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We investigate the effect of the anisotropy of a harmonic trap on the behaviour of a fast rotating
Bose-Einstein condensate. Fast rotation is reached when the rotational velocity is close to the
smallest trapping frequency, thereby deconfining the condensate in the corresponding direction. A
striking new feature is the non-existence of visible vortices for the ground state. The condensate can
be described with the lowest Landau level set of states, but using distorted complex coordinates. We
find that the coarse grained atomic density behaves like an inverted parabola with large radius in
the deconfined direction, and like a fixed Gaussian in the other direction. It has no visible vortices,
but invisible vortices which are needed to recover the mixed Thomas-Fermi Gaussian profile. There
is a regime of small anisotropy and intermediate rotational velocity where the behaviour is similar
to the isotropic case: a hexagonal Abrikosov lattice of vortices, with an inverted parabola profile.

PACS numbers:

Vortices appear in many quantum systems such as su-
perconductors and superfluid liquid helium. Rotating
atomic gaseous Bose-Einstein condensates constitute a
novel many body system where vortices have been ob-
served [1] and various aspects of macroscopic quantum
physics can be studied. In a harmonically trapped con-
densate rotating at a frequency close to the trap fre-
quency, interesting features have emerged, presenting a
strong analogy with quantum Hall physics. In the mean
field regime, the vortices form a triangular Abrikosov lat-
tice [2] and the coarse grained density approaches an in-
verted parabola [5, 6, 7]. At very fast rotation, when
the number of vortices becomes close to the number of
atoms, the states are strongly correlated and the vortex
lattice is expected to melt [3]. In the mean field regime,
Ho [4] observed that the low lying states in a symmetric
2D trap are analogous to those in the lowest Landau level
(LLL) for a charged particle in a uniform magnetic field.
This analogy allows a simplified description of the gas by
the location of the vortices: the wave function describing
the condensate is a Gaussian multiplied by an analytic
function of the complex variable z = x+iy. The zeroes of
the analytic function are the location of the vortices. It
is the distortion of the vortex lattice on the edges of the
condensate which allows to create the inverted parabola
profile [5, 6, 7, 8] for the coarse grained atomic density
in the LLL.

The experimental achievement of rotating BEC in-
volves anisotropic traps. An anisotropy of the trap
can drastically change the picture in the fast rotation
regime. In this case, in the rotating frame, the conden-
sate becomes very elongated in one direction and forms

a novel quantum fluid in a narrow channel. The investi-
gation of the vortex pattern has been performed for an
infinite strip which corresponds to the situation where
the rotational frequency has reached the smaller trap-
ping frequency [10, 11], and for an elongated condensate
[12, 13, 14]. As pointed out by Fetter [14], the description
of the condensate can still be made in the framework of
the lowest Landau level, defined by an anisotropic Gaus-
sian, multiplied by an analytic function of x+ iβy, where
β is related to the anisotropy of the trap and the rota-
tional frequency. We are going to show that the coarse
grained density profile and the location of the vortices
are very different from the isotropic case, and in particu-
lar, if the rotation is fast enough, there are only invisible
vortices: the behaviour is an inverted parabola with large
expansion in the deconfined direction, and a fixed Gaus-
sian in the other direction. Contrary to the isotropic
case, the wave function in the LLL can display an in-
verted parabola profile in one direction without visible
vortices.

We consider a 2D gas of N atoms rotating at frequency
Ω around the z axis. The gas is confined in a harmonic
potential, with frequencies ωx =

√
1 − ν2, ωy =

√
1 + ν2

along the x, y axis respectively. The state of the gas is de-
scribed by a macroscopic wave function ψ normalized to
unity, which minimizes the Gross-Pitaevskii energy func-
tional. In the following, we choose ω, ~ω, and

√

~/(mω),
as units of frequency, energy and length, respectively.
The dimensionless coefficient G = Nas characterizes the
strength of atomic interactions (here as is the atom scat-
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tering length). The energy in the rotating frame is

E[ψ] =

∫
(

ψ∗
[

H
(1)
Ω ψ

]

+
G

2
|ψ|4

)

dxdy (1)

where H
(1)
Ω is defined by

H
(1)
Ω = −1

2
∇2 +

1 − ν2

2
x2 +

1 + ν2

2
y2 − ΩLz (2)

and Lz = i(y∂x − x∂y) is the angular momentum. We
are going to study the fast rotation regime where Ω2 ap-
proaches the critical velocity Ω2

c := 1 − ν2 from below.
Thus, we define the small parameter ε by ε2 = 1−ν2−Ω2.
The spectrum of the Hamiltonian (2) has a Landau level
structure. The lowest Landau level is defined as (see [14])

f(x+ iβy)e[−
γ
8β (x2+(βy)2)]−i ν2

2Ω
xy, f is analytic (3)

where γ and β are some constants related to Ω and ν

given in the appendix. For such functions,
〈

H
(1)
Ω ψ, ψ

〉

can be simplified (see the appendix and [14]), and in the
small ε limit (with ε≪ ν), we are left with the study of

