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Abstract

We establish the orbital stability of the black soliton, or kink solution, v0(x) = th
(

x
√

2

)

, to

the one-dimensional Gross-Pitaevskii equation, with respect to perturbations in the energy
space.

1 Introduction

In this paper, we consider the one-dimensional Gross-Pitaevskii equation

iΨt + Ψxx = Ψ(|Ψ|2 − 1) on R × R, (GP)

which is a version of the defocusing cubic nonlinear Schrödinger equations. We supplement this
equation with the boundary condition at infinity

|Ψ(x, t)| → 1, as |x| → +∞. (1.1)

This boundary condition is suggested by the formal conservation of the energy (see (1.2) below),
and by the use of the Gross-Pitaevskii equation as a physical model, e.g. for the modelling
of “dark solitons” in nonlinear optics (see [9]). Note that boundary condition (1.1) ensures
that (GP) has a nontrivial dynamics, contrary to the case of null condition at infinity where
the dynamics is trivial (dispersion, scattering,...). In particular, (GP) has nontrivial localized
coherent structures called “solitons”.

At least on a formal level, the Gross-Pitaevskii equation is hamiltonian. The conserved
Hamiltonian is a Ginzburg-Landau energy, namely

E(Ψ) =
1

2

∫

R

|Ψ′|2 +
1

4

∫

R

(1 − |Ψ|2)2 ≡
∫

R

e(Ψ). (1.2)

Similarly, as far as it might be defined, the momentum

P (Ψ) =
1

2

∫

R

〈iΨ,Ψ′〉 (1.3)
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is formally conserved. We will see though that the definition of this quantity raises a number of
difficulties. Another quantity which is formally conserved by the flow is the mass

m(Ψ) =
1

2

∫

R

(

|Ψ|2 − 1
)

.

In this paper, we will only consider finite energy solutions to (GP). Equation (GP) is then
integrable in dimension one by means of the inverse scattering method, and it has been formally
analyzed within this framework in [11]. Recently, P. Gérard and Z. Zhang [7] gave a complete
justification of the method, obtaining in particular rigorous results on the Cauchy problem.

Stationary solutions to (GP), that is time independent solutions, are of the form

Ψ(x, t) = u(x), ∀t ∈ R,

where the profile u solves the ordinary differential equation

uxx + u(1 − |u|2) = 0. (1.4)

Equation (1.4) may be integrated using standard arguments from ordinary differential equation
theory. The non-constant solution of finite energy to (1.4) is given, up to the invariances, by

v0(x) = th
( x√

2

)

,

that is any non-constant solution to (1.4) is of the form

u(x) = exp iθ v0(x− a),

where a and θ are arbitrary real numbers. Notice that v0 is real-valued and vanishes at the
origin. Moreover, it converges exponentially fast to ±1, as x → ±∞. This stationary solution
is known as a ”black soliton” in nonlinear optics (see [9]), and is often termed a kink solution.
It plays an important role in the theory of phase transitions.

The purpose of this paper is to establish the orbital stability of the kink solution. Notice
that Di Menza and Gallo [3] proved the linear stability and performed several numerics which
suggest that a stronger notion of stability does hold.

To state our result, we first recall the classical notion of orbital stability (see, for instance,
[1]). The solution v0 is said to be orbitally stable in the metric space X, if and only if given any
ε > 0, there exists some δ > 0 such that for any solution Ψ to (GP) in X, if

dX

(

Ψ(·, 0), v0

)

≤ δ,

then

sup
t∈R

(

inf
(a,θ)∈R2

dX

(

Ψ(·, t), exp iθv0(· − a)
)

)

≤ ε.

As a preliminary step, this definition requires to prove that the Cauchy problem for (GP) is
globally well-posed in X. A natural choice for X is the energy space

X 1 ≡ {w ∈ L∞(R), s.t. w′ ∈ L2(R), 1 − |w|2 ∈ L2(R)}.

Given any v0 ∈ X 1, Zhidkov [12] (see also [6]) established that (GP) has a global solution with
initial data v0. More precisely, we have
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Theorem 1 ([12, 6]). Let v0 ∈ X 1. There exists a unique solution v of (GP ) such that v(0) =
v0, and t 7→ v(t) − v0 ∈ C0(R,H1(R)). Moreover, the Ginzburg-Landau energy is conserved,

E(v(t)) = E(v0), ∀t ∈ R.

Given any A > 0, we consider on X 1 the distance dA,X 1 defined by

dA,X 1(v1, v2) ≡ ‖v1 − v2‖L∞([−A,A]) + ‖v′1 − v′2‖L2(R) + ‖|v1| − |v2|‖L2(R).

Our main result is

Theorem 2. Assume that v0 ∈ X 1 and consider the global in time solution v to (GP) with

initial datum v0. Given any numbers ε > 0 and A > 0, there exists some positive number δ,
such that if

dA,X 1(v0, v0) ≤ δ, (1.5)

then, for any t ∈ R, there exist numbers a(t) and θ(t) such that

dA,X 1

(

v(· + a(t), t), exp iθ(t) v0(·)
)

< ε. (1.6)

The number a(t) provided by (1.6) is not unique. It describes the shift in space of the solution.
We will show that a(t) moves slowly. More precisely, we have

Theorem 3. Given any numbers ε > 0, sufficiently small, and A > 0, there exists some

constant K, only depending on A, and some positive number δ > 0 such that, if v0 and v are as

in Theorem 2 and if (1.5) holds, then

|a(t)| ≤ Kε(1 + |t|), (1.7)

for any t ∈ R, and for any of the points a(t) satisfying inequality (1.6) for some θ(t) ∈ R.

In other words, Theorem 3 shows that the speed of the shift is smaller than any arbitrary
positive number, provided we are sufficiently close to the kink solution.

Remark 1. It would be of interest to obtain a similar piece of information for the quantity θ(t).

Remark 2. P. Gérard and Z. Zhang [7] have used the Inverse Scattering method to prove a more
precise version of Theorem 2 in the L∞-norm, but for a more restricted class of perturbations.

It is worthwhile mentioning that the stationary solution v0 belongs to a branch of more
general special solutions, namely the branch of travelling wave solutions. Travelling waves are
solutions to (GP) of the form

Ψ(x, t) = u(x− ct).

Here, the parameter c ∈ R corresponds to the speed of the travelling waves (we may restrict to
the case c ≥ 0 using complex conjugation). The case c > 0 corresponds to the ”gray solitons”
in nonlinear optics (see [9]).The equation for the profile u is given by

−icux + uxx + u(1 − |u|2) = 0. (TWc)

Equation (TWc) is entirely integrable using standard arguments from ordinary differential equa-
tion theory. The sound velocity cs =

√
2 appears naturally in the hydrodynamics formulation of

(GP) (see [2]). If |c| ≥
√

2, u is a constant of modulus one, whereas if −
√

2 < c <
√

2, then, up
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to a multiplication by a constant of modulus one and a translation, u is either identically equal
to 1, or to

u(x) = vc(x) ≡
√

2 − c2

2
th

(

√
2 − c2

2
x
)

+ i
c√
2
. (1.8)

The non-constant travelling waves form a smooth branch of subsonic solutions to (TWc). As
seen before, there exist neither sonic, nor supersonic non-constant travelling waves.

In view of identity (1.8), we also observe that vc(x) does not vanish unless c = 0. Moreover,
formula (1.8) yields the spatial asymptotics of the non-constant solutions to (TWc). Notice in
particular that

vc(x) → v±∞
c ≡ ±

√

1 − c2

2
+ i

c√
2
, as x→ ±∞.

Hence, vc(x) converges to a constant v±∞
c of modulus one, as x → ±∞, the limits in −∞ and

+∞ being distinct. Notice also that the function vc − v±∞
c has exponential decay at infinity.

