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Abstract. Viscous flow, effusion, and thermal transpiration are the main gas transport
modalities for a rarefied gas in a macro-porous medium. They have been well quantified
only in the case of simple geometries. This paper presents a numerical method based on
the homogenization of kinetic equations producing effective transport properties (perme-
ability, Knudsen diffusivity, thermal transpiration ratio) in any porous medium sample,
as described e. g.by a digitized 3D image. The homogenization procedure – neglecting
the effect of gas density gradients on heat transfer through the solid – leads to closure
problems in R

6 for the obtention of effective properties ; they are then simplified using
a Galerkin method based on a 21-element basis set. The kinetic equations are then
discretized in R

3 space with a finite-volume scheme. The method is validated against
experimental data in the case of a closed test tube. It shows to be coherent with past
approaches of thermal transpiration. Then, it is applied to several 3D images of increasing
complexity. Another validation is brought by comparison with other distinct numerical
approaches for the evaluation of the Darcian permeability tensor and of the Knudsen
diffusion tensor. Results show that thermal transpiration has to be described by an
effective transport tensor which is distinct from the other tensors.

Keywords: Knudsen diffusion, thermal transpiration, kinetic equation, homogenization,
numerical methods

Article_tt_part2_rev1.tex; 15/01/2009; 11:35; p.1



2 Vignoles, Charrier, Preux & Dubroca

List of symbols

Latin

− A : Matrix element in numerical problem

− b0,b1, b2 : Expansion parameters for the closure variable α

− B : Porous medium intrinsic permeability (m2)

− c : Microscopic molecular velocity

− c : Mean quadratic velocity (m.s−1)

− Cv : Specific heat capacity at constant volume (J.kg−1.K−1)

− d0,d1, d2 : Expansion parameters for the closure variable β

− ∂Yfs : Interface between domains Yf and Ys

− DK : Knudsen diffusion coefficient (m2.s−1)

− D : Effective tensor linking mass flux and density gradient (m2.s−1)

− D̃ : Effective tensor linking mass flux and temperature gradient
(kg.m−1.s−1.K−1)

− dp : Pore diameter (m)

− E : Internal (translational) energy (J)

− f : Mass distribution function in space and velocity spaces (kg.m−9.s3))

− g : Second member in numerical problem

− K : Effective heat conductivity tensor (W.m−1.K−1)

− K : Auxiliary matrix in numerical problem

− kB : Boltzmann’s constant (J.K−1)

− Kn : Knudsen number (-)

− l : Mean free path (m)

− L : Reference length (m)

− L(f) : Linearized collision operator (kg.m−9.s−4)
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 3

− M : Molecular mass (kg.mol−1)

− Mn(f) : Maxwellian distribution normalized to unity for half-flux
(m−4.s4)

− Ma : Mach number (-)

− mj : Functions of the basis set (various units)

− N : Total number of basis functions

− n : Normal vector (-)

− P : Pressure (Pa)

− Q(f, f) : Collision operator (kg.m−9.s2)

− R = NAkB : Perfect gas constant (J.mol−1K−1)

− Re : Reynolds number (-)

− S : Numerical coefficient matrix

− T : Temperature (K)

− Tc : Critical temperature (K)

− t : Time (s)

− u : Intrinsic mass-average gas velocity (m.s−1)

− v : Extrinsic mass-average gas velocity (m.s−1)

− w : Mute integration variable for molecular velocity (m.s−1)

− x : Space coordinates (m)

− x′ : Large-scale space coordinate (m)

− y : Small-scale space coordinate (m)

− Y : Small space subset

Greek

− α : Closure variable (m.K−1)

− αT : Thermal diffusion ratio (-)
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4 Vignoles, Charrier, Preux & Dubroca

− β : Closure variable (m4.kg−1)

− γ : Closure variable (m)

− ǫ : Porosity (-)

− ε : Small parameter for asymptotics (-)

− η : Gas viscosity (Pa.s)

− θj : Auxiliary basis functions

− λ : Thermal conductivity (W.m−1.K−1)

− ν : Kinematic viscosity (m2.s−1)

− ξ : Correction factor accounting for non-specular collisions (-)

− πg, π
′
g : Pressure correction parameters for Knudsen diffusion

(Pa)

− ρ : Gas density (kg.m−3)

− σ : Accommodation factor (-)

− σc : Collision diameter (m)

− Σ : Fluid/solid interface

− τ : Relaxation time (s)

− τ : Tortuosity (-)

− ψ : Any function in IR3
c velocity space (-)

− ω : Orientation (sr)

− Ω : Open set of IR3 position space

− Ωv : Collision integral for gas viscosity (-)

Subscripts and underscripts

− · : vector in 1, c, |c|2 space

− [·]1 : first-order approximation in DGM derivation

− ·c : relative to gas critical point
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− ·d : relative to dust

− ·f : relative to fluid phase

− ·g : relative to gas species

− ·K : relative to Knudsen transport

− ·p : relative to pore(s)

− ·s : relative to solid phase

− ·tr : translational contribution

− ·v : relative to viscous transport

− ·∗ : reference quantity

1. Introduction

Thermostructural composites are high performance materials aimed
at very special applications in aerospace engineering, like thermal
protection systems for atmospheric re-entry, aeroplane brakes, rocket
nozzles and jet reactor parts. They are constituted by a network of
fibers – carbon or ceramic – surrounded by a matrix – also carbon
or ceramic, with possible insertion of an interphase between them
(Naslain, 1985) : such a structure brings them a combination of the
strength from the constituents, and additional toughness when the
interphase is correctly chosen. This is a great advantage, but the
drawbacks are the complexity of the processing technique and of
the composite’s behavior, not only mechanical, but also thermal and
physico-chemical.

