) = 1 + n-1 i=0 f ′′ n-i-1 (1) 2f ′ n-i-1 (1) 
P i -k P k n .
Define γ by γ = inf

s∈R + E f ′ (1) s = E f ′ (1) α , where 0 < α < k since E(f ′ (1) k log(f ′ (1)
)) > 0. Let P α be the probability given by

P α(f ∈ dg) = γ-1 g ′ (1) αP(f ∈ dg).
Then

P k (Z (1) n > 0, ..., Z (k) n > 0) = γn E α 1 + n-1 i=0 f ′′ i (1) 2f ′ i (1) 
P i -k P k- α n
.

As E α(log(f ′ (1))) = 0, we apply Theorem 2.1 in [START_REF] Guivarc'h | Asymptotic properties of branching processes in random environment[END_REF] with

φ(x) = x k-α, ψ(x) = (1 + x) -k , 0 < k -α < k,
so there exists c k > 0 such that, as n → ∞, P k (Z (1) n > 0, ...,

Z (k) n > 0) ∼ c k γn n -3/2 .
STEP 2. For the general case, we can use STEP 1. Indeed, by [START_REF] Durrett | Conditioned limit theorem for random walks with negative drift[END_REF], there exists a BPRE ( Zn ) n∈N such that f is a.s. linear fractional, f ′ (1) = f ′ (1) and

P k (Z (1) n > 0, Z (2) n > 0, ..., Z (k) n > 0) ≥ P k ( Z(1) n > 0, Z(2) n > 0, ..., Z(k) n > 0).
By STEP 1, this yields the existence of c k (1) > 0 such that

P k (Z (1) n > 0, Z (2) n > 0, ..., Z (k) n > 0) ≥ c k (1)γ n n -3/2 . ( 15 
)
Note that by inclusion-exclusion principle, we have

P k (Z n > 0) = k i=1 (-1) i+1 k i P(Z (1) n > 0, ..., Z (i) n > 0). (16) 
Moreover, (4) ensures the convergence of γ -n n 3/2 P 1 (Z n > 0) to cα 1 . By induction, it gives the convergence of γ -n n 3/2 P(Z (1) n > 0, Z (2) n > 0, ..., Z (k) n > 0).

to a constant c k , which is positive by [START_REF] Hirano | Determination of the limiting coefficient for exponentials functional of random walks with positive drift[END_REF].

To complete the proof note that γ = γ iff [E(f ′ (1) s )] ′ (1) ≥ 0, i.e. in the (IS+WS) case.

Proof of Proposition 1 (ii). The proof is close to the previous one. First, we consider the linear fractional case and the probability P defined by

P(f ∈ dg) = E(f ′ (1) k ) -1 g ′ (1) k P(f ∈ dg).
Using again [START_REF] Bansaye | Proliferating parasites in dividing cells : Kimmel's branching model revisited[END_REF], we get then P(Z (1) n > 0, ...,

Z (k) n > 0) = E(f ′ (1) k ) n Ẽ 1 + n-1 i=0 f ′′ n-i-1 (1) 2f ′ i-i-1 (1) 
P i -k
.

As Ẽ(log(f ′ (1)) = 0, we can use again Theorem 2.1 in [START_REF] Guivarc'h | Asymptotic properties of branching processes in random environment[END_REF] and conclude in the linear fractional case.

The general case can be proved following STEP 2 in the previous proof.

Proof of Theorem 2. Computation of α k in the (SS+IS) case. In the (SS+IS) case, Proposition 3 and ( 16) ensure that for every k ∈ N,

P k (Z n > 0) ∼ kP 1 (Z n > 0), (n → ∞).
Then, α k = k, which gives the first result.

Limit of α k in the (WS) case. Note that

P 1 (Z p+n > 0) = ∞ k=1 P 1 (Z p = k)P k (Z n > 0). Then, P 1 (Z p+n > 0) P 1 (Z n > 0) = ∞ k=1 P 1 (Z p = k) P k (Z n > 0) P 1 (Z n > 0) . ( 17 
) First, P k (∪ k i=1 {Z (i) n > 0}) ≤ k i=1 P k (Z (i) n > 0), which gives P k (Z n > 0)/P 1 (Z n > 0) ≤ k. Moreover ∞ k=1 P 1 (Z p = k)k = E(Z p ) < ∞ and P k (Z n > 0)/P 1 (Z n > 0) n→∞ -→ α k , so by bounded convergence, we get ∞ k=1 P 1 (Z p = k) P k (Z n > 0) P 1 (Z n > 0) n→∞ -→ ∞ k=1 P 1 (Z p = k)α k .
Then, using again (4), letting n → ∞ in (17) yields

γ p = ∞ k=1 P 1 (Z p = k)α k .
Assuming that (α k ) k∈N is bounded by A leads to

γ p ≤ AP 1 (Z p > 0).
Letting p → ∞ leads to a contradiction with (4). Adding that α k increases ensures that

α k → ∞ as k → ∞.
Upper bound of α k in the (WS) case. Using the independence of the particles conditionally on the environments, we have

P k (Z n > 0 | f n ) = 1 -P 1 (Z n = 0 | f n ) k = 1 -(1 -p(f n )) k .
This yields the following expressions for the survival probability starting from k particles,

P k (Z n > 0) = E(1 -(1 -p(f n )) k ) = k 1 0 (1 -x) k-1 P(p(f n ) ≥ x)dx. (18) 
So we can write

α k = lim n→∞ k 1 0 (1 -x) k-1 P(p(f n ) ≥ x) P 1 (Z n > 0) dx. ( 19 
)
Using the first inequality of Lemma 9, we have then