Orbital stability of travelling waves for any −
√

2 < c <
√

2, was established in [10] using a
method of [8], and later in [2] relying on a variational principle, combined with several conserva-
tion laws. As a matter of fact, travelling wave solutions can be identified with critical points of
the energy, keeping the momentum fixed. In this variational interpretation of the equation, the
speed c appears as the Lagrange multiplier related to the constraint, i.e. keeping the momentum
fixed. The solution vc corresponds to minima of the energy for fixed momentum. Our aim here
is to extend this variational argument to the case c = 0.

The precise mathematical definition of the momentum raises however a serious difficulty, in
particular because v0 vanishes. Recall that in the context of nonlinear Schrödinger equations,
the momentum of maps v from R to C should be defined as

P (v) =
1

2

∫

R

〈iv, v′〉. (1.9)

This quantity is not well-defined for arbitrary maps in the energy space.

To get convinced of this fact, assume that the map v has the form v = exp iϕ, where ϕ is
real-valued, so that |v| = 1. For such a map,

〈iv, v′〉 = ϕ′,

and the fact that v belongs to the energy space X 1 is equivalent to the fact that the phase ϕ′

belongs to L2(R). We then have

P (v) =
1

2

∫

R

ϕ′ =
1

2

[

ϕ
]+∞
−∞ ≡ 1

2

(

ϕ(+∞) − ϕ(−∞)
)

,

which has a meaning if the map v belongs to

Z1 =
{

v ∈ X 1, s.t. v±∞ = lim
x→±∞

v(x) exist
}

,

but not for any arbitrary phase ϕ whose gradient is in L2.

More generally, given any map v in X̃ 1, where X̃ 1 is defined by

X̃ 1 = {v ∈ X 1, s.t. |v(x)| > 0, ∀x ∈ R}, (1.10)

we may write v = ̺ exp iϕ, so that 〈iv, v′〉 = ̺2ϕ′. If v ∈ Z̃1 ≡ X̃ 1 ∩ Z1, we are led to

P (v) =
1

2

∫

R

̺2ϕ′ =
1

2

∫

R

(̺2 − 1)ϕ′ +
1

2

∫

R

ϕ′ =
1

2

∫

R

(̺2 − 1)ϕ′ +
1

2

[

ϕ
]+∞
−∞. (1.11)
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Since e(v) = 1
2 (̺′2 + ̺2ϕ′2) + 1

4(1 − ̺2)2, the first integral may be bounded by Cauchy-Schwarz
inequality,

∣

∣

∣

∣

∫

R

(̺2 − 1)ϕ′
∣

∣

∣

∣

≤ 1

2

∫

R

(1 − ̺2)2 +
1

2δ2

∫

R

̺2(ϕ′)2 ≤ 2

δ2
E(v),

where δ = inf{|v(x)|, x ∈ R} > 0, so that P (v) is well-defined by formula (1.11).

It remains to give a meaning to the momentum P (v) for maps having possibly zeroes. We
define the momentum P (v) of maps v in Z1 as follows.

Lemma 1. Let v ∈ Z1. Then, the limit

P(v) = lim
R→+∞

PR(v) ≡ lim
R→+∞

∫ R

−R

〈iv, v′〉

exists. Moreover, if v belongs to Z̃1, then

P(v) =
1

2

∫

R

(̺2 − 1)ϕ′ +
1

2

[

ϕ
]+∞
−∞.

In other words, using the definition provided by Lemma 1, we have defined the momentum as
an improper integral. It offers however a sound mathematical formulation of the momentum
P , at least if one restricts oneself to the space Z1. We illustrate our previous constructions with
the kink solution v0. Since v0 is real-valued, we have 〈iv0, v

′
0〉 = 0, so that

P(v0) = 0.

In several computations, we use the following elementary observation.

Lemma 2. Let V0 ∈ Z1 and w ∈ H1(R). Then, V0 + w ∈ Z1 and

P(V0 + w) = P(V0) +
1

2

∫

R

〈iw,w′〉 +

∫

R

〈iw, V ′
0〉. (1.12)

Notice that the right-hand side of identity (1.12) involves, besides P(V0), only definite
integrals: this is an important advantage for establishing the corresponding conservation laws.

Another quantity which plays an important role in the variational formulation of (TWc) for
c 6= 0 is the renormalized momentum p, which is defined for v ∈ X̃1 by

p(v) =
1

2

∫

R

(̺2 − 1)ϕ′, (1.13)

so that, as seen before, if v belongs to Z̃1, then,

p(v) = P(v) − 1

2

[

ϕ
]+∞
−∞.

If v ∈ Z1 \ Z̃1, the right-hand side of (1.13) is a priori not well-defined since the phase ϕ is not
globally defined. Nevertheless, the argument arg v of v is well-defined at infinity as an element
of the quotient space R/2πZ. Given v ∈ Z1, we are therefore led to introduce the untwisted
momentum

[p](v) =
(

P(v) − 1

2

(

arg v(+∞) − arg v(−∞)
)

)

mod π,

which is hence an element of R/πZ. A remarkable fact concerning [p] is that its definition extends
to the whole space X 1, although for arbitrary maps in X 1, the quantity arg v(+∞)−arg v(−∞)
may not exist. Indeed, we have
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Lemma 3. Assume that v belongs to X 1. Then the limit

[p](v) = lim
R→+∞

(
∫ R

−R

〈iv, v′〉 − 1

2

(

arg v(R) − arg v(−R)
)

)

mod π

exists. Moreover, if v belongs to X̃ 1, then

[p](v) = p(v) mod π. (1.14)

Similarly to Lemma 2, we have

Lemma 4. Let V0 ∈ X 1 and w ∈ H1(R). Then, V0 + w ∈ X 1 and

[p](V0 + w) = [p](V0) +
1

2

∫

R

〈iw,w′〉 +

∫

R

〈iw, V ′
0〉 mod π. (1.15)

In some places, when this does not lead to a confusion, we will identify elements of R/πZ

with their unique representative in the interval ] − π
2 ,

π
2 ].

In [2], the following minimization problem

Emin(p) = inf{E(v), v ∈ X̃ 1 s.t. p(v) = p}, (1.16)

was considered and solved for any p ∈ [0, π
2 ).

Lemma 5. The function p 7→ Emin(p) is non-decreasing and concave on [0, π
2 ). Moreover, given

any 0 ≤ p < π
2 , problem (1.16) is achieved by a unique minimizer, up to the invariances of the

problem, the map vc(p). Here, c(p) denotes the unique speed c such that p(vc) = p.

Remark 3. Since the map vc has no zero for 0 < c <
√

2, and hence belongs to the space X̃ 1,
we may compute its momentum p(vc). A short computation yields

p(vc) =
π

2
− arctan

( c√
2 − c2

)

− c

2

√

2 − c2,

whereas the energy of vc is equal to

E(vc) =
(2 − c2)

3

2

3
. (1.17)

We notice that the function c 7→ p(vc) is smooth, decreasing, and satisfies

d

dc
p(vc) = −

√

2 − c2. (1.18)

Hence, it performs a diffeomorphism from (0,
√

2) on (0, π
2 ), so that there exists a unique speed

c(p) such that p(vc(p)) = p. Hence, we can express E(vc) ≡ E(p(vc)) as a function of p(vc) to
obtain the following graph.

-

6

0

E

pπ
2

2
√

2
3

E = E(p) = Emin(p)

6



By Lemma 5, the curve p 7→ E(p) is identically equal to the minimizing curve p 7→ Emin(p). It
is a smooth, increasing and strictly concave curve, which lies below the line E =

√
2p. Each

point of the curve represents a non-constant solution vc to (TWc) of energy E(vc) and scalar
momentum p(vc). The speed of the solution vc (and as a result, its position on the curve) is
given by the slope of the curve. Indeed, it follows from (1.17) and (1.18) that

dE
dp

(

p(vc)
)

=
d

dc

(

E(vc)
)

(

d

dc
p(vc)

)−1

= c.

Remark 4. Since p(v) = −p(v) for any function v ∈ X̃ 1, it follows from Lemma 5 that, given
any −π

2 < p < 0, problem (1.16) is achieved by a unique minimizer, up to the invariances of the
problem, the map v−c(p), where c(p) denotes the unique speed c such that p(vc) = −p.