ELLL(ψ) =

∫

1

2

(

ε2x2 + κ2y2
)

|ψ|2 +
G

2
|ψ|4dxdy (4)

where κ2 ∼ (ν2 + ε2/2)(2 − ν2)/(1 − ν2). This energy
only depends on the modulus of ψ. Hence, it is possible
to forget the phase of ψ, and use the definition of the
LLL (γ is defined in the appendix):

ψ(x, y) = f(x+iβy)e[−
γ
8β (x2+β2y2)], f is analytic. (5)

The minimization of (4) without the analytic con-
straint provides the Thomas-Fermi profile for the coarse
grain density:

|ψ|2 = ρTF :=
2

πRxRy

(

1 − x2

R2
x

− y2

R2
y

)

, (6)

where Rx =
(

4Gκ
πε3

)1/4
, Ry =

(

4Gε
πκ3

)1/4
. Note that in the

isotropic case ν = 0 (that is κ = ε), one recovers the
standard circular shape, with Rx = Ry = [4G/(πε2)]1/4.
If ν is not zero, we always have that Rx is large since
κ≫ ε. On the other hand, the behaviour of Ry depends
on the respective values of ε and κ, that is ε and ν. Since
κ is of order of ν, we find thatRy is large if ν ≪ ε1/3 while

Ry shrinks if ν ≫ ε1/3. In the first case, which we will call
the weakly anisotropic case, the profile (6) is reached in
the fast rotation limit in the LLL using a vortex lattice,
exactly as in the isotropic case. The only effect of the
anisotropy is to change the coarse-grained profile, from
an isotropic inverted parabola to an anisotropic one, as
displayed in figure 1, but the lattice is still hexagonal.
Figure 1 provides a typical vortex configuration, together
with the corresponding density plot. It is obtained by
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FIG. 1: An example of (a): a configuration of the zeroes (b):
density plot. There are 58 vortices with 23 visible vortices.
ν = 0.06, Ω = 0.9977, ε2 = 10−3, G = 3.
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FIG. 2: An example of (a): a configuration of the zeroes (b):
density plot. There are only invisible vortices (32 vortices).
Here, ν = 0.48 Ω = 0.8767, ε2 = 10−3, G = 3. The extension
in the y direction is given by (8)

minimizing the energy as a function of the location of
vortices zi with a conjugate gradient method.

However, when ν ≫ ε1/3, that is for fast rotation, the
behaviour is very different as illustrated in Figure 2: the
shrinking of the condensate in the y direction is indeed
not allowed in the LLL. This is due to the fact that the
operator y2 is bounded below by a positive constant in
the LLL (the space (5)):

∀ψ ∈ LLL,

∫

R2

y2|ψ(x, y)|2dxdy ≥ 1

γβ

∫

R2

|ψ|2. (7)

The ground state of the operator y2 is

u(x, y) =

(

γβ

2π

)1/4

exp

(

−γβ
4
y2 + i

γ

4
xy

)

(8)

and every function in the LLL cannot be more localized
in the y direction than (8). In this regime of parameters,
the ground state of the energy is close to the Gaussian
(8) in the y direction multiplied by an inverted parabola
in the x direction. There is no vortex lattice. Only invis-
ible vortices are needed to recover the inverted parabola
profile in the x direction as we will explain below.
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We recall that the orthogonal projection of L2(R2)
onto the LLL is explicit [15]:

ΠLLL(ψ) =
γ

4π

∫

e−
γ
8β (|z|2−2zz′+|z′|2)ψ(x′, y′)dx′dy′,

(9)

where z = x+ iβy and z′ = x′ + iβy′. If an LLL function
ψ (i.e ψ satisfies (5)) minimizes the energy (4), it is a
solution of the projected Gross-Pitaevskii equation:

ΠLLL

[(

ε2

2
x2 +

κ2

2
y2 +G|ψ|2 − µ

)

ψ

]

= 0, (10)

where µ is the chemical potential.
The weakly anisotropic case. In the case where the

anisotropy is small compared to Ωc−Ω, namely ν ≪ ε1/3,
equation (10) can be approximated by ΠLLL

[

G|ψ|2ψ
]

=
µψ, which is the equation of the Abrikosov problem (see
[2, 8]). A solution can be constructed using the Theta
function (see [8] for the details):

φ(x, y; τ) = e
γ
8β (z2−|z|2)Θ

(
√

τIγ

4πβ
z, τ

)

, (11)

where z = x + iβy and τ = τR + iτI is the lattice pa-
rameter. The zeroes of the function φ lie on the lat-

tice
√

4πβ
τIγ (Z ⊕ Zτ) and |φ| is periodic. The optimal lat-

tice, that is the one minimizing µ(τ) =
∫

|φ|4/(
∫

|φ|2)2 is

hexagonal, which corresponds to τ = e2iπ/3 (the integrals
are taken on one period).

