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A system of grabbing particles

related to Galton-Watson trees

Jean Bertoin∗ Vladas Sidoravicius † Maria Eulalia Vares ‡

Abstract

We consider a system of particles with arms that are activated randomly to grab other

particles as a toy model for polymerization. We assume that the following two rules are

fulfilled: Once a particle has been grabbed then it cannot be grabbed again, and an arm

cannot grab a particle that belongs to its own cluster. We are interested in the shape of

a typical polymer in the situation when the initial number of monomers is large and the

numbers of arms of monomers are given by i.i.d. random variables. Our main result is a

limit theorem for the empirical distribution of polymers, where limit is expressed in terms

of a Galton-Watson tree.

1 Introduction

We consider a system of interacting particles which might be used as a toy model for the

formation of certain polymers. Roughly speaking, each particle possesses a certain number of

arms that are activated successively at random to grab other particles. When an arm becomes

active, it creates an oriented edge from the particle with the activated arm to the particle

which has been grabbed, so the system describes the evolution of clusters of vertices with some

inactive arms which are connected by oriented edges. As time passes, the number of inactive

arms diminishes whereas the connectivity in the system increases by the creation of new edges.

We impose the rules that once a particle has been grabbed, then it cannot be grabbed again, and

that each time an arm is activated, it grabs a particle which does not belong to its own cluster.

The latter requirement impedes the formation of cycles; thus the structure that connects each
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cluster of particles is given by a tree and the terminal configuration obtained when all arms

have been activated can be described as a random forest.

We are mainly interested in the case when the number of particles is large, and more precisely,

in the situation when the empirical distribution of the number of arms converges to some

probability measure µ on Z+ as the number of particles goes to infinity. Thinking of these

particles as monomers, our goal is to get information about the statistics of a typical polymer

structure when the polymerization process is completed. In this direction, we shall consider the

slightly different setting where the sequence of the number of arms is given by i.i.d. random

variables with law µ, which is simpler to analyze. Loosely speaking, we will show that when the

number of particles goes to infinity, a typical tree (i.e. a tree chosen uniformly at random in the

terminal forest) tends to be distributed as a Galton-Watson tree with reproduction law given

by the distribution of the number of arms of a typical particle. This result is perhaps quite

intuitive; however providing a rigorous argument is not so straightforward, and this motivates

the present work.

The remainder of this paper is organized as follows. The grabbing particle system is presented

formally in the next section, in the situation when the number of particles is finite and the

number of arms of each particle is deterministic. In Section 3, we consider the case when

the number of arms is random and given by a sequence of i.i.d. variables, and we make the

connexion with Galton-Watson processes. More precisely, we shall show that conditionally on

the total number of arms, the distribution of the terminal configuration is that of a Galton-

Watson forest with a given number of trees, conditioned by its total size. Finally Section 4 is

devoted to the asymptotic study of the empirical measure of trees in the terminal configuration

when the number of particles tends to infinity.

2 The grabbing particle system

Consider n ≥ 2 particles which are labeled by 1, . . . , n. Each particle, say i, consists in a

vertex to which a certain number xi ∈ Z+ of arms are attached. Arms can be either active

or inactive. An active arm attached to i is an oriented edge i → j linking i to another vertex

j 6= i, whereas an inactive arm is an incomplete oriented edge i → where only the left-end is

specified. Initially, every arm is inactive, and once an arm has been activated, it remains active

forever. We assume that the total number of arms is less than the number of particles, i.e.

x1 + · · · + xn = n − k for some k ∈ N. (2.1)

We then enumerate these n − k arms uniformly at random, which specifies the order at which

they are activated.
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Specifically, suppose that the first arm to be activated belongs to the particle i. Then at

time 1, this arm grabs a particle j 6= i chosen uniformly at random amongst the other n − 1

particles. The system at time 1 thus consists in n−2 isolated particles with inactive arms, and

a cluster of two particles, i and j, connected by an oriented edge i → j which is labeled by 1.