α k ≤ lim sup n→∞ k 1 0 (1 -x) k-1 P(exp(L n ) ≥ x) P 1 (Z n > 0) dx ≤ k. lim sup n→∞ n -3/2 γ n P 1 (Z n > 0)
. lim sup

n→∞ 1 0 (1 -x) k-1 P(exp(L n ) ≥ x) n -3/2 γ n .
By (26), we can use Fatou's Lemma and (25) ensures that exists a linearly growing function u such that

α k ≤ k lim sup n→∞ n -3/2 γ n P 1 (Z n > 0) . 1 0 (1 -x) k-1 x -α u(log(1/x))dx.
Thus, using (4) and the fact that u is linearly growing, there exists a constant C > 0 such that

α k ≤ Ck 1 0 (1 -x) k-1 x -α [1 + log(1/x)]dx. ( 20 
)
Finally, splitting the integral at 1/k and using integration by parts,

1 0 (1 -x) k-1 x -α log(1/x)dx ≤ 1/k 0 x -α log(1/x)dx + k α log(k) 1 1/k (1 -x) k-1 dx ≤ [-α + 1] -1 k α-1 log(k) + [-α + 1] -1 k α-1 + k α-1 log(k). Similarly 1 0 (1 -x) k-1 x -α dx ≤ [1 -α] -1 k α-1 + k α-1 .
Then [START_REF] Vatutin | A limit theorem for an intermediate subcritical branching process in a random environment[END_REF] ensures that there exists M + > 0 such that for every k > 0, α k ≤ M + k α log(k).

Lower bound of α k in the (WS) case assuming further E(f ′1/2 (1) log(f ′ (1))) > 0 (i.e. α < 1/2) and f ′′ (1)/f ′ (1) is bounded. By (4) and the second part of Lemma 9, there exists µ ≥ 1 such that for every x ∈ (0, 1],

lim inf n→∞ P(p(f n ) ≥ x) P 1 (Z n > 0) = lim inf n→∞ γ n n -3/2 P 1 (Z n > 0) P(p(f n ) ≥ x) γ n n -3/2 ≥ c -1 lim inf n→∞ P(L n ≥ log(µx)) γ n n -3/2 .
Using (25) and the fact that u grows linearly, there exists D > 0 such that lim inf

n→∞ P(p(f n ) ≥ x) P 1 (Z n > 0) ≥ Dx -α log(1/[xµ]).
By ( 19) and Fatou's Lemma,

α k ≥ D 1 0 (1 -x) k-1 x -α [log(1/x) + log(1/µ)]dx For all k ≥ µ 2 and x ∈ (0, 1/k], log(1/x) ≥ 2 log(µ). So for every k ≥ µ 2 , α k ≥ 2 -1 Dk 1/k 0 (1 -x) k-1 x -α log(1/x)dx ≥ 2 -1 Dk log(k) 1/k 0 x -α dx,
which ensures that there exists M -such that for every k ≥ 1, α k ≥ M -k α log(k).

Proofs of Section 3.2

Proof of Proposition 3. The first part (i.e. the (SS+IS) case) follows from

P k (∃i = j, 1 ≤ i, j ≤ k, Z (i) n > 0, Z (j) n > 0 |Z n > 0) ≤ k 2 P 2 (Z (1) 
n > 0, Z

n > 0) P k (Z n > 0) (2) 
, the asymptotics given by Proposition 1 (i-ii-iii) and equations ( 2) and ( 3). The second part (i.e. the (WS) case) is directly derived from Proposition 1 (iii) and ( 4).

Proof of Theorem 4. Denote by N (g n ) the number of initial particles which survive until generation n where the successive reproduction laws are given by g n (i.e. conditionally on f n = g n ). Then, for all 1 ≤ l ≤ k,

P k (N n = l) = F n P(f n ∈ dg n )P k (N (g n ) = l) = 1 0 P(p(f n ) ∈ dx) k l x l (1 -x) k-l . Note that x ∈ [0, 1] → x l (1-x) k-l is positive, increases on [0, l/k] and decreases on [l/k, 1].
First, we prove the upper bound. By Lemma 9, p(f n ) ≤ exp(L n ) a.s., so that

1 0 P(p(f n ) ∈ dx)x l (1 -x) k-l = 1 0 P(p(f n ) ∈ dx, exp(L n ) ≤ l/k)x l (1 -x) k-l + 1 0 P(p(f n ) ∈ dx, exp(L n ) > l/k)x l (1 -x) k-l ≤ 1 0 P(exp(L n ) ∈ dx)x l (1 -x) k-l + P(exp(L n ) ∈ (l/k, 1])(l/k) l (1 -l/k) k-l .
By (25), lim sup

n→∞ P(exp(L n ) ∈ (l/k, 1]) γ n n -3/2 ≤ u(log(k/l))(k/l) α .
Second, using again the variations of x ∈ [0, 1] → x l (1 -x) k-l and (26), we get

lim n→∞ 1 0 P(exp(L n ) ∈ dx) n -3/2 γ n x l (1 -x) k-l ≤ l/k 0 ν + (dx)x l (1 -x) k-l + ν + ([l/k, 1])(l/k) l (1 -l/k) k-l ≤ c + 1 0 log(1/x)x -α-1 x l (1 -x) k-l dx + c + (1 + 1 l/k log(1/x)x -α-1 dx)(l/k) l (1 -l/k) k-l ≤ c + 1 0 log(1/x)x -α-1 x l (1 -x) k-l dx + c + 1 + log(k/l) (k/l) α -1 α (l/k) l (1 -l/k) k-l .
Putting the three last inequalities together and using u(log(k/l)) ≤ C(1 + log(k/l)) for some C > 0 ensures that there exists D > 0 such that lim sup

n→∞ 1 0 P(p(f n ) ∈ dx) n -3/2 γ n x l (1 -x) k-l ≤ c + 1 0 log(1/x)x -α-1 x l (1 -x) k-l dx + D(1 + log(k/l)(k/l) α )(l/k) l (1 -l/k) k-l .
Moreover, denoting by B the Beta function, we have