We emphasize that the definition of the normalized momentum p is restricted to maps having
no zeroes, and therefore not to v0. To define a minimization problem similar to (1.16), we make
use of the untwisted momentum [p] and consider the quantity

Emin

(π

2

)

≡ inf
{

E(v), v ∈ X 1 s.t. [p](v) =
π

2
mod π

}

. (1.19)

We will prove

Lemma 6. The infimum Emin(
π
2 ) is achieved by the map v0, which is the only minimizer up to

the invariances of problem (1.19).

As a matter of fact, the central part of the variational argument entering in the proof of the
orbital stability is a careful analysis of sequences (un)n∈N in the space X 1 verifying

[pn] ≡ [p](un) → π

2
,

and

E(un) → Emin

(π

2

)

, as n→ +∞.

(1.20)

Minimizing sequences for Emin(
π
2 ) are a special example of sequences satisfying (1.20). We have

Theorem 4. Let (un)n∈N be a sequence of maps in the space X 1 satisfying (1.20). There exist

a subsequence (uσ(n))n∈N, a sequence of points (an)n∈N, and a real number θ such that

uσ(n)

(

· +aσ(n)

)

→ exp iθ v0(·), as n→ +∞,

uniformly on any compact subset of R. Moreover,

1 − |uσ(n)

(

· +aσ(n)

)

|2 → 1 − |v0(·)|2 in L2(R), as n→ +∞,

and

u′σ(n)

(

· +aσ(n)

)

→ exp iθ v′0(·) in L2(R), as n→ +∞.

Lemma 6 is an immediate consequence of Theorem 4, taking minimizing sequences for
Emin(

π
2 ). In the study of the orbital stability of v0, we will in particular invoke the follow-

ing other corollary of Theorem 4.

Corollary 1. Given any numbers A > 0 and ε > 0, there exists a number δ > 0 such that, if

the function v belongs to the space X 1 and satisfies
∣

∣

∣
[p](v) − π

2

∣

∣

∣
≤ δ, and |E(v) − E(v0)| ≤ δ,

then there exist some numbers a ∈ R and θ ∈ R such that

dA,X 1

(

v(· + a), exp iθ v0(·)
)

≤ ε.
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We next turn to the dynamics of (GP). The second part in the proof of Theorem 2 is to
establish that besides the energy, which is known to be conserved in view of Theorem 1, the
untwisted momentum [p] is preserved by (GP).

Proposition 1. Assume v0 ∈ X 1, and let v be the solution to (GP) with initial datum v0. Then,

[p](v(·, t)) = [p](v0), ∀t ∈ R.

If moreover v0 ∈ Z1, then v(t) belongs to Z1 for any t ∈ R, and

P(v(·, t)) = P(v0), ∀t ∈ R.

The proof of Theorem 2 then follows combining Theorem 4 with the conservation of energy
and untwisted momentum, and the continuity of the latter with respect to dA,X 1 .

Finally, for the proof of Theorem 3, we invoke the conservation law for the relative center of
mass. At least formally, we have the identity

d

dt

(

1

2

∫

R

x
(

|Ψ(x, t)|2 − 1
)

dx

)

= 2P (Ψ(t)), (1.21)

for solutions to (GP). The rigorous argument in Section 4 involves a localized version of (1.21).

The rest of the paper is organized as follows. In the next section, we provide proofs of various
results stated in the introduction, and to several properties of maps having a bounded Ginzburg-
Landau energy. We prove Theorem 4 and Corollary 1 in Section 3, while Section 4 is devoted to
the rigorous proofs of the conservation of the untwisted momentum and center of mass. Finally,
we prove Theorem 2 and Theorem 3 in Section 5.

Acknowledgements. F.B., P.G. and D.S. acknowledge partial support from project JC05-
51279 of the Agence Nationale de la Recherche.

2 Properties of energy and momentum

The purpose of this section is to provide several properties of maps with bounded energy, in
particular in connection with their momentum and possible limits at infinity. We also provide
the proofs of various results stated in the introduction.

2.1 Maps with finite Ginzburg-Landau energy

We first have

Lemma 7. Let E > 0 and 0 < δ0 < 1 be given. There exists an integer ℓ0 = ℓ0(E, δ0),
depending only on E and δ0, such that the following property holds: given any map v ∈ X 1

satisfying E(v) ≤ E, either
∣

∣1 − |v(x)|
∣

∣ < δ0, ∀x ∈ R,

or there exists ℓ points x1, x2, . . ., and xℓ satisfying ℓ ≤ ℓ0,

∣

∣1 − |v(xi)|
∣

∣ ≥ δ0, ∀1 ≤ i ≤ ℓ,

and
∣

∣1 − |v(x)|
∣

∣ ≤ δ0, ∀x ∈ R \ ℓ∪
i=1

[

xi − 1, xi + 1
]

.
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Proof. Set
A =

{

z ∈ R, s.t.
∣

∣1 − |v(z)|
∣

∣ ≥ δ0
}

,

and assume that A is not empty. Considering the covering R = ∪
i∈N

Ii, where Ii = [i− 1
2 , i + 1

2 ],

we claim that, if Ii ∩ A 6= ∅, then
∫

Ĩi

e(v) ≥ µ0, (2.1)

where Ĩi = [i − 1, i + 1], and µ0 is some positive constant. To prove the claim, we first notice
that

|v(x) − v(y)| ≤ ‖v′‖L2(R)|x− y| 12 ≤
√

2E
1

2 |x− y| 12 ,
for any (x, y) ∈ R

2. Therefore, if z ∈ A, then

∣

∣1 − |v(y)|
∣

∣ ≥ δ0
2
, ∀y ∈ [z − r, z + r],

where r =
δ2

0

8E
. Choosing r0 = min{r, 1

2}, we are led to

∫ z+r0

z−r0

e(v) ≥ 1

4

∫ z+r0

z−r0

(1 − |v|)2 ≥ µ0 ≡ r0δ
2
0

8
.

In particular, if z ∈ Ii ∩A for some i ∈ N, then [z − r0, z + r0] ⊂ Ĩi, and claim (2.1) follows. To
conclude the proof, we notice that

∑

i∈N

∫

Ĩi

e(v) = 2E(v) ≤ 2E,

so that, in view of (2.1),
ℓµ0 ≤ 2E,

where ℓ = Card{i ∈ N, s.t. Ii ∩ A 6= ∅}. Setting ℓ0 = 2E
µ0

, and choosing some point xi ∈ Ii ∩ A,
for any i ∈ N such that Ii ∩ A 6= ∅, the conclusion follows (after a possible relabelling of the
points xi).

An immediate consequence of Lemma 7 is

Corollary 2. Given any map v ∈ X 1, and any number 0 < δ < 1, there exists some number

L(δ, v) ≥ 0 such that

|v(x)| ≥ δ,

for any |x| ≥ L(δ, v). In particular,

|v(x)| → 1, as |x| → +∞. (2.2)

Remark 5. We emphasize once more that in contrast with (2.2), the map v itself need not have
a limit as |x| → +∞. It suffices to choose v = exp iϕ, with ϕ′ belonging to L2(R), but not to
L1(R), for instance ϕ(x) = ln(x2 + 1).

We finish this section with some elementary observations. The first one emphasizes the role
of the sonic speed

√
2.

Lemma 8. Let ̺ and ϕ be real-valued, smooth functions on some interval of R, such that ̺ is

positive. Set v = ̺ exp iϕ. Then, we have the pointwise bound

∣

∣

∣
(̺2 − 1)ϕ′

∣

∣

∣
≤

√
2

̺
e(v).

9



Proof. The energy density of v can be expressed as

e(v) =
1

2

(

(̺′)2 + ̺2(ϕ′)2
)

+
1

4

(

1 − ̺2
)2
.

The conclusion follows from the inequality |ab| ≤ 1
2(a2 + b2) applied to a = 1√

2
(1 − ̺2) and

b = ̺ϕ′.