One of the issues in ceramic-matrix composites (CMC) or car-
bon/carbon composites (CCC) fabrication is the precise knowledge of
the ability that an arrangement of fibers (the preform) has to let itself
be infiltrated by gaseous precursors of the matrix, resulting in the
densest possible material (Ofori and Sotirchos, 1996b). Chemical Va-
por Infiltration (CVI) is the generic name of the gas-phase route pro-
cesses that are currently employed (Naslain and Langlais, 1990; Be-
smann et al., 1991); many configurations make use of strong thermal
gradients in order to monitor better the localization of the chemi-
cal deposition reaction inside the porous medium (Vignoles et al.,
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6 Vignoles, Charrier, Preux & Dubroca

2005; Vignoles et al., 2006). Low pressures are also common in CVI,
since it is a convenient way to reduce the Thiele modulus ; accordingly,
the Knudsen number is usually not negligible. A large amount of
modelling efforts have been made (Starr and Smith, 1990; Ofori and
Sotirchos, 1996a; Reuge and Vignoles, 2005; Vignoles, 2006), featur-
ing or not Knudsen transport, but few has been said about thermal
transpiration in these works.

Another key point in thermostructural composites is the knowl-
edge of their physico-chemical behavior in conditions of utilization,
which usually are extremely severe : high temperatures, presence
of aggressive gases, strong thermal gradients, etc . . . The material
is rapidly very different from the as-fabricated state and begins to
display cracks and fissures. One of the most dramatic examples is the
carbon/phenolic resin composite used in atmospheric re-entry : the
matrix is not a high-temperature material in itself, but its pyrolysis
has two advantages : i) it consumes heat, and ii) it yields a porous
carbon material, which has non-negligible thermostructural proper-
ties. The pyrolysis occurs in presence of extreme thermal gradients.
Again, taking into account the (sub-)micrometer size of the pores, the
Knudsen number is potentially large. This is another motivation for
the study of rarefied gas transport in a porous medium in the presence
of thermal gradients.

Whatever the application case, the geometry of the studied media
is far from being simple. In order to be able to provide accurate esti-
mations of the transport parameter in arbitrarily complex 3D porous
media, we have derived a formulation for pure gas transport (that
is, not including binary diffusion) in non-isothermal conditions as it
appears from homogenization theory (Bensoussan et al., 1978; Bardos
et al., 1997) when applied to the Maxwell-Boltzmann kinetic equation.
The associated energy transport is also treated. The performed change
of scale provides a set of macroscopic variables and equations, as well
as a set of closure problems that are to be solved at microscopic scale
(Vignoles et al., 2008).

The purpose of the present work is to design a tool allowing to
compute effective properties for intermediate and Knudsen transport,
and for thermal transpiration in whatever porous medium.

A test of the approach is then given by modelling the thermal tran-
spiration experiments of Malinauskas et al (Malinauskas et al., 1970).
The numerical results will be discussed with respect to macroscopic
models, such as the DGM and BFM theories, which will be briefly
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 7

recalled in the pure gas case in the next section, and to kinetic-theory
level existing results. Finally, computations performed in porous me-
dia differing from straight pores will be presented and discussed.

2. Brief presentation of the homogenization model

The identification of transport coefficients, and in particular of the
precise impact of the pore geometries, has been treated mostly in
isothermal conditions. The limiting cases of pure viscous flow (i.e.
Darcy regime), pure diffusive flow, and pure Knudsen flow have been
often separately addressed. Other works have considered the transi-
tion between two of the three transport modalities, mainly binary and
Knudsen diffusion, by means of random walk algorithms in idealized
3D images of porous media (Burganos and Sotirchos, 1989; Tomadakis
and Sotirchos, 1991) or by variational methods applied to media
considered through their n-point correlation distributions (Strieder
and Prager, 1968; Strieder, 1971). The consideration of slip-flow in
addition to viscous flow in a change-of-scale methodology has been
formally presented in (Whitaker, 1987). Homogenization performed
on the same problem has been dealt with in (Skjetne and Auriault,
1999).

Thermal transpiration has been studied by numerous authors on
the basis of kinetic equations, but almost always in the geometry
of a straight cylindrical tube. See e.g. a short review in (Sharipov,
1996). It has already been shown, in such geometries, that working
directly with the ”Bhatnagar-Gross-Krook” (BGK) approximation of
the kinetic equations (Loyalka, 1969) gives results for the ”thermo-
molecular pressure difference” which are not too far from the Dusty-
Gas Model predictions (Gupta and Storvick, 1970). Direct Simulation
by Monte-Carlo (DSMC) methods are also successful in describing
rarefied gas dynamics in non-isothermal media ; up to now, most of
the reported applications refer to rather simple geometries. Moreover,
direct simulation does not enter straightforwardly in the frame of a
change-of-scale strategy. So, to the author’s knowledge, no method
had been reported for the precise numerical evaluation of thermal
transpiration parameters in the rarefied regime for general porous
media described by a 3D image. This is the main purpose of the
present work.
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8 Vignoles, Charrier, Preux & Dubroca

The full derivation of the model is discussed in (Vignoles et al.,
2008) and (Charrier and Dubroca, 2003). Here the main steps of the
procedure will be recalled. First, the local kinetic problem is presented
; then, an analysis of the space decouplings and scalings is performed
; then, the homogenization is performed, and the final form of the
homogenized equations, as well as the associated closure problems
are obtained.