1 0 log(x)x -α-1 x l (1 -x) k-l dx = 1/k 0 log(1/x)x l-α-1 (1 -x) k-l dx + 1 1/k log(1/x)x l-α-1 (1 -x) k-l dx ≤ 1/k 0 log(1/x)x l-α-1 dx + log(k) 1 1/k x l-α-1 (1 -x) k-l dx ≤ (l -α) -1 log(k)k α-l + (l -α) -1 k α-l + log(k)B(l -α, k -l + 1),
by integration by parts. By Stirling's formula, there exists C > 0, and then

C ′ , C ′′ > 0 such that for all 1 ≤ l ≤ k, k l k -α B(l -α, k -l + 1) ≤ C k k-α+1/2 l l+1/2 (k -l) k-l+1/2 (l -α) l-α-1/2 (k -l + 1) k-l+1/2 (k -α + 1) k-α+1/2 ≤ C ′ (l -α) l-α-1/2 (k -l + 1) k-l+1/2 l l+1/2 (k -l) k-l+1/2 ≤ C ′′ 1 l 1+α , (21) 
where the last inequality comes from the fact that

(1/x + 1/2) log(1 + x) is bounded for x ∈ [0, 1], so that (k -l + 1/2) log(1 + 1/(k -l)) is bounded for 1 ≤ l < k.
Then, combining the three last inequalities gives lim sup

n→∞ P k (N n = l) k α log(k)n -3/2 γ n ≤ lim sup n→∞ k l k α log(k) 1 0 P(exp(L n ) ∈ dx) n -3/2 γ n x l (1 -x) k-l ≤ (l -α) -1 k l k -l + (l -α) -1 k -l / log(k) + C ′′ 1 l 1+α +D k l (k -α / log(k) + l -α )(l/k) l (1 -l/k) k-l . Adding that k l k -l ≤ 1 l! , (22) 
there exists D ′ > 0 such that lim sup

n→∞ P k (N n = l) k α log(k)n -3/2 γ n ≤ D ′ 1 l 1+α + 1 l! + k l l -α (l/k) l (1 -l/k) k-l .
Then, lim sup

n→∞ P k (N n ≤ l) k α log(k)n -3/2 γ n = lim sup n→∞ k l ′ =l P k (N n = l ′ ) k α log(k)n -3/2 γ n = k l ′ =l lim sup n→∞ P k (N n = l ′ ) k α log(k)n -3/2 γ n ≤ D k l ′ =l 1 l ′1+α + 1 l ′ ! + k l ′ l ′-α (l ′ /k) l ′ (1 -l ′ /k) k-l ′ ≤ D k l ′ =l 1 l ′1+α + 1 l ′ ! + l ′-α Recalling that P k (Z n > 0) ∼ cα k n -3/2 γ n , (n → ∞) and α k ≥ M log(k)k α , (k ∈ N) (see Theorem 2), we have lim sup n→∞ P k (N n ≥ l | Z n > 0) = lim sup n→∞ P k (N n ≥ l) cα k n -3/2 γ n ≤ (cM ) -1 D k l ′ =l 1 l 1+α + 1 l! + l -α .

This gives the first inequality of the proposition with

A l = (cM ) -1 D ∞ l ′ =l 1 l 1+α + 1 l! + l -α .
We can prove similarly the lower bound. By Lemma 9, for every x > 0,

P(p(f n ) ≥ x) ≥ P(L n ≥ log(xµ))/4.
Then, using also [START_REF] Durrett | Conditioned limit theorem for random walks with negative drift[END_REF], for all 0 ≤ l < k and N > 0,

P(p(f n ) ∈ [l/k, N l/k[) = P(p(f n ) ≥ l/k) -P(p(f n ) ≥ N l/k) ≥ P(L n ≥ log(µl/k))/4 -P(exp(L n ) ≥ N l/k).
By (25) , we get

lim inf n→∞ P(p(f n ) ∈ [l/k, N l/k[) n -3/2 γ n ≥ (k/l) α [µ -α u(log(k)-log(µl))/4-N -α u(log(k)-log(N l))].
Then, as u is linearly growing, we can fix N ≥ 1 so that there exists C > 0 such that lim inf

k→∞ lim inf n→∞ P(p(f n ) ∈ [l/k, N l/k[) k α log(k)n -3/2 γ n ≥ l -α C. (23) 
Using that

P k (N n = l) = 1 0 P(p(f n ) ∈ dx) k l x l (1 -x) k-l , and x → x l (1 -x) k-l decreases on [l/k, 1], we have, for every k ≥ N l, P k (N n = l) ≥ P(p(f n ) ∈ [l/k, N l/k[) k l (N l/k) l (1 -N l/k) k-l .
Then (23) and lim

k→∞ k l (N l/k) l (1 -N l/k) k-l > 0 ensures that lim inf k→∞ lim inf n→∞ P k (N n = l) k α log(k)n -3/2 γ n > 0.
Use P k (Z n > 0) ∼ cα k n -3/2 γ n and the upper bound on α k given in Theorem 2 to conclude.