As a consequence, we have

Corollary 3. Assume v ∈ X̃ 1. Then,

inf
x∈R

|v(x)| ≤ E(v)√
2|p(v)|

.

In particular, if δ(v) ≡ 1 − E(v)√
2|p(v)| > 0, then, given any 0 < δ < δ(v), there exists some point

xδ ∈ R such that

1 − |v(xδ)| ≥ δ.

Proof. Set δ0 = inf
x∈R

|v(x)|. Since |v(x)| → 1, as |x| → +∞, and v is continuous and does not

vanish on R, its infimum δ0 is positive. Moreover, writing v = ̺ exp iϕ, it follows from Lemma
8 that we have the pointwise bound

∣

∣

∣
(̺2 − 1)ϕ′

∣

∣

∣
≤

√
2

δ0
e(v),

and the conclusion follows from formula (1.13) by integration.

Notice that in contrast, if v ∈ X 1 \ X̃ 1, then inf
x∈R

|v(x)| = 0.

2.2 Minimality of the kink solution

The kink solution has the following remarkable minimization property.

Lemma 9. We have

E(v0) = inf
{

E(v), v ∈ H1
loc(R), inf

x∈R

∣

∣v(x)
∣

∣ = 0
}

.

In particular, if E(v) < 2
√

2
3 , then,

inf
x∈R

∣

∣v(x)
∣

∣ > 0.

Proof. We consider a minimizing sequence (vn)n∈N for the minimizing problem

E0 = inf

{
∫ +∞

0
e(v), v ∈ H1

loc([0,+∞)), v(0) = 0

}

,

which is well-defined by Sobolev embedding theorem. We notice that the functions v′n are
uniformly bounded in L2([0,+∞)), and that vn(0) = 0. Hence, by Rellich compactness theorem,
there exists some function u ∈ H1

loc([0,+∞)), with u(0) = 0, such that, up to a subsequence,

v′n ⇀ u′ in L2([0,+∞)), and vn → u in L∞
loc([0,+∞)), as n→ +∞.
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By Fatou lemma, we are led to

∫ +∞

0
e(u) =

1

2

∫ +∞

0
u′2 +

1

4

∫ +∞

0
lim inf
n→+∞

(

1 − |vn|2
)2 ≤ lim inf

n→+∞

∫ +∞

0
e(vn),

so that the infimum E0 is achieved by the function u. In particular, the solution u is critical for
the Ginzburg-Landau energy, i.e. it solves

u′′ + u(1 − |u|2) = 0.

Integrating this equation yields u(x) = v0(x) = th
(

x√
2

)

, so that

E0 =

∫ +∞

0
e(v0) =

√
2

3
.

Next consider a map v ∈ H1
loc(R), with finite Ginzburg-Landau energy, and which vanishes at

some point x0. In view of the invariance by translation, we may assume that x0 = 0, whereas

the minimality of v0 yields
∫ +∞
0 e(v) ≥

√
2

3 , and the same inequality holds for the energy on
(−∞, 0], so that

E(v) ≥ 2
√

2

3
= E(v0).

The proof of Lemma 9 follows.

2.3 Properties of the momentum

We provide in this subsection the proofs of Lemmas 1, 2, 3 and 4, as well as some additional
properties.

Proof of Lemma 1. Let v ∈ X 1, and let L = L(1
2 , v) be the corresponding number provided

by Corollary 2 for δ = 1
2 . On the intervals (±L,±∞), we may write v = ̺ exp iϕ±, so that

〈iv, v′〉 = ̺2ϕ′
±. Next, given R2 > R1 > L, we have

PR2
(v) − PR1

(v) =
1

2

∫ R2

R1

̺2ϕ′
+ +

1

2

∫ −R1

−R2

̺2ϕ′
−. (2.3)

We expand
∫ ±R2

±R1

̺2ϕ′
± =

∫ ±R2

±R1

(̺2 − 1)ϕ′
± +

∫ ±R2

±R1

ϕ′
±.

For the first integral on the right-hand side, we use the bound |(̺2−1)ϕ′
±| ≤ 4e(v) on (±L,±∞),

so that
∣

∣

∣

∣

∫ ±R2

±R1

(̺2 − 1)ϕ′
±

∣

∣

∣

∣

≤ 4

∫ ±R2

±R1

e(v) → 0, as R1 → +∞.

For the second integral, since v ∈ Z1, it has limits at infinity, so that

∣

∣

∣

∣

∫ ±R2

±R1

ϕ′
±

∣

∣

∣

∣

=
∣

∣

∣
ϕ±(R2) − ϕ±(R1)

∣

∣

∣
→ 0, as R1 → +∞.

Hence,
PR2

(v) − PR1
(v) → 0, as R1 → +∞,

and therefore PR(v) has a limit, which establishes the first statement.
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Concerning the second statement, if v belongs to Z̃1, then v = ̺ exp iϕ on the whole space
R, so that 〈iv, v′〉 = ̺2ϕ′, and

PR(v) =
1

2

∫ R

−R

̺2ϕ′ =
1

2

∫ R

−R

(̺2 − 1)ϕ′ +
1

2

∫ R

−R

ϕ′,

for any R > 0. The conclusion then follows as above.

Proof of Lemma 2. Let V0 ∈ Z1 and w ∈ H1(R). Since

w(x) → 0, as |x| → +∞, (2.4)

and since V0 admits limits at infinity, so does V0 +w.

Next, expanding

(1−|V0 +w|2)2 = (1−|V0|2)2 + |w|4 +4(〈V0, w〉)2 −4(1−|V0|2−|w|2)(〈V0, w〉)−2(1−|V0|2)|w|2,

and using the fact that V0 is bounded in L∞(R), as well as the fact that w and 1 − |V0|2 are
bounded in Lq(R) for any 2 ≤ q ≤ +∞, one checks that

E(w + V0) < +∞,

and therefore V0 + w ∈ Z1. Concerning formula (1.12), we have

〈i(V0 + w), (V0 + w)′〉 = 〈iV0, V
′
0〉 + 〈iw,w′〉 + 〈iw, V ′

0〉 + 〈iV0, w
′〉,

so that

PR(w + V0) = PR(V0) + PR(w) +
1

2

∫ R

−R

(

〈iw, V ′
0〉 + 〈iV0, w

′〉
)

,

for any R > 0. Integrating by parts, we obtain

∫ R

−R

〈iV0, w
′〉 = −

∫ R

−R

〈iV ′
0 , w〉 +

[

〈iV0, w〉
]R

−R
=

∫ R

−R

〈iw, V ′
0〉 +

[

〈iV0, w〉
]R

−R
,

where the last term tends to 0, as R→ +∞ by (2.4). Combining the previous identities, we are
led to

PR(w + V0) = PR(V0) + PR(w) +

∫ R

−R

〈iw, V ′
0〉 + o

R→+∞
(1), (2.5)

and (1.12) follows letting R→ +∞.

Proof of Lemma 3. It is very similar to the proof of Lemma 1. It suffices to replace (2.3) by an
equality in R/πZ,

(

PR2
(v) − 1

2

(

arg v(R2) − arg v(−R2)
)

)

−
(

PR1
(v) − 1

2

(

arg v(R1) − arg v(−R1)
)

)

=
1

2

∫ R2

R1

̺2ϕ′
+ − 1

2

(

ϕ+(R2) − ϕ+(R1)
)

+
1

2

∫ −R1

−R2

̺2ϕ′
− − 1

2

(

ϕ−(−R1) − ϕ−(−R2)
)

=
1

2

∫ R2

R1

(̺2 − 1)ϕ′
+ +

1

2

∫ −R1

−R2

(̺2 − 1)ϕ′
−,

(2.6)

and the remaining part of the proof is identical.

12



Proof of Lemma 4. Again, it is almost identical to the proof of Lemma 2, the conclusion being
obtained by subtracting one half of arg(w + V0)(R) − arg(w + V0)(−R) from both sides (2.5)
and noticing that in view of (2.4), arg(w + V0)(±R) − argV0(±R) tends to 0, as R→ +∞.

