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We investigate the effect of the anisotropy of a harmonic trap on the behaviour of a fast rotating
Bose-Einstein condensate. Fast rotation is reached when the rotational velocity is close to the
smallest trapping frequency, thereby deconfining the condensate in the corresponding direction. We
characterize a regime of velocity and small anisotropy where the behaviour is similar to the isotropic
case: a triangular Abrikosov lattice of vortices, with an inverted parabola profile. Nevertheless, at
sufficiently large velocity, we find that the ground state does not display vortices in the bulk. We
show that the coarse grained atomic density behaves like an inverted parabola with large radius
in the deconfined direction, and keeps a fixed profile given by a Gaussian in the other direction.
The description is made within the lowest Landau level set of states, but using distorted complex
coordinates.

PACS numbers:

Vortices appear in many quantum systems such as su-
perconductors and superfluid liquid helium. Rotating
atomic gaseous Bose-Einstein condensates constitute a
novel many body system where vortices have been ob-
served [1] and various aspects of macroscopic quantum
physics can be studied. In a harmonically trapped con-
densate rotating at a frequency close to the trap fre-
quency, interesting features have emerged, presenting a
strong analogy with quantum Hall physics. In the mean
field regime, vortices form a triangular Abrikosov lattice
[2] and the coarse grained density approaches an inverted
parabola [5, 6, 7]. At very fast rotation, when the num-
ber of vortices becomes close to the number of atoms,
the states are strongly correlated and the vortex lattice
is expected to melt [3]. In the mean field regime, Ho
[4] observed that the low lying states in a symmetric 2D
trap are analogous to those in the lowest Landau level
(LLL) for a charged particle in a uniform magnetic field.
This analogy allows a simplified description of the gas by
the location of vortices: the wave function describing the
condensate is a Gaussian multiplied by an analytic func-
tion of the complex variable z = x + iy. The zeroes of
the analytic function are the location of the vortices. It
is the distortion of the vortex lattice on the edges of the
condensate which allows to create an inverted parabola
profile [5, 6, 7, 8] for the coarse grained atomic density
in the LLL.

The experimental achievement of rotating BEC in-
volves anisotropic traps. An anisotropy of the trap can
drastically change the picture in the fast rotation regime.
In this case, the condensate becomes very elongated in
one direction and forms a novel quantum fluid in a nar-
row channel. The investigation of the vortex pattern has

been performed for an infinite strip which corresponds to
the situation where the rotational frequency has reached
the smallest trapping frequency [10, 11], and for an elon-
gated condensate [12, 13, 14]. As pointed out by Fetter
[14], the description of the condensate can still be made
in the framework of the lowest Landau level, defined by
an anisotropic Gaussian, multiplied by an analytic func-
tion of x + iβy, where β is related to the anisotropy of
the trap and the rotational frequency. We are going to
characterize a regime of fast rotation where there are
no vortices in the bulk of the condensate and show that
the coarse grained density profile is very different from
the isotropic case: the behaviour is an inverted parabola
with large expansion in the deconfined direction, while
the extension remains fixed in the other direction, with
a Gaussian profile.

We consider a 2D gas of N atoms rotating at fre-
quency Ω around the z axis. The gas is confined in a
harmonic potential, with frequencies ωx = ω

√
1 − ν2,

ωy = ω
√

1 + ν2 along the x, y axis respectively. The
state of the gas is described by a macroscopic wave func-
tion ψ normalized to unity, which minimizes the Gross-
Pitaevskii energy functional. In the following, we choose
ω, ~ω, and

√

~/(mω), as units of frequency, energy
and length, respectively. The dimensionless coefficient
G = Nas/az characterizes the strength of atomic inter-
actions (here as is the atom scattering length and az the
extension of the wave function in the z direction for the
initial 3-dimensional problem). The energy in the rotat-
ing frame is

E[ψ] =

∫
(

ψ∗ [HΩψ] +
G

2
|ψ|4

)

dxdy (1)



2

where HΩ is defined by

HΩ = −1

2
∇2 +

1 − ν2

2
x2 +

1 + ν2

2
y2 − ΩLz (2)

and Lz = i(y∂x − x∂y) is the angular momentum. We
are going to study the fast rotation regime where Ω2 ap-
proaches the critical velocity Ω2

c := 1 − ν2 from below.
Thus, we define the small parameter ε by ε2 = 1−ν2−Ω2.
The spectrum of the Hamiltonian (2) has a Landau level
structure. The lowest Landau level is defined as (see [14])

f(x+ iβy)e[−
γ
8β (x2+(βy)2)]−i ν2

2Ω
xy, f is analytic (3)

where γ and β are some constants related to Ω and ν
given in the appendix; β is close to 1 if ν is small. For
such functions, < HΩψ, ψ > can be simplified (see the
appendix and [14]), and in the small ε limit (with ε≪ ν),
we are left with the study of