2.1. Local problem formulation

Let us denote Ω, the open set in IR3 occupied by the porous material,
Ωs ⊂ Ω the open subset of Ω occupied by the solid phase, Ωf the
open subset occupied by the gas and Σ the interface between Ωf et
Ωs. In all the following n = n(x), x ∈ Σ, denotes the normal to Σ
at point x, outgoing from Ωs. The solid is assumed to have constant
properties ; the gas will be described at the kinetic level, introducing
the mass distribution function f = f(x, t, c). The usual macroscopic
quantities are obtained by application of the velocity space averaging
operator < • >=

∫

IR3
c
•dc:

ρ =< f >, ρu =< fc >, ρE =< f
|c|2
2

>, (1)

Under this set of assumptions, the local problem to solve is :

∂tf + c · ∇xf = Q(f, f) ,x ∈ Ωf , (2)

ρcv∂tT = (divxks∇xT ) ,x ∈ Ωs, (3)

f(x, c)|c·n>0 = σ
(
∫

w·n<0
|w · n|f(x,w)dw

)

Mn(T )

+(1 − σ)f(x, c − 2c · n n) ,x ∈ Σ, (4)

ks∇xT.n =−
∫ |c|2

2
f(x, c)c · ndc ,x ∈ Σ, (5)

where we have introduced the collision operator Q(f, f) and a nor-
malized Maxwellian distribution :

Mn(T )(c) =
1

2π(RT )2
exp(− |c|2

2RT ) (6)

The collision operator Q(f, f) is approximated in this work by
the Ellipsoidal-Statistical model (Holway, 1966). This model has the
property of giving the correct Prandtl number (Andries et al., 2000);
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this is why it is expected to behave better than the simpler Bhatnagar-
Gross-Krook (Bhatnagar et al., 1954), especially in non-isothermal
problems.

Such a model obeys the following properties :

− Global conservation of mass and energy are ensured

− The H-theorem is verified, that is, the local entropy production
is positive.

2.2. Space decoupling and scalings

It will now be assumed that the space variable may decoupled into
two contributions, differing by their scale :

x = x′ + y (7)

where x′ has broad variations (i.e. ψ(x′) is a local average of ψ(x)) and
y has short-scale variations (i.e. ψ(y) is a local perturbation of ψ(x)
with respect to ψ(x′)). Let us define an integration support Y ∈ Ω
for y, which is a small space region, split into two subsets Ys and Yf .
The ratio ε = y/x is a small parameter allowing to use the tools of
asymptotic analysis. By taking the limit ε → 0, one simultaneously
changes scale in space and takes a hydrodynamic limit for the fluid.

It is here considered that the fluid and the solid are in local equilib-
rium, so that only one temperature defined on Ω is enough to describe
the system. Choosing a reference length L = O(|Ω|1/3) brings a small
parameter ε = dp/L. The system (2-5) is recast into a dimensionless
form, and the identified scalings are :

− Ma ≈ ε, i.e., the flow is subsonic,

− Kn ≈ ε, i.e. the gas is in a transition regime. It will be practical
to design a pore Knudsen number Knp = ε−1Kn.

− As a consequence, Re = γM
Kn

= O(1), so the flow is in a laminar
regime.

− In the considered applications (temperatures around 1000 K and

pressures from 1 to 100 kPa), the thermal conductivity ratio λg

λs

is small, and scales as ε.
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10 Vignoles, Charrier, Preux & Dubroca

− Since the density ratio ρg

ρs
also scales as ε and the mass heat

capacity ratio is of order unity, the thermal diffusivity ratio is
expected to be unity.

− There is a weak coupling between the gas and the solid.

The scaled equations may be now rewritten as :

ε ∂tf + c · ∇xf =
1

ε
Q(f, f) ,x ∈ Ωf , (8)

ρcv∂tT = divx(λs∇xT ) ,x ∈ Ωs, (9)

f|c·n>0 = σ
(
∫

w·n<0
|w · n|f dw

)

Mn(T )

+(1 − σ)f(x, c− 2c · nn) ,x ∈ Σ, (10)

λs∇xT.n = −
∫ |c|2

2
fc · n dc ,x ∈ Σ, (11)

Note that the quantities f, c,x, ρCv, T, λs,Mn, Q are now dimen-
sionless.

2.3. Homogenization

Expanding f and T in successive powers of ε yields a series of re-
lations, that need to be closed in order to give useful information.
An important result is that f0, the zeroth-order approximation of
f , is an absolute Maxwellian distribution, independent of y, with
temperature T0 ; its average over velocity space is the zeroth-order
approximation for the density ρ0. Thus, ∇x′f0/f0 can be written as a
linear combination of ∇x′T0 and ∇x′ρ0.