We will also use the continuity of the untwisted momentum.

Lemma 10. The untwisted momentum [p] is a locally Lipschitz continuous map from X 1 to

R/πZ for the distance dA,X 1.

Proof. Let u ∈ X 1 be given and R > 0 be such that |u(x)| ≥ 1
2 on R \ (−R,R). If δ > 0 is

sufficiently small, and if v ∈ X 1 is such that dA,X 1(u, v) ≤ δ, then |v(x)| ≥ 1
3 on R \ (−R,R).

We then have, in view of (2.6) and the definition of [p],

[p](u) − [p](v) =
(

PR(u) − PR(v)
)

− 1

2

(

arg u(R) − arg v(R)
)

+
1

2

(

arg u(−R) − arg v(−R)
)

+
1

2

∫ −R

−∞

(

(|u|2 − |v|2)ϕ′
u,− + (|v|2 − 1)(ϕ′

u,− − ϕ′
v,−)

)

+
1

2

∫ +∞

R

(

(|u|2 − |v|2)ϕ′
u,+ + (|v|2 − 1)(ϕ′

u,+ − ϕ′
v,+)

)

mod π,

(2.7)

where ϕu,± and ϕv,± denote representatives for the phases of u and v on (−∞,−R] and [R,+∞).
By Cauchy-Schwarz inequality, the terms in the last two lines of (2.7) are bounded by a constant
(which depends only on E(u)) times dA,X 1(u, v). By Cauchy-Schwarz inequality and Sobolev
embedding theorem, the terms in the first line of (2.7) are bounded by a constant (which depends
on R and E(u)) times dA,X 1(u, v). This completes the proof of Lemma 10.

Remark 6. Refining the proof of Lemma 10 by using the decomposition in Lemma 7, one could
actually show that the local Lipschitz constant depends only on a bound on E(u), and not on
R.

In our study of the minimization problem Emin(
π
2 ), we shall need the following construction.

Lemma 11. Let 0 < |q| ≤ 1
32 and 0 ≤ µ ≤ 1

4 . There exists some number ℓ > 1, and a map

w = |w| exp iψ ∈ H1([0, ℓ]), such that

w(0) = w(ℓ),
∣

∣1 − |w(0)|
∣

∣ = µ, (2.8)

q =
1

2

∫ ℓ

0
|w|2ψ′, (2.9)

and

E(w) ≤ 14|q|. (2.10)

Proof. Consider the functions f1 and ψ1 defined on the interval [0, 2] by

f1(s) = s on
[

0,
1

2

]

, f1(s) = 1 − s on
[1

2
, 1

]

, and f1(s) = 0 on
[

1, 2
]

,

and
ψ1(s) = s on [0, 1], and ψ1(s) = 2 − s on [0, 1].
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For a given positive number λ, we consider the functions defined on [0, 2λ] by

fλ(s) =
1

λ
f
( s

λ

)

, and ψλ(s) = ψ
( s

λ

)

,

so that |fλ| ≤ 1
2λ

, |ψ′
λ| = 1

λ
, fλ(0) = fλ(2λ) = 0, ψλ(0) = ψλ(2λ) = 0, and

∫ 2λ

0
fλψ

′
λ =

1

4λ
,

∫ 2λ

0
fλ =

1

4
,

∫ 2λ

0
f2

λ =
1

12λ
,

∫ 2λ

0
(f ′λ)2 =

1

λ3
, and

∫ 2λ

0
(ψ′

λ)2 =
2

λ
. (2.11)

We then choose λ = 1
8|q| , so that, 1

λ
≤ 1

4 , introduce a new parameter δ > 0 to be determined
later, and consider the function

ρλ,δ =
√

1 − δ − fλ,

so that 1 − ρ2
λ,δ = fλ + δ. It follows from our choice of parameter λ that

|q| =
1

2

∫ 2λ

0
fλψ

′
λ =

1

2

∫ 2λ

0
(fλ + δ − 1)ψ′

λ = −1

2

∫ 2λ

0
ρ2

λ,δψ
′
λ. (2.12)

We finally choose ℓ = 2λ and

w =

{

ρλ,δ exp(−iψλ), if q > 0,
ρλ,δ exp iψλ, if q < 0.

Condition (2.9) is fulfilled with this choice of w in view of (2.12). Moreover, by construction,
w(0) = w(ℓ) =

√
1 − δ, so that conditions (2.8) are satisfied for any δ ≤ µ2. We finally compute

E(w) =

∫ 2λ

0

(

(f ′λ)2

8(1 − δ − fλ)
+

(

1 − δ − fλ

)(ψ′
λ)2

2
+
f2

λ

4
+
δfλ

2
+
δ2

4

)

,

so that, since

0 ≤ fλ + δ ≤ 1

2λ
+ δ ≤ µ2 +

1

8
≤ 1

2
,

it follows from (2.11) that

E(w) ≤
∫ 2λ

0

(

(f ′λ)2

4
+

(ψ′
λ)2

2
+
f2

λ

4
+
δfλ

2
+
δ2

4

)

≤ 1

4λ3
+

1

λ
+

1

48λ
+
δ

8
+
δ2λ

2
.

Inequality (2.10) follows choosing δ = min{µ2, 1
λ
}.

3 Proofs of Theorem 4 and Corollary 1

In this section, we undertake the study of sequences (un)n∈N in the space X 1 verifying

[pn] ≡ [p](un) → π

2
,

and

E(un) → Emin

(π

2

)

, as n→ +∞.

(3.1)

This study will eventually lead us to the proofs of Theorem 4 and Corollary 1. We first have
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Lemma 12. Let (un)n∈N be a sequence of maps satisfying (3.1). Then, there exist a subsequence

(uσ(n))n∈N and a solution vc to (TWc) such that

uσ(n) ⇀ vc in H1([−B,B]), as n→ +∞,

for any B > 0 Moreover, when vc is not identically constant, there exist some numbers θ and a
such that vc = exp iθ vc(· + a).

Proof. Since (E(un))n∈N is bounded by assumption (3.1), it follows from standard compactness
results that there exists a subsequence (uσ(n))n∈N, and a map u ∈ H1

loc(R) such that

uσ(n) ⇀ u in H1([−B,B]), as n→ +∞,

for any B > 0. It remains to prove that the limiting map u solves (TWc) on (−B,B). For that
purpose, we consider a smooth map ξ, with compact support in (−B,B), such that

∫

R

〈iu, ξ′〉 = 0. (3.2)

We claim that, for any t sufficiently small,
∫ B

−B

e(uσ(n) + tξ) ≥
∫ B

−B

e(uσ(n)) +O(t2) + o(1)
n→+∞

. (3.3)

To establish the claim, we first expand the momentum [p](un + tξ), using formula (1.15) of
Lemma 4. We obtain in R/πZ,

[p](un + tξ) = [p](un) + t

∫

R

〈iun, ξ
′〉 +O(t2)

= [pn] +O(t2) + o(1)
n→+∞

=
π

2
+O(t2) + o(1)

n→+∞
,

(3.4)

so that, setting qn,t = π
2 − [p](un + tξ), we are led to

qn,t = O(t2) + o(1)
n→+∞

.

We next construct a comparison map vn,t for Emin(
π
2 ) applying several modifications to the map

un + tξ. For that purpose, we invoke Lemma 11 with q = qn,t, and µ = µn,t = inf{1
4 ,

1
2νn,t},

where µn,t = sup{|1− |un(x)||, x ∈ [−B,B]}. This yields a positive number ℓn,t > 1, and a map
wn,t = |wn| exp iψn, defined on [0, ℓn(t)] such that

wn(0) = wn(ℓn,t), and
∣

∣1 − |wn,t(0)|
∣

∣ = µn,t,

and such that

qn,t =
1

2

∫ ℓn,t

0
|wn,t|2ψ′

n,

and
E(wn,t) ≤ 14|qn,t| = O(t2) + o(1)

n→+∞
. (3.5)

In view of the mean value theorem, there exists some point xn in [B,+∞) such that |un(xn)| =
|wn,t(0)|. Multiplying possibly wn,t by some constant of modulus one, we may therefore assume,
without loss of generality, that un(xn) = wn(0). We define the comparison map vn,t as follows

vn,t(x) = un(x) + tξ(x), ∀x < xn,

vn,t(x) = wn(x− xn), ∀xn ≤ x ≤ xn + ℓn,t,

vn,t(x) = un(x− ℓn,t) + tξ(x− ℓn,t), ∀x ≥ xn + ℓn,t.