Proofs of Section 3.3

Proof of Theorem 5. Let us first consider the (WS+IS) case. Using that conditionally on f n , Z

n and Z

(2)

n are independent, P k (Z (1) n > 0, Z (2) n > 0) = E(p(f n ) 2 ).
Thus, for every ǫ > 0, by Markov inequality,

P k (Z (1) n > 0, Z (2) n > 0 | Z n > 0) ≥ ǫ 2 P k (p(f n ) ≥ ǫ | Z n > 0).
By Proposition 3, we get

P k (p(f n ) ≥ ǫ | Z n > 0) n→∞ -→ 0.
In the (WS) case, by [START_REF] Lyons | Conceptual proofs of L log L criteria for mean behavior of branching processes[END_REF], for every ǫ ∈ (0, 1] :

P k (Z n > 0) ≥ ǫ 0 P(p(f n ) ∈ dx)(1 -(1 -x) k ). Moreover ǫ 0 P(p(f n ) ∈ dx)(1 -(1 -x) k ) - ǫ 0 P(p(f n ) ∈ dx)kx ≤ k sup x∈[0,ǫ[ 1 -(1 -x) k kx -1 ǫ 0 P(p(f n ) ∈ dx)x ≤ k sup x∈[0,ǫ[ 1 -(1 -x) k kx -1 P 1 (Z n > 0).
Putting these two inequalities together yields

P k (Z n > 0) ≥ k ǫ 0 P(p(f n ) ∈ dx)x -k sup x∈[0,ǫ[ 1 -(1 -x) k kx -1 P 1 (Z n > 0). Then P 1 (p(f n ) ∈ [0, ǫ)), Z n > 0) = ǫ 0 P(p(f n ) ∈ dx)x ≤ P k (Z n > 0)/k + sup x∈[0,ǫ[ 1 -(1 -x) k kx -1 P 1 (Z n > 0).
Dividing by P 1 (Z n > 0) and letting n → ∞ ensure that lim sup

n→∞ P 1 (p(f n ) ∈ [0, ǫ) | Z n > 0) ≤ lim sup n→∞ P k (Z n > 0) kP 1 (Z n > 0) + sup x∈[0,ǫ[ 1 -(1 -x) k kx -1 ≤ α k k + sup x∈[0,ǫ) 1 -(1 -x) k kx -1 .
Finally recall Theorem 2 and use

α k /k k→∞ -→ 0, ∀k ∈ N * , sup x∈[0,ǫ[ 1 -(1 -x) k kx -1 ǫ→0 -→ 0, to get lim ǫ→0+ lim sup n→∞ P k (p(f n ) ≤ ǫ | Z n > 0) = 0.
Proof of Proposition 6. Recall that for every

g n ∈ F n , P k (Z gn > 0) = 1 -(1 -p(g n )) k . Thus, P k (p(f n ) ∈ dx | Z n > 0) = P(p(f n ) ∈ dx)(1 -(1 -x) k ) P k (Z n > 0) = P 1 (p(f n ) ∈ dx | Z n > 0) P 1 (Z n > 0) P k (Z n > 0) (1 -(1 -x) k ) x .
Then, for every ǫ > 0, lim sup

n→∞ P k (p(f n ) ≥ ǫ | Z n > 0) = 1 α k lim sup n→∞ 1 ǫ P 1 (p(f n ) ∈ dx | Z n > 0) (1 -(1 -x) k ) x ≤ 1 ǫα k ,
and the left hand part tends to zero as k tends to infinity by Theorem 2. This ends up the proof.

Proofs of section 3.4

We know from Preliminaries that the BPRE (Z n ) n≥0 starting from k particles and conditioned to be positive converges in distribution to Υ k , and we call G k its p.g.f :

G k (s) = lim n→∞ E k (s Zn | Z n > 0) (0 ≤ s ≤ 1).
Adding that by [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF], G ′ 1 (1) < ∞ we can split the proof of Theorem 7 into three parts

(i) For every k ≥ 1, E(G k (f (s))) = γG k (s) + 1 -γ (0 ≤ s ≤ 1). (ii) In the (SS+IS) case, for every k ≥ 1, Υ k d = Υ 1 .
(iii) There is a unique p.g.f G which satisfies

E(G(f (s))) = E(f ′ (1))G(s) + 1 -E(f ′ (1)) (0 ≤ s ≤ 1), G ′ (1) < ∞ (E).
One can note that (iii) proves (ii) in the (SS) case, adding that G ′ k (1) < ∞ (whose proof for k = 1 in [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF] can be generalized).

Proof of (i). Let f 0 be distributed as f and independent of (Z n ) n∈N . For every n ∈ N,

1 -E k (s Z n+1 | Z n+1 > 0) = E k (1 -s Z n+1 ) P k (Z n+1 > 0) = 1 P k (Z n+1 > 0) ∞ i=1 P k (Z n = i)E k (1 -s Z n+1 | Z n = i) = P k (Z n > 0) P k (Z n+1 > 0) ∞ i=1 P k (Z n = i | Z n > 0)E(1 -f 0 (s) i ) = P k (Z n > 0) P k (Z n+1 > 0) E k (1 -f Zn 0 (s) | Z n > 0).
Then letting n tend to infinity and usingthe asymptotics given in the Preliminaries section gives

1 -G k (s) = γ -1 E(1 -G k (f 0 (s)),
where γ = E(f ′ (1)) in the (SS+IS) case.