ELLL(ψ) =

∫

1

2

(

ε2x2 + κ2y2
)

|ψ|2 +
G

2
|ψ|4dxdy (4)

where κ2 ∼ (ν2 + ε2/2)(2 − ν2)/(1 − ν2). This energy
only depends on the modulus of ψ. Hence, it is possible
to forget the phase of ψ, and use a simplified definition
of the LLL:

ψ(x, y) = f(x+iβy)e[−
γ
8β (x2+β2y2)], f is analytic. (5)

We recall that the orthogonal projection of
L2(R2) onto the LLL is explicit [15]: ΠLLL(ψ) =
γ
4π

∫

e−
γ
8β (|z|2−2zz′+|z′|2)ψ(x′, y′)dx′dy′, where

z = x + iβy and z′ = x′ + iβy′. We refer to the
appendix of [16] for details on the operator ΠLLL, its
kernel and the computations: if an LLL function ψ (i.e
ψ satisfies (5)) is the ground state of (4), it is a solution
of the projected Gross-Pitaevskii equation:

ΠLLL

[(

ε2

2
x2 +

κ2

2
y2 +G|ψ|2 − µ

)

ψ

]

= 0, (6)

where µ is the chemical potential.
The ground state of (4) without the analytic constraint

is the inverted parabola

|ψ|2 = ρTF :=
2

πRxRy

(

1 − x2

R2
x

− y2

R2
y

)

, (7)

where Rx =
(

4Gκ
πε3

)1/4
, Ry =

(

4Gε
πκ3

)1/4
. Note that in the

isotropic case ν = 0 (that is κ = ε), one recovers the
standard circular shape Rx = Ry = [4G/(πε2)]1/4. Since
κ ≫ ε, Rx is always large. On the other hand, the be-
haviour of Ry depends on the respective values of ε and

κ ∼ ν
√

2. We find that Ry is large if ν ≪ ε1/3 while

Ry shrinks if ν ≫ ε1/3. We are going to see that in the
first case, the profile (7) is reached in the fast rotation
limit in the LLL using a vortex lattice, exactly as in the

isotropic case, while in the second case, (7) is not a good
description of the condensate because the properties of
the LLL prevent Ry from shrinking, and in particular the
energy is much higher than that of (7).

In the first regime ν ≪ ε1/3, which we call the weakly
anisotropic case, figure 1 provides a typical vortex config-
uration, together with the corresponding density plot. It
is obtained by minimizing the energy as a function of the
location of vortices zi with a conjugate gradient method.
The vortex lattice can be described as in the Abrikosov
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FIG. 1: An example of (a): a configuration of the zeroes (b):
density plot. There are 58 vortices with 23 visible vortices.
ν = 0.03, Ω = 0.9985, ε2 = 2 × 10−3, G = 3.

problem [2, 4] using the Theta function:

φ(x, y; τ) = e
γ
8β (z2−|z|2)Θ

(
√

τIγ

4πβ
z, τ

)

, (8)

where z = x + iβy and τ = τR + iτI is the lattice pa-
rameter. The zeroes of the function φ lie on the lattice
√

4πβ
τIγ (Z ⊕ Zτ) and |φ| is periodic. The optimal lattice,

that is the one minimizing b(τ) =
∫

|φ|4/(
∫

|φ|2)2 is tri-

angular, which corresponds to τ = e2iπ/3 (the integrals
are taken on one period). As in the isotropic case [8],
we can construct an approximate ground state of (4) by
multiplying the solution (8) of the Abrikosov problem by
a profile ρ varying at the same scale as ρTF defined in (7).
Since this product is not in the LLL, we project it onto
the LLL and define v = ΠLLL (ρ(x, y)φ(x, y; τ)) whose
energy is

ELLL(v) =

∫

R2

(

ε2

2
x2 +

κ2

2
y2

)

ρ+
Gb(τ)

2
ρ2dxdy,

up to an error of order
√
κε(κ3/ε)1/8. Then, min-

imizing with respect to ρ yields that ρ(x, y) =
1√
b(τ)

ρTF

(

x
b(τ)1/4 ,

y
b(τ)1/4

)

where ρTF is given by (7).

The condensate indeed expands in both directions, and a
coarse-grained density profile is close to the anisotropic
inverted parabola. The vortex lattice is not distorted
by the anisotropy since β is close to 1; it is still trian-
gular, as displayed in figure 1. Nevertheless, as in the
isotropic case [7, 8], the lattice is distorted on the edges
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FIG. 2: An example of (a): a configuration of the zeroes (b):
density plot. There are only invisible vortices (32 vortices).
Here, ν = 0.73 Ω = 0.6820, ε2 = 2 × 10−3, G = 3. The
extension in the y direction is given by (9)

of the condensate, thereby allowing for a coarse-grained
Thomas-Fermi profile in the LLL description.