On the other hand, the coupling between T and f is weak. Phys-
ically, this means that the solid phase, being much more conductive
than the fluid phase with respect to heat, ensures by itself the buildup
of the thermal gradient, which is then communicated to the fluid. So
there is no effect of ρ on T to be taken into account.

It is then justified to seek f1 and T1 in the form :

f1 = −f0 (α · ∇x′T0 + β · ∇x′ρ0) (12)

T1 = γ · ∇x′T0 (13)

The vectorial closure variables α = (αi(y, c))i=1,2,3, β = (βi(y, c))i=1,2,3,
and γ = (γi(y, c))i=1,2,3 are solutions of auxiliary problems defined in
the elementary cell Y :
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





































−L(f0αi) + f0c · ∇yαi = −f0ci

(

− 3

2T0
+
M |c|2
2RT 2

0

)

, in Yf

αi − σ

(

− 2

T0

+
M |c|2
2RT 2

0

)

γi = σ
∫

w·n<0
|w · n|αiMn(T0)dw . . .

. . .+ (1 − σ)αi(y, c− 2c · nn), in ∂Yfs, and ∀c · n > 0

(14)



































−L(f0βi) + c · ∇y (f0βi) = −f0

ρ0
ci, in Yf

βi = σ
∫

w·n<0
|w · n|βiMn(T0)dw . . .

. . .+ (1 − σ)βi(y, c− 2c · nn), in ∂Yfs, and ∀c · n > 0

(15)











−divy (λs∇yγi) = 0 , in Yf

λs∇yγi · n = −λsni , in ∂Yfs

(16)

On a macroscopic scale, a description is sought only for the macro-
scopic variables ; accordingly, one has to simultaneously integrate in
velocity space and perform an average on the local support Y . The
asymptotic transport model takes then the following form :

∂tρ0 − divx

(

D∇xρ0

)

− divx

(

D̃∇xT0

)

= 0 (17)

ρsCv∂tT0 − divx

(

K∇xT0

)

= 0 (18)

where the tensorial effective coefficients are built with the closure
variables obtained from problems (14, 15, 16) in the following way :

D =
〈

−f0c ⊗ [β]Yf

〉

(19)

D̃ =
〈

−f0c ⊗ [α]Yf

〉

(20)

K =
[

λs

(

Id + ∇yγ
)]

Ys

(21)

Here angular brackets still denote velocity-space averaging, and
the square brackets denote the extrinsic coordinate-space averaging :

[ψ]Yi
=

1

|Y |
∫

Yi

ψ(y)dy. The two averaging procedures are intimately

mixed since the gas is not in continuum regime inside the pores, so
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12 Vignoles, Charrier, Preux & Dubroca

there is an implicit need of a space region of size |Y | in order to
perform a velocity-space averaging in a short enough time interval.

3. Tests on thermal transpiration

The goal of this section is to present a validation of the proposed
model with physical data, namely the straight-pore results for monatomic
gases reported by Malinauskas et al. (1970).

3.1. Test case presentation

A bundle of ten 0.2-mm inner diameter, 76-mm length Pyrex glass
capillaries was the test porous medium. The extremities were held
in chambers where the temperature was carefully monitored (T1 =
335.6 K at the bottom end, and T2 = 569.8 K at the top end), and
the pressure difference between the two extremities (∆P = P1 − P2)
was recorded as a function of the absolute pressure at the top, hottest
side (P2). The DGM model equations :























































v = ǫu = −
(

PB

η
+DK

)

∇P
P

− αTDK
∇T
T

DK =
ǫ

3
cdpτK

−1P + πg

P + π′
g

ξ

ξ = 1 +
π

8
σ

B = ǫτv
−1
d2

p

32

(22)

have been fitted to the curves ∆P = f(P2), first by deriving
an approximate estimation of ∆P involving a reference temperature
Rm =

√
T1T2 , and treating parameters αL = lim

Kn→∞
αT , πg and π′

g as

adjustable. We will show that an integration of the presented model
leads to a correct agreement with the experimental data without
parameter fitting, as was already shown by Storvick et al. (Storvick
et al., 1978) with a BGK-model specialized to single-straight-pore
computations.

3.2. Numerical procedure

In the following, we will present the numerical procedure that has been
developed for the use of the change-of-scale model, which is split into
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 13

two parts : first, the estimation of ”local” coefficients D and D̃, that
is, for any fixed value of (P, T ) of interest (i.e. in the range [P1, P2]×
[T1, T2] ) ; then, an integration of the balance equations from one
side to the other of the capillaries, taking into account their nonlinear
character. We will drop the tensorial notations in this section, because
transport occurs only in one single direction.