Proof of (ii). For every i ≥ 1,

P 2 (Z n = i) = P 2 (Z (1) n = i, Z (2) n = 0)+P 2 (Z (1) n = 0, Z (2) n = i)+P 2 (Z n = i, Z (1) n > 0, Z (2) n > 0). Moreover |P 2 (Z (1) 
n = i, Z (2) 
n = 0) -P 2 (Z (1) 
n = i)| ≤ P 2 (Z (1) 
n > 0, Z

n > 0), then

|P 2 (Z n = i) -2P 1 (Z n = i)| ≤ 3P 2 (Z (1) n > 0, Z (2) n > 0).
Thus, using Proposition 3,

lim n→∞ P 2 (Z n = i) P 2 (Z n > 0) = lim n→∞ 2P 1 (Z n = i) P 2 (Z n > 0) .
As α 2 = lim n→∞ P 2 (Z n > 0)/P 1 (Z n > 0) = 2, we have

P(Υ 2 = i) = lim n→∞ P 2 (Z n = i | Z n > 0) = lim n→∞ 2P 1 (Z n = i | Z n > 0)P 1 (Z n > 0) P 2 (Z n > 0) = P(Υ 1 = i).
Then Υ 1 d = Υ 2 and the same argument ensures that for every k ≥ 1, Υ k = Υ 1 .

The proof of (iii) requires the following lemma Lemma 10. If H : [0, 1] → R is a power series continuous on [0, 1], H(1) = 0 and

H(s) = E(H(f (s))f ′ (s)) E(f ′ (1)) , (0 ≤ s ≤ 1), (24) 
then H ≡ 0.

Proof. FIRST CASE : There exists s 0 ∈ [0, 1) such that E(f ′ (s 0 )) = E(f ′ (1)).

The monotonicity of f ′ implies ), and note that

f ′ (s 0 ) = f ′ (1) a.s.,
and f ′ is a.s. constant on [s 0 , 1]. As it is a power series, f ′ is a.s. constant. Thus f (s) = f ′ (1)s + (1 -f ′ (1)) (0 ≤ s ≤ 1), f ′ (1) ≤ 1 a.s. Moreover, let |H(α)| = sup{|H(s)|, s ∈ [0, 1]} with α ∈ [0, 1
E f ′ (1)(H(α) -H(f (α))) = 0.
Thus H(f (α)) = H(α) a.s. and by induction, recalling that

F n = f 0 • f 1 • • • • f n-1 , we have H(F n (α)) = H(α) a.s.
As Z n is subcritical, then E(F n (α)) = E(α Zn ) → 1 as n → ∞. So F n (α) → 1 in probability as n → ∞. Adding that F n (α) < 1 a.s. for every n ∈ N and that H is a power series, then H is constant and equals zero since H(1) = 0.

SECOND CASE : For every

s 0 ∈ [0, 1[, E(f ′ (s 0 )) < E(f ′ (1)). If H = 0 then there exists α ∈ [0, 1[ such that sup{| H(s)) |: s ∈ [0, α]} > 0 Let α n ∈ [α, 1[ such that α n n→∞ -→ 1.
Then, for every n ∈ N, there exists

β n ∈ [0, α n ] such that : sup{| H(s) |: s ∈ [0, α n ]} = | H(β n ) | ≤ E(f ′ (β n )) E(f ′ (1)) sup{|H(s)|, 0 ≤ s ≤ 1} < sup{| H(s) |, 0 ≤ s ≤ 1}, since sup{| H(s) |, 0 ≤ s 1} > 0 and E(f ′ (β n )) < E(f ′ (1)). As I ∩ J = ∅, sup I < sup(I ∪ J) ⇒ sup I < sup J, we get sup{| H(s) |: s ∈ [0, α n ]} < sup{| H(s) |: s ∈]α n , 1]}.
And H(s) s→1 -→ 0 leads to a contradiction letting n → ∞. So H = 0.

proof of (iii). Assume that G 1 and G 2 are two probability generating functions which verify (E). By differentiation, G ′ 1 and G ′ 2 satisfy

E(G ′ (f (s))f ′ (s)) = E(f ′ (1))G ′ (s).
Then

H := G ′ 2 (1)G ′ 1 -G ′ 1 (1)G ′
2 verifies the conditions of Lemma 10. As a consequence,

G ′ 2 (1)G ′ 1 = G ′ 1 (1)G ′ 2 .
And G 1 (0) = G 2 (0) = 0, G 2 (1) = G 1 (1) = 1 ensure that G 1 = G 2 , which gives the uniqueness for (E).

Proof of Section 3.5

Proof of Proposition 8. First, we have

P k (Z 1 = l 1 , ..., Z n = l n |Z n+p > 0) = P k (Z 1 = l 1 , ..., Z n = l n ) P ln (Z p > 0) P k (Z n+p > 0) .
Then, using (2), ( 3), (4), we get

lim p→∞ P k (Z 1 = l 1 , ..., Z n = l n |Z n+p > 0) = γ -n α ln α k P k (Z 1 = l 1 , ..., Z n = l n ).
and recall α l = l in the (SS+IS) case to get the distribution of (Y n ) n∈N .

To get the limit distribution of (Y n ) n∈N , note that, for every l ∈ N * ,

P k (Y n = l) = γ -n α l α k P k (Z n = l) = γ -n P k (Z n > 0) α l α k P k (Z n = l | Z n > 0).
Use respectively ( 2) and (3) to get the limit in distribution in the (SS) case and the (IS).

Finally, in the (WS) case, by (4), there exists C > 0 such that

P k (Y n ≤ l) ≤ Cn -3/2 α l α k P k (Z n ≤ l | Z n > 0) ≤ Cn -3/2 α l α k .
Then Borel-Cantelli Lemma ensures that Y n tends a.s. to infinity as n → ∞.