However, when ν ≫ ε1/3, that is for fast rotation, the
behaviour is very different as illustrated in Figure 2: we
are going to see that the ground state is close to a Gaus-
sian in the y direction multiplied by an inverted parabola
in the x direction. There is no vortex lattice. There are
only invisible vortices whose role is to create the profile
in the LLL. The function (7) does not provide the cor-
rect behaviour of the ground state: though Ry in (7) is
small, the condensate does not shrink in the y direction
but keeps a fixed Gaussian profile[17]

g(x, y) =

(

γβ

2π

)1/4

exp

(

−γβ
4
y2 + i

γ

4
xy

)

. (9)

We are going to prove that if u is the ground state
and p(x) its projection onto the Gaussian (9), then p(x)
is almost an inverted parabola. Indeed, in the LLL,
we have the key identity

∫

(∂x|ψ|)2 + (1/β2)(∂y |ψ|)2 =
(γ/4β)

∫

|ψ|2 (see [9]). By adding and subtracting
κ2/(2γβ)

∫

|ψ|2 to the energy, and using this identity, we
find

ELLL(ψ) = − κ2

2γβ
+

∫
(

2κ2

γ2β2
(∂y |ψ|)2 +

κ2

2
y2|ψ|2

)

+

∫
(

2κ2

γ2
(∂x|ψ|)2 +

ε2

2
x2|ψ|2 +

G

2
|ψ|4

)

.

This expression of the energy allows to analyze separately
the contributions in the x and y directions. The ground
state of −(2/γ2β2)∂2

y +(1/2)y2 is the modulus of (9) and
the ground energy is 1/(γβ). Projecting any function of
the LLL onto the space generated by (9) times a func-
tion of x, and using that ε1/3/ν is small, we find that
ELLL(u) ≥ (κ2/(2γβ)) + E1D(p(x)) where

E1D(p) =

∫

R

(

2κ2

γ2
(p′)

2
+

1

2
ε2x2p2 +

G

4

√

γβ

π
p4

)

dx.

(10)

The minimizer of E1D among all p’s is of Thomas-Fermi
type and we call it q:

q(x) =

√

3

4R

(

1 − x2

R2

)1/2

+

, R =

(

3G

4ε2

√

γβ

π

)1/3

(11)
since ε1/3/ν is small. This gives the energy estimate

minELLL − κ2

2γβ
≥ E1D(q) ∼ 3

10

(

3ε

4
G

√

γβ

π

)2/3

.

(12)
Let us point out that this lower bound is optimal

since we can construct a test function in the LLL with
this energy. We project a Dirac delta function in the
y direction times an inverted parabola in x, that is
v(x, y) = AΠLLL[δ0(y)q(x)], where q is the function (11):

v(x, y) =
Aγ

4π
e−

γβ
8

y2

∫

R

e−
γ
8β ((x−x′)2−2ix′βy)q(x′)dx′.

(13)
The constant A = (2π/γβ)1/4 is a normalization factor.
The fact that q varies on a scale of order ε−2/3 allows to
expand (13) in powers of ε2/3:

v(x, y) =

(

γβ

2π

)1/4

q(x) exp

(

−γβ
4
y2 + i

γ

4
xy

)

+ ε2/3

(

γβ

2π

)1/4

q′(x)iy exp

(

−γβ
4
y2 + i

γ

4
xy

)

(14)

with an error of order ε4/3. Inserting this expansion in
the energy, we find

ELLL(v) =
κ2

2γβ
+

∫

R

(

1

2
ε2x2q(x)2 +

G

4

√

γβ

π
q(x)4

)

dx

(15)
with an error of order ε4/3. This matches our lower bound
(12). Let us point out that according to (14), the wave
function v has no vortices in the bulk. This is corrob-
orated by the numerical computation displayed in Fig-
ure 2. Nevertheless, the inverted parabola profile in the
x direction is obtained in the LLL thanks to the existence
of invisible vortices, that is vortices outside the support
of this parabola.

Let us point out that the operator y2, whose ground
state is the Gaussian (9) is bounded below by a positive
constant in the LLL:

∫

R2 y
2|ψ(x, y)|2dxdy ≥ 1

γβ

∫

R2 |ψ|2.
This can be viewed as a kind of uncertainty principle [18].
This decoupling in the x and y directions is possible only
when the leading order term in the energy κ2/(γβ) ∼ ν2,

is larger than the energy of (7)
√
Gνε, that is when the

ratio ν3/ε is large. When ν3/ε becomes of order 1, all
the terms in the energy seem of the same order, the de-
coupling in the x and y variables is no longer meaningful,
and (7) does not provide the good behaviour either. The
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analysis in this intermediate regime is still open: it could
display rows of vortices as obtained by [11].