3.2.1. Extraction of the effective coefficients

The method that has been used for the solution of eqs. (14,15) is
based on the projection of the kinetic-like equations on a basis set
of functions (mj)j=1,N through a Galerkin method on c. This is a
generalization of a ”moment method”, since the basis set is not nec-
essarily polynomial, as it will be seen later. Let us focus for example on
problem (15). The unknowns βi are sought as a sum

∑N
j=1 β

j
i (y)mj(c),

so one gets :

∀k ∈ {1, N}
N
∑

j=1

(

−βiL(f0mj) + f0mjc · ∇y(β
j
i )
)

= −f0

ρ0
ci (23)

Multiplying by mk/f0 and integrating in velocity space yields :

∀k ∈ {1, N} ∑N
j=1

(

− 1
f0
〈L(f0mj), mk〉 βj

i + 〈mjc, mk〉 · ∇y(β
j
i )
)

=

. . .−
〈

cimk

ρ0
, 1

〉

(24)
where 〈•, •〉 denotes scalar product in L2(c) with f0 as a weighing
function. One recognizes then the following symmetrical hyperbolic
problem :

S~βi +
3
∑

p=1

Ap∇y
~βi = ~g (25)

where :

Skj =
1

f0

〈L(f0mj), mk〉 (26)

(Ap)kj = 〈cpmj , mk〉 (27)

gk =

〈

cimk

ρ0

, 1

〉

(28)
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14 Vignoles, Charrier, Preux & Dubroca

In addition to this, boundary conditions may be written in the same
formalism, representing the constant 1 function as 1 =

∑N
j=1 θjmj :











∑3
p=1 npAp

~βi · ~θ = 0 on ∂Yfs

∑3
p=1 npA

+
p
~βi =

∑3
p=1 npA

+
p Ki

~θ on ∂Yfs

(29)

where the A matrix may be split into a positive and a negative con-
tribution : A = A+ +A−. A+ has the same eigenvector basis set as A
but its eigenvalues are the positive parts of the eigenvalues of A.

This implies that :

3
∑

p=1

np(A
+
p + A−

p )~βi · ~θ = 0 on ∂Yfs (30)

The Ki coefficients may be evaluated in the following way :

— The βi are also split into an impinging and an outgoing contribu-
tion :

βo
i = σθ + (1 − σ)βi

i(c − 2c · n n) on ∂Yfs (31)

Eq. (30) then becomes :

3
∑

p=1

(

σKA+
p θ + (1 − σ)A+

p β
i
i(c − 2c · n n) + A−

p β
i
i

)

= 0 on ∂Yfs

(32)

— By symmetry of the specular collisions, it is noted that :

A+β(c − 2c · n) = −A−β (33)

Eq. (32) then becomes :

3
∑

p=1

σnp

(

KA+
p θ − A−

p β
i
i

)

= 0 on ∂Yfs (34)

This gives finally an expression for K :

Ki =

∑3
p=1 npA

−
p β

i
i

∑3
p=1 npA+

p θ
(35)

Eqs. (25) and (29) are then much less computationally expensive
than the original kinetic problem formulated in IR6. However, the
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 15

choice of a convenient basis set is a crucial issue for the quality
of the results. Such a choice is conveniently guided by the analy-
sis of the continuum and pure Knudsen regimes. In the continuum
regime, remembering that the zero-order expansion of β is described
by (Vignoles et al., 2008) :

α(−1) = b0 + b1 · c + b2|c|2 (36)

β(0) = d0 + d1 · c + d2|c|2 (37)

and choosing an orthogonal set suited for the description of β and
cβ, the thirteen following moments are retained :

m1 = 1

m2 =
c1

√

RT0

M

, m5 =
c21 − RT0

M√
2RT0

M

, m8 =
c1c2
RT0

M

, m11 =
|c|2 − 5RT0

M
√

10(RT0

M
)3
c1,

m3 =
c2

√

RT0

M

, m6 =
c22 − RT0

M√
2RT0

M

, m9 =
c1c3
RT0

M

, m12 =
|c|2 − 5RT0

M
√

10(RT0

M
)3
c2,

m4 =
c3

√

RT0

M

, m7 =
c23 − RT0

M√
2RT0

M

, m10 =
c2c3
RT0

M

, m13 =
|c|2 − 5RT0

M
√

10(RT0

M
)3
c3.

(38)
This basis is such that any solution belonging to the vector space

generated by (1, c, |c|2) be exactly represented, as stated.
In the free-molecule limit, where the collision operator vanishes,

the result of the Knudsen limit analysis (Vignoles et al., 2008) yields
a dependance of β to other functions, which are not polynomials of c,
but are based on the normal vector associated to c, namely ni = ci

|c|
.

So, it is chosen to add the following moments to the preceding ones :

m′
14−22 =

(

n1, n2, n3, n
2
1, n

2
2, n

2
3, n1n2, n1n3, n2n3

)

(39)

However, it is recognized that the sum n2
1 +n2

2 +n2
3 = 1, so one of the

moments has to be excluded from the list. It is chosen to symmetrize
the set by dropping m1, so the complete basis set has 21 moments.

The discretization in space has been performed with a second-
order finite volume scheme. The system to be solved is linear, with
21 degrees of freedom per node, and a preconditioned GMRES al-
gorithm is used for the resolution. Indeed, preconditioning improves
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100000

CPU time (s)

without preconditioning

with preconditioning

3

Figure 1. CPU time for the computation of D vs. gas density with and without
preconditioner.

substantially the convergence of the GMRES method. A good trade-
off between the efficiency and the overhead cost was obtained with the
Symmetric Gauss-Seidel preconditioner. Figure 1 shows the efficiency
of the preconditioning in terms of CPU time. For some regimes the
CPU time is divided by a factor greater than 10. We notice that the
preconditioner is more efficient in transitional and rarefied regimes.
The numerical difficulties are more important in the rarefied regime
because of the computation of the coefficients Ki. Also, going to the
continuum regime diminishes the efficiency of the preconditioner, be-
cause the nature of the equations to be solved becomes very different
(i. e. they become fully elliptical), and the preconditioner has not been
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 17

optimized to address this asymptotic limit for general geometries.
Nonetheless, whatever the regime, the solver has proved to be able to
solve large systems up to 1 700 000 unknowns, as those arising in the
test case presented in section 4.3. Exterior boundary conditions are
addressed as usual in finite-volume methods, that is, with fictitious
nodes placed outside the resolution domain, and at which the value
of the unknowns are given by mirroring relationships.