Proof of [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF]. To prove the convergence and the equality, note that

P k f p ∈ dg p |Z n+p > 0 = P f p ∈ dg p E k (P Zg p (Z n > 0)) P k (Z n+p > 0) = P 1 (Z n > 0) P k (Z n+p > 0) ∞ l=1 P k (Z gp = l) P l (Z n > 0) P 1 (Z n > 0) .
The asymptotics given in the Preliminaries section ensure that

P 1 (Z n > 0) P k (Z n+p > 0) n→∞ -→ 1 γ p α k ,
and using the bounded convergence Theorem with

P l (Z n > 0) P 1 (Z n > 0) n→∞ -→ α l , P l (Z n > 0) P 1 (Z n > 0) ≤ l, E(Z gp ) < ∞.
ensures that

lim n→∞ P k f p ∈ dg p |Z n+p > 0 = γ -p P f p ∈ dg p ∞ l=1 P k (Z gp = l) α l α k .
This completes the proof.

5 Appendix : Random walk with negative drift

We study here the random walk (S n ) n∈N with negative drift. Indeed, in the linear fractional case, the survival probability is a functional of the random walk obtained by summing the successive means of environments (see [START_REF] Athreya | Branching processes[END_REF]). In the general case, the random walk appears in the lower bound of the survival probability (see [START_REF] Guivarc'h | Asymptotic properties of branching processes in random environment[END_REF]). More precisely, we need to control the successive values of the random walk with negative drift conditioned to stay above -x < 0.

More specifically, let (X i ) i∈N be iid random variables distributed as X with E(X) < 0.

We assume that for every z ∈ [0, 1], E(exp(zX)) < ∞ and E(X exp(αX)) = 0 for some 0 < α < 1. Set γ := E(exp(αX)),

S n := n-1 i=0 X i , (S 0 = 0),
and for all n ∈ N, k ∈ N,

L n = min{S i , 0 ≤ i ≤ n}.
Its asymptotic is given in Lemma 4.1 in [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF] or Lemma 7 in [START_REF] Hirano | Determination of the limiting coefficient for exponentials functional of random walks with positive drift[END_REF]. There exists a linearly increasing positive function u such that, as n → ∞

P(L n ≥ -x) ∼ e αx u(x)n -3/2 γ n , (25) 
for x ≥ 0 if the distribution X is non-lattice, and for x ∈ λZ if the distribution of X is supported by a centered lattice λZ. Moreover for each θ > α, there exists c θ > 0 such that

P(L n ≥ -x) ≤ c θ e θx n -3/2 γ n , (x ≥ 0, n ∈ N). (26) 
Finally, using (25) and the fact that u grows linearly, there exist c -, c + > 0 such that the two following positive measures on [0, 1],

ν -(dx) = c log(1/x)x -α-1 dx, ν + (dx) = c + (δ 1 (dx) + log(1/x)x -α-1 dx), verify for every x ∈]0, 1] ν -([x, 1]) ≤ lim n→∞ P(e Ln ≥ x) n -3/2 γ n ≤ ν + ([x, 1]). (27) 
We need to control the successive values of the random walk conditioned to stay above -x (x ≥ 0). Under integrability conditions, it is known that the process (S [nt] /n 1/2 |L n ≥ 0) converges weakly to the Brownian meander as n → ∞ (see [START_REF] Iglehart | Conditioned limit theorems for random walks. Stochastic processes and related topics[END_REF]). Moreover Durrett [START_REF] Durrett | Conditioned limit theorem for random walks with negative drift[END_REF] has proved that if there exists q > 2 such that P {X 1 > x} ∼ x -q L(x) as x → ∞, where L is slowly varying, then (S [nt] /n|L n ≥ 0) converges weakly to a non degenerate limit which has a single jump. We prove here that the random walk conditioned to stay above -x (x ≥ 0) spends very short time close to its minimum, by giving an upper bound of the number of visits to a level of the random walk reflected at its minimum. To be more specific, define

N n (k) = card{i ∈ N, i ≤ n, k ≤ S i -L n < k + 1}.
Lemma 11. For every θ > α, there exists d > 0 such that

lim sup n→∞ P(N n (k) ≥ l | L n ≥ -x) ≤ de θk / √ l, (k, l ∈ N, x ≥ 0).
Moreover for all θ > α and x ≥ 0, there exists C > 0 such that

P(N n (k) ≥ l | L n ≥ -x) ≤ Ce θk / √ l, (k, n, l ∈ N). (28) 
Moreover, we will use the following consequence of the preceding lemma.

Corollary 12. If α < 1/2, there exists β > 0 such that for all x ≥ 0 and n ∈ N,

P n i=0 exp(L n -S i ) ≤ β | L n ≥ -x ≥ 1/4.
For the sake of simplicity, we assume that X ∈ Z a.s. for the proof of Lemma 11.

Thus ∀k, n ∈ N 2 , N n (k) = card{i ∈ N, i ≤ n, S i -L n = k},
and we denote by (T j : 1 ≤ j ≤ N n (k)) the successive times before n when (S i -L n ) i∈N visits k. That is

T 1 = inf{0 ≤ i ≤ n : S i -L n = k}, T j+1 = inf{T j < i ≤ n : S i -L n = k}.
First, cutting the path of the random walk between two of these passage times enables us to prove the following result.