As in the isotropic case [8], we can construct an ap-
proximate ground state by multiplying the solution (11)
of the Abrikosov problem by a profile ρ varying at the
same scale as ρTF defined in (6), that is, at the scale

min(Rx, Ry) ∼
(

ε/ν3
)1/4

, which is large. Since this
product is not in the LLL, we project it onto the LLL
and define v = ΠLLL (ρ(x, y)φ(x, y; τ)) . Estimating the
energy of v yields

ELLL(v) =

∫

R2

(

ε2

2
x2 +

κ2

2
y2

)

ρ(x, y)

+
Gµ(τ)

2
ρ(x, y)2dxdy +O

[

√
κε

(

κ3

ε

)1/2
]

.

This computation uses that φ and ρ do not vary on the
same scale, hence the integrals can be decoupled. Then,
minimizing with respect to ρ provides that ρ must be a
Thomas-Fermi profile (6) with G changed into µ(τ)G:

ρ(x, y) = 1√
µ(τ)

ρTF

(

x
µ(τ)1/4 ,

y
µ(τ)1/4

)

. The condensate

indeed expands in both directions, and a coarse-grained
density profile is close to the inverted parabola.

The fast rotating case. In the case where ε1/3 ≪ ν,
that is fast rotation, the limit of the projected Gross-
Pitaevskii equation (10), is now:

ΠLLL

[(

κ2

2
y2 +G|ψ|2

)

ψ

]

= µψ. (12)

The Θ function is no longer a solution to this equation,
but a particular solution is given by the Gaussian (8).
We are going to prove that in this regime, the ground
state behaves like the Gaussian (8) in the y direction and
an inverted parabola in the x direction, without visible
vortices.

Indeed, in the LLL, we have the identity
∫

(∂x|ψ|)2 +
(1/β2)(∂y|ψ|)2 = (γ/4β)

∫

|ψ|2 (see [9]). By adding and
subtracting κ2/(2γβ)

∫

|ψ|2 to the energy, and using this
identity, we find

ELLL(ψ) = − κ2

2γβ
+

∫
(

2κ2

γ2β2
(∂y|ψ|)2 +

κ2

2
y2|ψ|2

)

+

∫
(

2κ2

γ2
(∂x|ψ|)2 +

ε2

2
x2|ψ|2 +

G

2
|ψ|4

)

.

The ground state of −(2/γ2β2)∂2
y +(1/2)y2 is (8) and the

ground energy is 1/(γβ). Projecting a general function of
the LLL onto the space generated by (8) times a general
function of x, and using that ε1/3/ν is small, we find that
ELLL(u) ≥ (κ2/(2γβ)) + E1D(p(x)) where

E1D(p) =

∫

R

(

2κ2

γ2
(p′)

2
+

1

2
ε2x2p2 +

G

4

√

γβ

π
p4

)

dx.

(13)
The minimizer of E1D is of Thomas-Fermi type when
ε1/3/ν is small, namely

p(x) =

√

3

4R

(

1 − x2

R2

)1/2

+

, R =

(

3G

4ε2

√

γβ

π

)1/3

(14)
As expected, R ∝ ε−2/3. This gives the energy estimate

minELLL ≈ κ2

2γβ
+

3

10

(

3ε

4
G

√

γβ

π

)2/3

. (15)

Let us point out that one can construct a test function
in the LLL reproducing the behaviour of (8) in the y
direction, and an inverted parabola in the x direction: we
project a Dirac mass in the y direction times an inverted
parabola in x, that is

v(x, y) = AΠLLL [δ0(y)p(x)]

= A
γ

4π
e−

γβ
8

y2

∫

R

e−
γ
8β ((x−x′)2−2ix′βy)p(x′)dx′, (16)

where p is the function (14). The constant A =
(2π/γβ)1/4 is a normalization factor. The fact that p
varies on a scale of order ε−2/3 allows to expand (16) in
powers of ε2/3 [16], giving (up to a normalization con-
stant), and with an error of order ε4/3

v(x, y) =

(

γβ

2π

)1/4

p(x) exp

(

−γβ
4
y2 + i

γ

4
xy

)

+ε2/3

(

γβ

2π

)1/4

p′(x)iy exp

(

−γβ
4
y2 + i

γ

4
xy

)

+O
(

ε4/3
)

.