3.2.2. Integration of the balance equations

The macroscopic model that has to be solved is taken in its stationary
form :

−divx

(

D̃∇xT +D∇xρ
)

= 0 (40)

−divx

(

K̃∇xT
)

= 0 (41)

T = T1 at x = 0 (42)

T = T2 at x = L (43)

ρ =
MP2

RT2
at x = L (44)

D̃∇xT +D∇xρ = 0 at x = L (45)

Since heat transfer is guaranteed by the pore walls in the exper-
imental configuration, and that the coupling is weak (i.e. the gas
receives its temperature from the walls), it may be assumed that the
gas temperature follows a linear gradient.

One has finally to solve the following ODE :

∂ρ

∂x
=
D̃(ρ, T )

D(ρ, T )

∂T

∂x
(46)

subject to boundary condition :

ρ(x = L) =
P2

RT2
(47)

This is a straightforward task provided the dependencies of the
coefficients D and D̃ are given, e. g. through a tabulation.

3.3. Results and discussion

The results will be discussed first with respect to other theoreti-
cal approaches yielding local effective coefficients in a single straight
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18 Vignoles, Charrier, Preux & Dubroca

cylindrical pore. Then, a validation with respect to the presented
experimental data will be given.

3.3.1. Change-of-scale results

Figure 2 illustrates the convergence of the results for D with respect
to the grid definition. It is seen that convergence is slower in the con-
tinuum regime than in the Knudsen regime. This was to be expected
since the numerical procedure was specifically designed to capture the
low-density behavior.

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01

ρ (kg.m )

D(m .s )

20 x 20

30 x 30

40 x 40

2 -1

-3

Figure 2. Coefficient D as a function of gas density ρ for various discretization parame-
ters at T = 400 K, for a cylindrical pore. The accommodation coefficient is σ = 0.6 and
the ES-BGK scheme has been used.

Figures 3 and 4 are plots of the evolution of the longitudinal D
and D̃ coefficients as a function of ρ for argon at 400 K, with a unit
accommodation factor (i.e perfectly diffuse reflection at walls, σ = 1).
A comparison with the DGM formulae (here in scalar isotropic form):

DK =
ǫ

3
cdp.

1

1 + σ π
8

(48)
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DGM w/o pressure corr.

Sharipov S-model

Sharipov BGK

Our results, ES-BGK

Our results, BGK

σ  = 1

2 -1

Figure 3. Coefficient D as a function of Knudsen number Kn = η

ρDK,ref
at T = 400 K,

for a cylindrical pore. The accommodation coefficient σ is unity.

B = ǫ
d2

p

32
(49)

D = DK +
PB

η
(50)

D̃ =
ρ

T

(

PB

η
+DK(1 + αT )

)

(51)

and with BGK and s-model (Sharipov, 1996) results with a unit
accommodation coefficient show that all approaches are in good agree-
ment with each other. It is to be noted that the computations per-
formed in the present frame do not feature the small pressure depen-
dency of the Knudsen diffusion coefficient, in contrast to Sharipov’s
computations.

From figure 5 it is seen that the ratio D̃T
Dρ

indeed varies from 1/2

at high Knudsen numbers to 1 in the continuum limit. Some discrep-
ancies between the approaches are visible in the intermediate regime
: they are due to the fact that since plain BGK computations fail
to reproduce the correct Prandtl number for the gas, they do not
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Figure 4. Coefficient D̃ as a function of Knudsen number Kn at T = 400 K, for a
cylindrical pore. The accommodation coefficient σ is unity.

provide as good approximations as the ES-BGK ones. The DGM pre-
diction seems to overestimate the ratio as compared to any numerical
approach.

Finally, figure 6 is a plot of D vs. Kn/ξ for various values of σ
(division of the abscissa by ξ allows a superposition of the predictions
in continuum regime). It is clear that the estimation of the DGM
yields a lesser sensitivity of the Knudsen regime limit coefficient to σ
than actually computed by either method.

In summary, even some minute discrepancies with related results
are present, the computational procedure for the change-of-scale may
be considered as validated against well-known results.
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Figure 5. Coefficient ratio D̃T
Dρ

as a function of Knudsen number Kn at T = 400 K for
a cylindrical pore. The accommodation coefficient σ is unity.

3.3.2. Validation with respect to experimental results

Figure 7 is a plot of the pressure drop along the tube in the aforemen-
tioned experiment, together with predictions from our computational
procedure. One parameter is not known a priori in the modelling
procedure : the accommodation coefficient σ. It is usually claimed to
be close to 1 for many gases and various walls ; however, it has been
chosen to make it vary, and a good fit is achieved for σ = 0.65.