Lemma 13. If X ∈ Z a.s., then for all n, k, l, i and 0 ≤ h ≤ n, we have

P(L n ≥ -i, N n (k) ≥ 2l, T l + n -T Nn(k) = h) ≤ (k + 1)P(L n-h ≥ -k)P(L h ≥ -i), and 
P(L n ≥ -i, N n (k) ≥ 2l, T 1 + n -T l = h) ≤ (k + 1)P(L n-h ≥ -k)P(L h ≥ -i).
Proof. We introduce the first hiiting time M n of the minimum L n before time n and R n (l) the last passage time at l before time n

M n = inf{j ∈ [1, n] : S j = L n }, R n (l) := sup{j ∈ [1, n] : S j = l}.
First, we consider the case where M n ∈ [0, T l ] ∪ [T Nn(k) , n] and split the path of the random walk between times T l and T Nn(k) . For all j ≤ 0, k ≥ 0 and 0 ≤ n 1 < n 2 ≤ n, introduce then

A(j, n 1 , n 2 ) = {L n = j, N n (k) ≥ 2l, T l = n 1 , T Nn(k) = n 2 , M n ∈ [0, n 1 ] ∪ [n 2 , n]}, B(j, n 1 , n 2 ) = {∀m ∈ [1, n 1 ] : S m ≥ j, S n 1 = S n 2 = j + k, ∀m ∈ [n 2 + 1, n] : S m ≥ j, S m = j + k, ∃a ∈ [0, n 1 ] ∪ [n 2 , n], S a = j}, C(j, n 1 , n 2 ) = {∀m ∈ [n 1 , n 2 ] : S m ≥ j, S n 1 = S n 2 = j + k}.
Note that conditionally on D(n 1 , n 2 ) := {S n 1 = S n 2 = j +k}, B(j, n 1 , n 2 ) and C(j, n 1 , n 2 ) are independent,

P(C(j, n 1 , n 2 ) | S n 1 = j + k) ≤ P(L n 2 -n 1 ≥ -k), and A(j, n 1 , n 2 ) ⊂ B(j, n 1 , n 2 ) ∩ C(j, n 1 , n 2 ).
Then, noting also that

P(C(j, n 1 , n 2 ) | D(n 1 , n 2 )) = P(C(j, n 1 , n 2 ) | S n 1 = j + k)P(S n 1 = j + k)/P(D(n 1 , n 2 )),
we have (30)

P(A(j, n 1 , n 2 )) ≤ P(D(n 1 , n 2 ))P(B(j, n 1 , n 2 ) | D(n 1 , n 2 ))P(C(j, n 1 , n 2 ) | D(n 1 , n 2 
Second, we consider the case where M n ∈ [T l , T Nn(k) ] and split the path of the random walk between times T 1 and T l . For all j, j ′ ≤ 0, k ≥ 0 and 0 ≤ n 1 < n 2 ≤ n, introduce then Note that conditionally on D(n 1 , n 2 ) = {S n 1 = S n 2 = j + k}, B ′ (j, j ′ , n 1 , n 2 ) and C ′ (j, n 1 , n 2 ) are independent,

A ′ (j, n 1 , n 2 ) ⊂ j+k j ′ =j B ′ (j, j ′ , n 1 , n 2 ) ∩ C ′ (j, n 1 , n 2 )
and we get the analogue of (29), P(A ′ (j, n 1 , n 2 )) ≤ Moreover, using (25), for every i ∈ N, there exists n 0 ∈ N such that for all n 0 /2 ≤ n/2 ≤ h, P(L h ≥ -i) ≤ 2e iα u(i)h -3/2 γ -h ≤ 2.2 3/2 e iα u(i)n -3/2 γ h .

Then, writing c ′ θ = 2.2 3/2 .c θ , P(L n ≥ -i, N n (k) ≥ 2l, T l + n -T Nn(k) = h) ≤ c ′ θ e αi u(i)(k + 1)e θk γ n n -3/2 (n -h) -3/2 . (33) Similarly, for every h such that n 0 /2 ≤ n/2 ≤ h, the second inequality of Lemma 13 below ensures that P(L n ≥ -i, N n (k) ≥ 2l, T 1 + n -T l = h) ≤ c ′ θ e αi u(i)(k + 1)e θk γ n n -3/2 (n -h) -3/2 . (34)

Noting that a.s.

{N n (k) ≥ 2l} = 

  )) = P(S n 1 = j + k)P(B(j, n 1 , n 2 ) | D(n 1 , n 2 ))P(C(j,n 1 , n 2 ) | S n 1 = j + k) ≤ P(L n 2 -n 1 ≥ -k)P(S n 1 = j + k)P(B(j, n 1 , n 2 ) | D(n 1 , n 2 )).(29)Moreover,{L n ≥ -i, N n (k) ≥ 2l, T l + n -T Nn(k) = h, M n ∈ [0, T l ] ∪ [T N k (n) , n]} = j≥-i, 1≤n 1 <n 2 ≤n, n 1 +n-n 2 =h A(j, n 1 , n 2 ).Then, using the last two relations,P(L n ≥ -i, N n (k) ≥ 2l, T l + n -T Nn(k) = h, M n ∈ [0, T l ] ∪ [T N k (n) , n]) ≤ j≥-i, 1≤n 1 <n 2 ≤n, n 2 -n 1 =n-h P(A(j, n 1 , n 2 )) ≤ P(L n-h ≥ -k) j≥-i, 1≤n 1 <n 2 ≤n, n 1 +n-n 2 =h P(S n 1 = j + k)P(B(j, n 1 , n 2 ) | D(n 1 , n 2 )).Concatenating the path of the random walk before time n 1 and after time n 2 givesP(L n ≥ -i, N n (k) ≥ 2l, T l + n -T Nn(k) = h, M n ∈ [0, T l ] ∪ [T N k (n) , n]) ≤ P(L n-h ≥ -k) j≥-i, 1≤n 1 <n 2 ≤n, n 1 +n-n 2 =h P(L n 1 +n-n 2 = j, R n 1 +n-n 2 (j + k) = n 1 ) ≤ P(L n-h ≥ -k) j≥-i P(L h = j) = P(L n-h ≥ -k)P(L h ≥ -i).