The estimate of the energy (12) allows us to justify the
validity of the model: indeed, the mean field approxima-
tion is valid if the number N of particles is much larger
than the number of one-particle states allowed by the
chemical potential µ, that is N ≫ µ/µ1. Thanks to (12)
and (16), we find N ≫ G2/3/ǫ1/3ν. Since G is of order
1, ǫ2 ∼ 10−3 and ν ≤ 10−1, this criterion is satisfied as
long as N is greater than 104, which corresponds to ac-
tual values in experiments. However, if ε gets too small,
this condition gets violated and the states get correlated.
The LLL approximation is valid if the 1D energy E1D is
much smaller than the gap µ2 between the LLL and the
first excited state: (Gε)2/3 ≪ 1.

Conclusion: When the anisotropy is small compared
to how close the rotational velocity is to the critical ve-
locity, that is ε1/3 ≫ ν, the behaviour is similar to the
isotropic case with a triangular vortex lattice. A strik-
ing new feature is the non-existence of visible vortices for
the ground state of the energy in the fast rotation regime,
that is when ε1/3 ≪ ν. The profile of the ground state
is a large inverted parabola in the deconfined direction
and a fixed Gaussian in the other direction. Our analy-
sis indicates that an asymmetric rotating condensate un-
dergoes a similar transition as a condensate placed in a
quadratic+quartic trap where at large rotation the bulk
of the condensate does not display vortices[19]. Our in-
vestigation opens new prospects for the experiments: in
particular, if a condensate at rest is set to sufficiently
large rotation, then vortices should not be nucleated.

Appendix

As computed in [14] on the basis of ideas of
Valatin [20], the eigenvalues of the Hamilto-
nian HΩ are 1, µ2

1, 1, µ
2
2, where µ2

1 = 1 + Ω2 −√
ν4 + 4Ω2, µ2

2 = 1 + Ω2 +
√
ν4 + 4Ω2. We de-

fine α =
√
ν4 + 4Ω2, β1 = (2Ωµ1)/(α− 2Ω2 + ν2),

β = β2 = (2Ωµ2)/(α+ 2Ω2 + ν2), γ = (2α)/Ω,

λ2
1 = (α− 2Ω2 + ν2)/(2α), λ2

2 = (α + 2Ω2 + ν2)/2α,
d = (γλ1λ2)/2, c = (λ2

1 + λ2
2)/2λ1λ2. Then

HΩ = 1
2

(

a†1a1 + a1a
†
1

)

+ 1
2

(

a†2a2 + a2a
†
2

)

where a2 = µ2√
2

(

−iλ1d
−1∂x + cλ1y

)

+
i√
2

(

−iλ2∂y −
(

dλ−1
1 − λ2cd

)

x
)

, and a1 =
µ1√

2

(

−iλ2d
−1∂y + cλ2x

)

+ i√
2

(

(λ1cd− dλ−1
2 )y − iλ1∂x

)

.

We have:
[

a2, a
†
2

]

= µ2,
[

a1, a
†
1

]

= µ1, and all other

commutators vanish. The LLL is defined by a2ψ = 0,

that is f(x + iβ2y)e

[

− 1
8β2

(

2α−ν2

Ω
x2+ 2α+ν2

Ω
(β2y)2

)]

−i ν2

4Ω
xy

,
with f analytic. It is always possible to change the
analytic function f(ξ) into f(ξ) exp(−δξ2) in the above
definition, since exp(−δξ2) is an analytic function of
ξ. Hence, for δ = ν2/(8Ωβ2), we find the alternative
definition of the LLL (3), with β = β2. This defini-
tion is equivalent to the one given by Fetter in [14].
However, contrary to [14], the coefficients in (3) are
not singular in the limit ε → 0. Indeed, in this limit,
β2 ∼

√

(1 − ν2)/(1 − ν2/2) and γ ∼ (4 − 2ν2)/
√

1 − ν2.
This is due to the addition of the above-mentionned com-
plex Gaussian in the definition of the LLL. In the LLL, we

have 〈HΩψ, ψ〉 = 1
2

〈(

a†1a1 + a1a
†
1

)

ψ, ψ
〉

+ µ2

2 〈ψ, ψ〉 .
We then express x and y as linear combinations of

a1, a2, a
†
1, a

†
2 [13, 14] and get, if ψ ∈ LLL,

〈HΩψ, ψ〉 =
µ2

2
− µ1

4

(

β1β2 +
1

β1β2

)

+
γ

4

∫
(

µ1β1x
2 +

µ1

β1
y2

)

|ψ|2dxdy (16)

which provides (4) with κ2 = γµ1/2β1 since γµ1β1 ∼ 2ε2.
Note that µ1 ∼ νε and µ2 ∼ (2 − ν2).
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