On performing these computations, it has been realized that the
main parameter influencing the adequation of the model to the ex-
perimental data is the thermal transpiration ratio D̃T/Dρ. When the
accommodation parameter σ varies, the curves for D̃(ρ) and D(ρ)
do not display a strong variation, while the transpiration ratio has a
much more marked variation, which explains the found sensitivity.
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Figure 6. Coefficient D as a function of scaled Knudsen number Kn/ξ at T = 400 K
for a cylindrical pore, with various values of the accommodation coefficient σ.

4. Results and discussions for various porous media

Once the numerical procedure has been checked against results avail-
able for very simple geometries (a straight cylindrical tube), it may
be used on more complicated porous media images, in order to assess
the impact of the geometry on transport in continuum, rarefied, and
intermediate regime. We will first present families of porous media
images, and then discuss the results for transport as a function of the
principal geometrical parameters.

4.1. Test medium 1 : 2D anisotropy

This ideal porous media 3D image contains 2 plates parallel to z,
between which some obstacles have been located. Periodic boundary
conditions have been given in x and y directions. Blocking the flux
between parallel plates is a convenience to avoid any “infinite hori-
zon” problem, for which it is well known that the Knudsen effective
diffusivity diverges. The shape of the obstacles is such that the flow
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Figure 7. Computed vs. experimental curves of pressure drop in thermal transpiration
experiment.

field cannot display any symmetry axis. The principal directions for
the effective property tensors are thus not obvious a priori from a
simple glance to an (x, y) section of the 3D images. Figure 8 is a
visualization of this medium.

500 µm

500 µm

1
0

0
 µ

m

Figure 8. Visualization of the test porous medium unit cell n◦1.

The results on tortuosity factors are summarized at figure 9, and
compared with prediction by two other codes : a Monte-Carlo Ran-
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Figure 9. Tortuosity evaluation of test porous medium n◦1 with respect to mass transfer
: comparison of the presented code and of two independent estimations of the continuum
limit (Volume Averaging FD) and of the rarefied limit (MC-RW/SMC)

dom Walks code with Simplified Marching Cube discretization of the
fluid-solid interface (Vignoles, 1995) for the rarefied gas limit, and
a numerical solver for the continuum regime Stokes-to-Darcy prob-
lem resolution, based on the volume averaging theory (Anguy et al.,
1994). The agreement is excellent on the continuum limit, and of
somewhat lower quality, though satisfactory, on the rarefied limit :
this indicates that there is some difficulty for the code to capture
the extremely rarefied gas behavior. Note that the tortuosity factors
display a minimal value for Kn numbers around unity : this means
that when both transport modalities are of comparable magnitude,
they are able to combine themselves in order to better transfer gas
through the medium. Consequently, describing transport with a direct
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Figure 10. Angles and anisotropy ratios of D and D̃ principal tensor components for
porous medium n◦1 as a function of the pore Knudsen number. The values for the heat
conductivity tensor are also provided for comparison.

interpolation between the two asymptotic behaviors would result in
a wrong description of the involved physics.

The evolution of the anisotropy ratio and the orientations of the
two tensors D and D̃ are reported at figure 10. It is seen clearly that
the anisotropy of both tensors diminishes when the regime becomes
rarefied ; this diminution is slightly more marked for D̃, a fact that
may be related to the neatly lower anisotropy of the heat conduction
tensor. The orientation of the principal axes does not change apprecia-
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bly, except for D̃ at high Knudsen numbers : this can be interpreted as
a realignment with respect to the heat transfer tensor. This confirms
that the αT parameter of the Dusty-Gas Model, should be rewritten
in a tensorial form.

4.2. Test image 2 : 3D anisotropy

After having investigated the possible separation of the angular di-
rections of the tensors D and D̃ when Knudsen number incresases, it
has been tried to generate a porous medium for which the anisotropy
ratios can differ significantly for these two transfer modalities. The
test medium 2 is the periodic 3D repetition of the unit cell sketched
at figure 11. It consists in a square tube sectioned by a non-planar
”crack”, or void slice. The non-planarity of the crack has been chosen
so that the condition of finite horizon be respected, in order to get a
true Knudsen diffusion tensor at the rarefied limit. The tube volume
and the slice volume are equal.

8 µm

10 µm

Figure 11. Visualization of the test porous medium unit cell n◦2.

Figure 12 is a plot of the anisotropy ratio as a function of gas
density in the medium : the interesting fact is that while the direction
of highest pressure-induced mass transportability (D) is always on the
same side, the direction of highest thermal-induced mass transporta-
bility (D̃) is reversed when density decreases. This illustrates again
the geometrical independence of Knudsen slip and thermal creep in a
general porous medium.
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Figure 12. Anisotropy ratios of D and D̃ principal tensor components for porous medium
n◦2 as a function of gas density.

4.3. Test medium 3 : Complex medium acquired by
Synchrotron X-ray Computerized Tomography (SXCT)

Finally, the developed numerical tools have been tested on a more real-
istic medium. Carbon fiber cloth stackings, which constitute preforms
for C/C composite materials, have been scanned in synchrotron X-
ray Computerized Microtomography (Coindreau and Vignoles, 2004)
with 0.7 µm resolution, resulting in excellent 3D images, thanks to
an adequate segmentation procedure (Vignoles, 2001). These high-
resolution images have been utilized for the estimation of geometrical
properties (Coindreau and Vignoles, 2005), as well as tortuosities with
respect to binary diffusion and Knudsen diffusion (Coindreau et al.,
2005; Vignoles et al., 2007), on a large number of sub-images. Here,
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one sub-image has been extracted ; the resolution has been lowered
by a factor two in order to manage acceptable computational times,
and the image has been made periodic in 3D.