A

  ′ (j, n 1 , n 2 ) = {L n = -j, N n (k) ≥ 2l, T l = n 1 , T Nn(k) = n 2 , M n ∈ [n 1 , n 2 ]}, B ′ (j, j ′ , n 1 , n 2 ) = {∀m ∈ [1, n 1 ] : S m ≥ j ′ , S n 1 = S n 2 = j + k, ∀m ∈]n 2 , n] : S m ≥ j ′ , S m = j + k, ∃a ∈ [0, n 1 ] ∪ [n 2 , n] : S a = j ′ }, C ′ (j, n 1 , n 2 ) = {∀m ∈ [n 1 , n 2 ] : S m ≥ j, S n 1 = S n 2 = k + j, ∃a ∈ [n 1 , n 2 ] : S a = j}.

  n 2 -n 1 ≥ -k)P(S n 1 = j + k)P(B ′ (j, j ′ , n 1 , n 2 ) | D(n 1 , n 2 )). Moreover {L n ≥ -i, N n (k) ≥ 2l, T l + n -T Nn(k) = h, M ∈ [T l , T N k (n) ]} = j≥-i, 1≤n 1 <n 2 ≤n, n 1 +n-n 2 =h A ′ (j, n 1 , n 2 ).Then, following the proof of (30), we getP(L n ≥ -i, N n (k) ≥ 2l, T l + n -T Nn(k) = h, M n ∈ [T l , T N k (n) ]) ≤ P(L n-h ≥ -k) j ′ ≥-i, j∈[j ′ -k,j ′ ] 1≤n 1 <n 2 ≤n, n 1 +n-n 2 =h P(S n 1 = j + k)P(B ′ (j, j ′ , n 1 , n 2 ) | D(n 1 , n 2 )) ≤ P(L n-h ≥ -k) j ′ ≥-i k max j∈[j ′ -k,j ′ ] 1≤n 1 <n 2 ≤n, n 1 +n-n 2 =h P(S n 1 = j + k)P(B ′ (j, j ′ , n 1 , n 2 ) | D(n 1 , n 2 )) ≤ P(L n-h ≥ -k) j ′ ≥-i kP(L h = j ′ ) ≤ kP(L n-h ≥ -k)P(L h ≥ -i).(31)Combining the inequalities (30) and (31), we getP(L n ≥ -i, N n (k) ≥ 2l, T l + n -T Nn(k) = h) ≤ (k + 1)P(L n-h ≥ -k)P(L h ≥ -i),which proves the first inequality of the lemma. The second can be proved similarly concatenating the random walk between [0, T 1 ] and [T Nn(k) , n].Proof of Lemma 11. Let h ∈ N such that h ≥ n/2. The first inequality of Lemma 13 below ensures thatP(L n ≥ -i, N n (k) ≥ 2l, T l + n -T Nn(k) = h) ≤ (k + 1)P(L h ≥ -i)P(L n-h ≥ -k).Using (26), P(L n ≥ -i, N n (k) ≥ 2l, T l + n -T Nn(k) = h) ≤ c θ (k + 1)P(L h ≥ -i)e θk (n -h) -3/2 γ n-h .

2

 2 {N n (k) ≥ 2l, T l +n-T Nn(k) = h} n-l h=n/2 {N n (k) ≥ 2l, T 1 +n-T l = h},By Lemma 11, this gives, for every x > 0, lim supn→∞ k≥k 0 P(N n (k) ≥ e µk | L n ≥ -x) ≤ d n (k) ≥ e µk } | L n ≥ -x < 1/2. By Lemma 11 again, fix N ∈ N such that lim sup n→∞ P 0≤k<k 0 {N n (k) ≥ N } | L n ≥ -x ≤ 1/4. Then lim sup n→∞ P 0≤k<k 0 {N n (k) ≥ N } k≥k 0 {N k (k) ≥ e µk } | L n ≥ -x < 3/4.Noting thatn i=0 exp(L n -S i ) ≤ ∞ k=0 N n (k)e -k ,this ensures that for everyx ≥ 0n -S i ) ≤ β | L n ≥ -x > 1/4,with β := 0≤k<k 0 N e -k+1 + k≥k 0 e µk e -k+1 . This gives the result.
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we can combine the last two inequalities (33) and (34), which gives for every n ≥ n 0 ,

Then, using again (25),

Using that (k + 1)e θk = o(e θ ′ k ) if θ ′ > θ, this completes the proof of the first inequality of the lemma for X ∈ Z. The general case can be proved similarly.

Note that, for every θ > α, when h ≥ n/2, we can replace (32) by

Following the proof above ensures that there exists c ′′ θ > 0 such for all i, n, l ∈ N,

Thus, by (25), for every x ≥ 0, there exists C x > 0 such that

which gives the second inequality of the lemma.

Proof of Corollary 12. Let α < 1/2 and d > 0 given by Theorem 2. Fix α < θ < µ/2 < 1/2. Choose also k 0 ∈ N such that

By (28), for every x ≥ 0, there exists D > 0 such that for every n ∈ N,

which is summable with respect to k. Thus, by Fatou's lemma, lim sup