(3.6)
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We verify that vn,t belongs to X 1 and that

E(vn,t) = E(un + tξ) + E(wn,t), and [p](vn,t) = [p](un + tξ) + qn,t =
π

2
mod π, (3.7)

so that vn,t is a comparison map for Emin(
π
2 ). Therefore we have

E(vn,t) ≥ Emin

(π

2

)

. (3.8)

On the other hand, we have in view of assumption (3.1),

E(un) = Emin

(π

2

)

+ o(1)
n→+∞

, (3.9)

whereas, since ξ has compact support in (−B,B),

E(un + tξ) − E(un) =

∫ B

−B

(

e(un + tξ) − e(un)
)

. (3.10)

Combining (3.10) with (3.9), (3.8) and (3.5), we establish claim (3.3).

To complete the proof of Lemma 12, we expand the integral in (3.3) so that

t

∫ B

−B

(

u′nξ
′ − ξun(1 − |un|2)

)

≥ O(t2) + o(1)
n→+∞

.

We then let n tend to +∞. This yields, in view of the compact embedding of H1([−B,B]) in
C0([−B,B]),

t

∫ B

−B

(

u′ξ′ − ξu(1 − |u|2)
)

≥ O(t2).

Letting t tend to 0+ and 0−, we deduce

∫ B

−B

(

u′ξ′ − ξu(1 − |u|2)
)

= 0,

that is integrating by parts,
∫

R

(

u′′ + u(1 − |u|2)
)

ξ = 0.

Since ξ is any arbitrary function with compact support verifying (3.2), this shows that there
exists some constant c such that u solves (TWc). Since any non-constant solution to (TWc) is
of the form u = exp iθ vc(· + x̃) for some −

√
2 < c <

√
2, this yields the conclusion.

Remark 7. Notice that, in the context of Lemma 12, we have, as a consequence of lower-
semicontinuity and compact embedding theorems,

∫ B

−B

e(vc) ≤ lim inf
n→+∞

∫ B

−B

e(uσ(n)). (3.11)

Moreover if vc has no zero on [−B,B], then this is also the case for uσ(n), at least for n sufficiently
large, and we may therefore write on [−B,B], uσ(n) = ̺σ(n) exp iϕσ(n), and vc = ̺c exp iϕc. We
then have

∫ B

−B

(̺2
c − 1)ϕ′

c = lim
n→+∞

∫ B

−B

(̺2
σ(n) − 1)ϕ′

σ(n). (3.12)
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It might happen that the limit map provided by Lemma 12 is a constant of modulus one.
To capture the possible losses at infinity, we need to implement a concentration-compactness
argument. Assuming first that there exists some positive constant δ0 such that

inf
x∈R

|un(x)| ≥ δ0,

for any n ∈ N, we are led to

|p(un)| ≤ E(un)√
2δ0

,

in view of Corollary 3. Hence, it follows from (1.14) and (3.1) that, up to some subsequence,
there exists some integer k̃ such that

p(un) → π

2
+ k̃π, as n→ +∞. (3.13)

Setting

δ(un) = 1 − E(un)√
2|p(un)|

,

we deduce from (3.1) that

δ(un) → δπ
2
≡ 1 − Emin(

π
2 )√

2
∣

∣

π
2 + k̃π

∣

∣

≥ 1 −
√

2E(v0)

π
= 1 − 4

3π
> 0,

as n→ +∞. Invoking Lemma 7, and Corollary 3, we may assert

Proposition 2. Let (un)n∈N be a sequence of maps satisfying (3.1). There exists an integer ℓ,
depending only on δπ

2
, and there exist ℓn points xn

1 , . . ., xn
ℓn

satisfying ℓn ≤ ℓ, such that

∣

∣1 − |un(xn
i )|

∣

∣ ≥
δπ

2

4
, ∀1 ≤ i ≤ ℓn,

and
∣

∣1 − |un(x)|
∣

∣ ≤
δπ

2

4
, ∀x ∈ R \ ℓn∪

i=1

[

xn
i − 1, xn

i + 1
]

,

provided n is sufficiently large.

Passing possibly to a further subsequence, we may assume that the number ℓn does not depend
on n, and set ℓ = ℓn. A standard compactness argument shows that, passing again possibly to
another subsequence, and relabelling possibly the points xn

i , we may find some integer 1 ≤ ℓ̃ ≤ ℓ,
and some number R > 0 such that

|xn
i − xn

j | → +∞, as n→ +∞, ∀1 ≤ i 6= j ≤ ℓ̃, (3.14)

and

xn
j ∈ ℓ̃∪

i=1
(xn

i −R,xn
i +R), ∀ℓ̃ < j ≤ ℓ. (3.15)

Going back to Proposition 2, we deduce

∣

∣1 − |un(x)|
∣

∣ ≤
δπ

2

4
, ∀x ∈ R \ ℓ̃∪

i=1
(xn

i −R− 1, xn
i +R+ 1), (3.16)

so that, invoking Lemma 8, we have on R \ ℓ̃∪
i=1

(xn
i −R− 1, xn

i +R+ 1),

1

2

∣

∣

∣
(|un|2 − 1)ϕ′

n

∣

∣

∣
≤ e(un)

√
2
(

1 − δ π
2

4

)
. (3.17)

We are now in position to provide the proof to Theorem 4.
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Proof of Theorem 4. Since the aim of Theorem 4 is to provide a subsequence, we may extract
subsequences as many times we wish. In our notation, we will not distinguish the subsequence
from the original one and will still denote it (un)n∈N. We claim

Claim 1. There exists a subsequence (un)n∈N such that inf
x∈R

|un(x)| tends to 0, as n→ +∞, that

is

∃an ∈ R s.t. un(an) → 0, as n→ +∞.

In this case, we apply Lemma 12 to the sequence un(·+ an)n∈N . This shows, that given any
arbitrary number B > A, there exists a subsequence (un)n∈N and a solution vc to (TWc) such
that

un(· + an) ⇀ vc in H1([−B,B]), as n→ +∞. (3.18)

In particular, by compact embedding theorem, the convergence is uniform on the interval
[−B,B]. It follows therefore from Claim 1 that

vc(0) = 0.

Hence, c = 0, since v0 is the only travelling wave which has a vanishing point, and there exist
some number θ such that vc = exp iθ v0. We have therefore, in view of (3.11),

∫ B

−B

e(v0) ≤ lim inf
n→+∞

∫ B+an

−B+an

e(un) ≤ E(v0), (3.19)

for any B > 0. Given any small ε > 0, we choose B = Bε so that

∫

|x|>Bε

e(v0) ≤
ε

2
,

and nε such that

E(un) ≤ E(v0) +
ε

2
,

for any n ≥ nε. Combining with (3.19), we obtain

∫

|x−an|>Bε

e(un) ≤ ε,

for n ≥ nε, that is
∫

|x−an|>Bε

(

(u′n)2 + (1 − |un|2)2
)

≤ 4ε.

Combining with (3.18), the conclusion follows.

Proof of Claim 1. Assume by contradiction that there exists δ0 > 0, such that up to a subse-
quence (un)n∈N, we have

inf
x∈R

|un(x)| ≥ δ0,

for any n ∈ N. In this case, we may write un = ̺n exp iϕn, and we may apply Proposition 2 to
the sequence (un)n∈N, so that we may assume that it satisfies (3.14), (3.16) and (3.17).

We then divide the proof into several steps.