(17)
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Inserting this expansion in the energy, one finds that

ELLL(v) =
κ2

2γβ
+

∫

R

(

1

2
ε2x2p(x)2 +

G

4

√

γβ

π
p(x)4

)

dx

(18)
with an error of order ε4/3. This matches our lower bound
(15). Let us point out that according to (17), the wave
function v has no visible vortices. This is corroborated by
the numerical computation displayed in Figure 2. Never-
theless, the inverted parabola profile in the x direction is
obtained in the LLL thanks to the existence of invisible
vortices.

Conclusion: A striking new feature is the non-
existence of visible vortices for the ground state of the
energy in the fast rotation regime, that is when ε1/3 ≪ ν.
Only invisible vortices are needed to recover the profile
of the ground state: inverted parabola in the deconfined
direction and a fixed Gaussian in the other. When the
anisotropy is small compared to how close the rotational
velocity is to the critical, that is ε1/3 ≫ ν, the behaviour
is similar to the isotropic case with an inverted parabola
profile and a triangular vortex lattice. The intermediate
regime where ε1/3 is of the same order as ν could display
rows of vortices as obtained by [11] but the analysis is
still open. Our investigation illustrates the changing be-
haviour and asymmetry effect and opens new prospects
for the experiments. A better understanding of what
happens when ε gets smaller than ν but of the same order
would provide an explanation of the melting of vortices
in the mean field regime.

Appendix

As computed in [14] on the basis of ideas of
Valatin [17], the eigenvalues of the Hamiltonian

H
(1)
Ω are ±iµ1,±iµ2, where µ2

1 = 1 + Ω2 −
√
ν4 + 4Ω2,

µ2
2 = 1+Ω2+

√
ν4 + 4Ω2.We define α =

√
ν4 + 4Ω2, β1 =

(2Ωµ1)/(α− 2Ω2 + ν2), β2 = (2Ωµ2)/(α+ 2Ω2 + ν2),
γ = (2α)/Ω, λ2

1 = (α− 2Ω2 + ν2)/(2α),
λ2

2 = (α+ 2Ω2 + ν2)/2α, d = (γλ1λ2)/2,

c = (λ2
1 + λ2

2)/2λ1λ2. Then H
(1)
Ω = 1

2

(

a†1a1 + a1a
†
1

)

+

1
2

(

a†2a2 + a2a
†
2

)

where a2 = µ2√
2

(

−iλ1d
−1∂x + cλ1y

)

+
i√
2

(

−iλ2∂y −
(

dλ−1
1 − λ2cd

)

x
)

, and a1 =
µ1√

2

(

−iλ2d
−1∂y + cλ2x

)

+ i√
2

(

(λ1cd− dλ−1
2 )y − iλ1∂x

)

.

We have:
[

a2, a
†
2

]

= µ2,
[

a1, a
†
1

]

= µ1, and all other

commutators vanish. The LLL is defined by a2ψ = 0,

that is f(x + iβ2y)e

[

− 1
8β2

(

2α−ν2

Ω
x2+ 2α+ν2

Ω
(β2y)2

)]

−i ν2

4Ω
xy

,
with f analytic. It is always possible to change the
analytic function f(ξ) into f(ξ) exp(−δξ2) in the above
definition, since exp(−δξ2) is an analytic function of
ξ. Hence, for δ = ν2/(8Ωβ2), we find the alternative
definition of the LLL (3). This definition is equivalent
to the one given by Fetter in [14]. However, contrary to
[14], the coefficients in (3) are not singular in the limit
ε → 0. Indeed, in this limit, β2 ∼

√

(1 − ν2)/(1 − ν2/2)

and γ ∼ (4 − 2ν2)/
√

1 − ν2. This is due to the
addition of the above-mentionned complex Gaussian
in the definition of the LLL. In the LLL, we have
〈

H
(1)
Ω ψ, ψ

〉

= 1
2

〈(

a†1a1 + a1a
†
1

)

ψ, ψ
〉

+ µ2

2 〈ψ, ψ〉 .
We then express x and y as linear combinations of

a1, a2, a
†
1, a

†
2 [13, 14] and get, if ψ ∈ LLL,

〈

H
(1)
Ω ψ, ψ

〉

=
µ2

2
− µ1

4

(

β1β2 +
1

β1β2

)

+
γ

4

∫
(

µ1β1x
2 +

µ1

β1
y2

)

|ψ|2dxdy (19)

which provides (4) with κ2 = γµ1/2β1 since γµ1β1 ∼ 2ε2.
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