Figure 13. Visualizations of the test porous medium unit cell n◦3.
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Figure 14. Visualizations of the principal tensor components for test porous medium
unit cell n◦3 on z and x projections.

Figure 13 is a visualization of this test medium. The fibers are more
or less parallel to the diagonal of one face of the cube. Figure 14 is a
visualization of the tensor principal axes on z and x projections of this
3D image : it is seen that these directions indeed closely match the
structure of the image. As could be expected , the direction of highest
conductivity lies parallel to the fibers. The evolution of the anisotropy
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Figure 15. Anisotropy ratios of D and D̃ principal tensor components for porous medium
n◦3 as a function of gas density. The definition of angle θ refers to fig. 14.
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ratio and of the orientation of tensors D and D̃ are reported at figure
15 and compared with the two others codes, as for the test medium
1 : again, the conclusions are similar, showing that the quality of the
presented approach is equivalent for complex media as for simpler
ones.

5. Conclusion

The non-isothermal transport of a pure rarefied gas in a porous medium
has been treated with a change-of-scale procedure starting from the
kinetic-theory level of description, and making use of the homoge-
nization technique. Based on a homogenization model presented in
a companion paper (Vignoles et al., 2008), numerical schemes have
been produced for the computation of effective transport coefficients
(i.e. Knudsen transport, viscous transport, and thermal transpiration
coefficient) in whatever 3D image of a porous medium. They have been
tested favorably against numerical results from other independent
works focused on single-pore transport and against the straight-pore
experimental data of (Malinauskas et al., 1970).

Finally, in order to demonstrate the generality of the developed
procedure, some more complex porous media images have been tested.
The variation of the tensorial components for each kind of coefficient
has been studied, showing that the geometry effect on permeabil-
ity on one hand and on thermal transpiration as well as Knudsen
transport on the other hand is markedly different. Such a difference
has been quantified in terms of angles and anisotropy ratios, and
demonstrate that a thermal transpiration tensor may differ from a
Knudsen diffusion tensor.
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Figure 16. Preconditioner efficiency measured as CPU time for various values of pore
Knudsen number.
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Figure 17. Coefficient D as a function of gas density ρ for various discretization param-
eters at T = 400 K, for a cylindrical pore. The accommodation coefficient is σ = 0.6
and the ES-BGK scheme has been used.

Article_tt_part2_rev1.tex; 15/01/2009; 11:35; p.36



HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 37

0.01

0.10

1.00

0.01 0.1 1 10 100

Kn

D (m  .s   )

DGM w. pressure corr.

DGM w/o pressure corr.

Sharipov S-model

Sharipov BGK

Our results, ES-BGK

Our results, BGK

σ  = 1

2 -1
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Figure 19. Coefficient D̃ as a function of Knudsen number Kn at T = 400 K, for a
cylindrical pore. The accommodation coefficient σ is unity.
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as a function of Knudsen number Kn at T = 400 K for
a cylindrical pore. The accommodation coefficient σ is unity.
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Figure 21. Coefficient D as a function of scaled Knudsen number Kn/ξ at T = 400 K
for a cylindrical pore, with various values of the accommodation coefficient σ.
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Figure 22. Computed vs. experimental curves of pressure drop in thermal transpiration
experiment.
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Figure 23. Visualization of the test porous medium unit cell n◦1.
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Figure 24. Tortuosity evaluation of test porous medium no.1 with respect to mass
transfer : comparison of the presented code and of two independent estimations of the
continuum limit (Volume Averaging FD) and of the rarefied limit (MC-RW/SMC).

Article_tt_part2_rev1.tex; 15/01/2009; 11:35; p.42



HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 43

θ

0.5 mm

0
.5

 m
m

0
.1

 m
m

1

1.05

1.1

1.15

1.2

1.25

1.3
Anisotropy 

(Eigenvalue ratio)
Ratio D

Ratio D

Anisotropy of Heat Conductivity tensor

0

5

10

15

20

25

30

35

40

45

0.0001 0.001 0.01 0.1 1 10

Pore Knudsen number

Angle (°)

angle D

angle D

Angle of Heat Conductivity tensor

~

~

Figure 25. Angles and anisotropy ratios of D and D̃ principal tensor components for
porous medium n◦1 as a function of the pore Knudsen number. The values for the heat
conductivity tensor are also provided for comparison.
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Figure 26. Visualization of the test porous medium unit cell n◦2.
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Figure 27. Anisotropy ratios of D and D̃ principal tensor components for porous medium
n◦2 as a function of gas density.
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Figure 28. Visualizations of the test porous medium unit cell n◦3.
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Figure 29. Visualizations of the principal tensor components for test porous medium
unit cell n◦3 on z and x projections.
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Figure 30. Anisotropy ratios of D and D̃ principal tensor components for porous medium
n◦3 as a function of gas density. The definition of angle θ refers to fig. 14.
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