Step 1. Given any 1 ≤ i ≤ ℓ̃, there exists some numbers ci ∈ (−
√

2,
√

2) \ {0}, x̃i and θi such

that

un(· + xn
i ) ⇀ exp iθi vci

(· + x̃i) in H1
loc(R), as n→ +∞.
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Applying Lemma 12 to the sequence un(·+xn
i )n∈N yields the existence of the limiting solution

vci
to (TWc). It remains to prove that the function vci

is neither a constant function, nor the
kink v0. This is a consequence of the fact that

|un(xn
i )| ≤ 1 −

δπ
2

4
, and |un(x)| ≥ δ0, ∀x ∈ R,

so that, since we have uniform convergence on compact sets, we obtain

|vci
(0)| ≤ 1 −

δπ
2

4
, and |vci

(x)| ≥ δ0, ∀x ∈ R.

Step 2. Given any number µ > 0, there exist a number Aµ > 0, and nµ ∈ N, such that, if

n ≥ nµ, then
∫

ℓ̃
∪

i=1

(xn
i −Aµ,xn

i +Aµ)
e(un) ≥

ℓ̃
∑

i=1

E(vci
) − µ,

and
∣

∣

∣

∣

1

2

∫

ℓ̃
∪

i=1

(xn
i −Aµ,xn

i +Aµ)
(̺2

n − 1)ϕ′
n −

ℓ̃
∑

i=1

pi

∣

∣

∣

∣

≤ µ,

where pi = p(vci
).

To prove Step 2, we choose Aµ > R+ 1 so that, for any 1 ≤ i ≤ ℓ̃, we have

∫ Aµ

−Aµ

e(vci
) ≥ E(vci

) − µ

2ℓ̃
,

and
1

2

∣

∣

∣

∣

∫ Aµ

−Aµ

(

(|vci
|2 − 1)ϕ′

ci

)

− pi

∣

∣

∣

∣

≤ µ

2ℓ̃
.

The conclusion follows from the convergences stated in (3.11) and (3.12).

Step 3. We have

∣

∣

∣

∣

1

2

∫

R\
ℓ̃
∪

i=1

(xn
i −Aµ,xn

i +Aµ)
(̺2

n − 1)ϕ′
n

∣

∣

∣

∣

≤ 1
√

2
(

1 − δ π
2

4

)

∫

R\
ℓ̃
∪

i=1

(xn
i −Aµ,xn

i +Aµ)
e(un).

To establish this inequality, it is sufficient to integrate (3.17).

Passing possibly to a further subsequence, we may assume that there exist some numbers pµ

and Eµ such that

1

2

∫

R\
ℓ̃
∪

i=1

(xn
i −Aµ,xn

i +Aµ)
(̺2

n − 1)ϕ′
n → pµ, and

∫

R\
ℓ̃
∪

i=1

(xn
i −Aµ,xn

i +Aµ)
e(un) → Eµ, as n→ +∞,

so that Step 3 yields
√

2
(

1 −
δπ

2

4

)

|pµ| ≤ Eµ.

On the other hand, we have by (3.13),

p(un) → π

2
+ k̃π, as n→ +∞.
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Going back to Step 2, and letting n→ +∞, we are led to the estimates

∣

∣

∣

∣

π

2
+ k̃π −

ℓ̃
∑

i=1

pi − pµ

∣

∣

∣

∣

≤ µ, and Emin

(π

2

)

≥
ℓ̃

∑

i=1

Emin(pi) + Eµ − µ.

Letting µ→ 0, we may assume that for some subsequence (µm)m∈N tending to 0, we have

pµm → p̃, and Eµm → Ẽ, as m→ +∞.

Our previous inequalities then yield

π

2
+ k̃π =

ℓ̃
∑

i=1

pi + p̃,

Emin

(π

2

)

≥
ℓ̃

∑

i=1

Emin(pi) + Ẽ,

(3.20)

with
√

2
(

1 −
δπ

2

4

)

|p̃| ≤ Ẽ. (3.21)

Step 4. The contradiction.

Notice first that

E(v0) =
2
√

2

3
≥ Emin

(π

2

)

,

so that it follows from the strict concavity of the curve p 7→ Emin(p) that

Emin(pi) >
4
√

2

3π
|pi| ≥

2Emin(π
2 )

π
|pi|,

for any 1 ≤ i ≤ ℓ̃. Next, by (3.21),

Ẽ ≥
√

2
(

1 −
δπ

2

4

)

|p̃| ≥
√

2
(

1 − δπ
2

)

|p̃| ≥ 2Emin(
π
2 )

π
|p̃|,

where the second inequality is strict unless p̃ = 0. By summation, we therefore obtain in view
of (3.20),

Emin

(π

2

)

≥
ℓ̃

∑

i=1

Emin(pi) + Ẽ >
2Emin(π

2 )

π

( ℓ̃
∑

i=1

|pi| + |p̃|
)

≥ Emin

(π

2

)2|π2 + k̃π|
π

≥ Emin

(π

2

)

,

which yields the desired contradiction.

4 Conservation laws for (GP)

The purpose of this section is to prove Proposition 1 as well as a localised version of (1.21).

We first recall (see e.g. [5, 4, 6]) that whenever the initial datum v0 belongs to the space

X k =
{

w ∈ L∞(R), s.t. w′ ∈ Hk−1(R) and 1 − |w|2 ∈ L2(R)
}

,

for some integer k ≥ 1, the unique global solution v provided by Theorem 1 is in C0(R,X k), and
moreover,

t 7→ v(t) − v0 ∈ C0(R,Hk(R)). (4.1)
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Proof of Proposition 1. Let v0 ∈ X 1 be given, and assume first that v0 ∈ X 2. We write

v(t) = v0 +w(t),

so that w ∈ C0(R,H2(R)) by (4.1), and satisfies

iwt + wxx = −v0xx + (w + v0)(|w + v0|2 − 1). (4.2)

By Lemma 4, we have

[p](v(t)) = [p](v0) +
1

2

∫

R

〈iw(t), wx(t)〉 +

∫

R

〈iw(t), v0x〉 mod π, (4.3)

for any t ∈ R. It follows from (4.2) and Sobolev embedding theorem that w ∈ C1(R, L2(R)).
Since w also belongs to C0(R,H1(R)), both of the integrals in (4.3) are differentiable with respect
to t on R and we have integrating by parts,

d

dt

(

[p](v(t))
)

|t=s

=

∫

R

〈ivt(s), vx(s)〉

=

∫

R

〈−vxx(s) + v(s)
(

|v(s)|2 − 1
)

, vx(s)〉

=

∫

R

∂x

(

− 1

2
(vx(s))2 +

1

4
(1 − |v(s)|2)2

)

= 0.

In case v0 ∈ X 1 \ X 2, we approximate v0 by a sequence (v0,n)n∈N in X 2(R) (e.g. by molli-
fication) for the H1-norm, and use the continuity of the flow map w(0) 7→ w(t) for (4.2) from
H1(R) to C0([−T, T ],H1(R)) for any fixed T > 0 (see [5, 4, 6]), and the continuity of [p] for the
H1-norm.

If v0 ∈ Z1 ∩X 2, it follows from the embedding of H2(R) into C0
0(R), that v(t) ∈ Z1 ∩X 2 for

any t ∈ R. In view of Lemma 2, it then suffices to replace (4.3) by

P(v(t)) = P(v0) +
1

2

∫

R

〈iw(t), wx(t)〉 +

∫

R

〈iw(t), v0x〉,

and to repeat the argument above. When v0 ∈ Z1, one also argues by approximation.

The following is a (rigorous) localised version of the evolution law for the center of mass.

Proposition 3. Let χ ∈ C∞
c (R) be given and let v0 ∈ X 1. We denote by v the solution to (GP)

with initial datum v0. Then,

d

dt

∫

R

x
(

|v(x)|2 − 1
)

χ(x)dx = 2

∫

R

〈iv(x), vx(x)〉(xχ(x))xdx, ∀t ∈ R. (4.4)

Proof. Since v ∈ C1(R,H−1
loc (R)) ∩ C0(R,H1

loc(R)), we may differentiate under the integral sign,
which yields

d

dt

∫

R

x
(

|v(x)|2 − 1
)

χ(x)dx = 2

∫

R

x〈v(x), ∂tv(x)〉χ(x)dx

= 2

∫

R

x〈v(x), ivxx(x) + iv(x)
(

1 − |v(x)|2
)

〉χ(x)dx

= 2

∫

R

〈iv(x), vx(x)〉(xχ(x))xdx.

Formula (4.4) is particularly interesting when χ is an approximation of unity since, if one
could take χ ≡ 1, the right-hand side of (4.4) would represent 4P (v).
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5 Proofs of Theorem 2 and Theorem 3

Proof of Theorem 2. By contradiction, assume that there exist some numbers ε > 0 and A > 0,
a sequence (v0,n)n∈N in X 1 verifying

dA,X 1(v0,n, v0) → 0, as n→ +∞, (5.1)

and a sequence of times (tn)n∈N such that

inf
(a,θ)∈R2

dA,X 1(vn(· + a, tn), exp iθ v0(·)) ≥ ε, (5.2)

where vn is the solution to (GP) with initial datum v0,n. It follows from (5.1) and the continuity
of E and [p] with respect to dA,X 1 (see Lemma 10) that

[p](v0,n) → [p](v0) =
π

2
, and E(v0,n) → E(v0) = Emin

(π

2

)

, as n→ +∞.

Since E and [p] are conserved by the flow, we infer that

[p]
(

vn(·, tn)
)

→ [p](v0) =
π

2
, and E

(

vn(·, tn)
)

→ E(v0) = Emin

(π

2

)

, as n→ +∞.

We may therefore apply Theorem 4 to the sequence (vn(·, tn))n∈N, which yields a contradiction
to (5.2).

Proof of Theorem 3. Using the invariances of (GP), we claim that it is sufficient to prove

Claim 2. Given any ε > 0 and A > 0, there exists some constant K, only depending on A, and

some positive number δ > 0 such that, if v0 and v are as in Theorem 2 and if (1.5) holds, then

|a(t)| ≤ Kε,

for any t ∈ [0, 1], and for any of the points a(t) satisfying inequality (1.6) for some θ(t) ∈ R.

Indeed, consider the positive numbers δε,A provided by Claim 2. In view of Theorem 2, there
exists some positive number δ such that, if (1.5) holds, then, for any t ∈ R, there exist numbers
a(t) and θ(t) such that

dA,X 1

(

v(· + a(t), t), exp iθ(t) v0(·)
)

< δε,A.

Given any real number t0, we then denote w0(x) = exp(−iθ(t0)) v(x + a(t0), t0), and consider
the solution w to (GP) with initial datum w0. It follows from the definition of δε,A and Claim
2 that, for any s ∈ [0, 1], and for any numbers ã(s) and θ̃(s) such that

dA,X 1

(

w(· + ã(s), s), exp iθ̃(s) v0(·)
)

< ε,

we have
|ã(s)| ≤ Kε. (5.3)

On the other hand, it follows from the uniqueness of the solutions to (GP) that

v(x, t) = exp iθ(t0) w
(

x− a(t0), t− t0
)

,

so that the points a(t) satisfying inequality (1.6) for some t ∈ [t0, t0 + 1] and some θ(t) ∈ R, are
given by

a(t) = a(t0) + ã(t− t0).
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Hence, by (5.3),
|a(t) − a(t0)| ≤ Kε,

for any real numbers t0 and t such that |t− t0| ≤ 1, so that

|a(t) − a(0)| ≤ Kε(1 + |t|).

This completes the proof of Theorem 3, assuming that δ is chosen sufficiently small so that we
can choose a(0) = 0.

We finally prove Claim 2.

Proof of Claim 2. Let χ ∈ C∞
c (R, [0, 1]) be even, and such that χ ≡ 1 on [−1, 1] and χ ≡ 0

outside [−2, 2], and denote by χR the function χR(x) ≡ χ( x
R

), for any R > 1. In view of the
antisymmetry of v0 with respect to reflexion, we have

Ga(v0) ≡
1

2m(v0)

∫

R

x
(

|v0(x− a)|2 − 1
)

dx = a,

for any a ∈ R, so that, in view of the exponential decay of |v0|2 − 1 at infinity,

Ga,R(v0) ≡
1

2m(v0)

∫

R

x
(

|v0(x− a)|2 − 1
)

χR(x)dx→ Ga(v0) = a, as R→ +∞,

uniformly with respect to a ∈ [−1, 1]. We fix R > 1 such that

|Ga,R(v0) − a| ≤ ε, (5.4)

for any a ∈ [−1, 1], so that any shift a may be controlled by the quantity Ga,R(v0), up to some
error term ε, provided that |a| ≤ 1.

Since v0 is real-valued, we also have

∫

R

〈i exp iθ v0(x− a), ∂x

(

exp iθ v0(x− a)
)

〉∂x(xχR(x))dx = 0,

for any (a, θ) ∈ R
2. By Cauchy-Schwarz inequality and the definition of dA,X 1, we therefore

infer that there exists some constant K ≥ 1, depending possibly on A, such that if

dA,X 1

(

v(· + a(t), t), exp iθ(t) v0

)

≤ ε, (5.5)

for ε sufficiently small, then

∣

∣

∣

∣

1

m(v0)

∫

R

〈iv(x, t), ∂xv(x, t)〉∂x(xχR(x))dx

∣

∣

∣

∣

≤ Kε, (5.6)

and moreover,

∣

∣

∣

∣

Ga(t),R(v0) −
1

2m(v0)

∫

R

x
(

|v(x, t)|2 − 1
)

χR(x)dx

∣

∣

∣

∣

≤ Kε. (5.7)

Notice that we may assume that 40Kε ≤ 1 for ε sufficiently small. Proposition 3 now gives

∫

R

x
(

|v(t)|2 − 1
)

χR −
∫

R

x
(

|v0|2 − 1
)

χR = 2

∫ t

0

∫

R

〈iv(x, s), ∂xv(x, s)〉∂x(xχR(x))dxds,
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so that, by (5.6) and (5.7),

∣

∣

∣
Ga(t),R(v0) −Ga(0),R(v0)

∣

∣

∣
≤ 3Kε. (5.8)

Provided that |a(t)| ≤ 1 and |a(0)| ≤ 1, we conclude, in view of (5.4), that

∣

∣a(t) − a(0)
∣

∣ ≤ 5Kε. (5.9)

We finally choose δ so that (5.5) holds for any t ∈ [−1, 1] according to Theorem 2, and we may
moreover take a(0) = 0. Claim 2 follows provided that we may prove e.g. that |a(t)| < 1

2 for
any t ∈ [0, 1].

Assume by contradiction that there exists 0 ≤ t∗ ≤ 1 and some (a(t∗), θ(t∗)) for which (5.5)
holds, but |a(t∗)| ≥ 1

2 . Without loss of generality, we may assume that t∗ is minimal with respect
to that property, so that

|a(t)| ≤ 5Kε, (5.10)

for any t ∈ [0, t∗). In view of (5.5), we obtain

dA,X 1

(

exp iθ(t∗) v0(· − a(t∗)), exp iθ(t) v0(· − a(t)
)

≤ dA,X 1

(

v(·, t∗), v(·, t)
)

+ 2ε.

In view of the continuity of the map t 7→ v(t) with respect to the distance dA,X 1 (see [6]), we
are led to

dA,X 1

(

exp iθ(t∗) v0(· − a(t∗)), exp iθ(t) v0(· − a(t))
)

≤ 3ε, (5.11)

for any t sufficiently close to t∗. On the other hand, if

inf
θ∈R

∫

R

|v′0(x) − exp iθ v′0(x− a)|2dx ≤ 9ε2,

for ε sufficiently small, then we have |a| ≤ 1
8 , so that, by (5.10) and (5.11),

|a(t∗)| ≤ |a(t∗) − a(t)| + |a(t)| ≤ 1

8
+ 5Kε ≤ 1

4
,

which provides the required contradiction.
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