The particle i has still xi − 1 inactive arms, and the particle j has kept its xj inactive arms;

inactive arms are labeled by 2, . . . , n − k. We iterate in an obvious independent manner, with

the rules that every particle can be grabbed by at most one arm, and that each time an arm is

activated, it grabs a particle from a different cluster.

It is convenient to depict the evolution of the system in the upper half-plane by introducing

some further orderings which are of course irrelevant for the dynamics. Specifically, imagine

that initially, particles lie on the horizontal axis, such that the initial order from the left to

the right is uniformly random. We may then think of the xi arms attached to the particle i as

vectors making an angle ℓπ/(xi + 1) for ℓ = 1, . . . , xi with the (directed) horizontal axis. If, as

above, the first arm to be activated belongs to the particle i and grabs particle j, then at time

1, the particle j (together with its arms) is shifted at the right-end of the first arm. See Figure

1 for this first step of the evolution of the system (with n = 7, k = 2, i = 6 and j = 5).
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Figure 1 : planar representation of a grabbing particle system

at times t = 0 (left) and t = 1 (right)

We then continue by an obvious iteration. Only particles lying on the horizontal axis can

be grabbed, and each time such a particle is grabbed by the activation of an arm, it is shifted

together with its connected component to become the right-end of that arm. As time passes,

we thus obtain a growing family of planar rooted trees, where vertices may bear some further

inactive arms, and the roots are the vertices still lying on the horizontal axis, i.e. which have not

been grabbed so far. Edges and inactive arms are labeled by 1, . . . , n − k, the label of an edge

being always smaller than that of an inactive arm, and the vertices are labeled by 1, . . . , n. The

evolution reaches its final state at time n− k when all the arms have been activated; obviously

we then have a forest of k planar rooted trees with n − k labeled edges on a set of n vertices,

and the trees are ordered from the left to the right. See Figure 2 below. We stress that the

terminal configuration retains all the essential informations about evolution of the system, as
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it suffices to prune the last n − k − ℓ edges to recover the clusters of particles in the system

and their structures at time ℓ.
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Figure 2 : terminal configuration as a planar forest

We shall now describe the distribution of the terminal configuration for the grabbing particle

system. In this direction, it is convenient to introduce first the space Φn,k of planar forests with

k rooted trees on a set of n labeled vertices, with labeled edges. The choice of a root in a tree

induces an orientation of the edges in that tree, by deciding that each edge points away from

the root. In this setting, recall the notation i → j for i, j ∈ {1, . . . , n} with i 6= j to denote an

oriented edge from the vertex labeled by i to the vertex labeled by j. For any forest ϕ ∈ Φn,k

and i ∈ {1, . . . , n}, we write

di(ϕ) := Card{j ∈ {1, . . . , n}\{i} : i → j is an edge of ϕ}

for the outer-degree of the vertex labeled by i, i.e. the number of oriented edges which left-end

is the i-th vertex.

Recall that x1, . . . , xn is a sequence of nonnegative integers such that (2.1) holds. We then

denote by Φ(x1, . . . , xn) ⊂ Φn,k the subset of planar forests ϕ with k rooted trees, labeled edges

and labeled vertices, such that the outer-degree of i is di(ϕ) = xi for every i = 1, . . . , n.

Lemma 1 For every integer 1 ≤ k ≤ n and every sequence of nonnegative integers x1, . . . , xn

which fulfills (2.1), the distribution of the terminal configuration of the grabbing particle system

is given by the uniform law on Φ(x1, . . . , xn).

Proof: For ℓ = 0, . . . , n − k, let Φℓ(x1, . . . , xn) denote the set of planar configurations which

can be obtained from the grabbing particle system at time ℓ, when initially the particle i

possesses xi inactive arms for i = 1, . . . , n. In other words, Φℓ(x1, . . . , xn) is the set of planar

forests on a set of n labeled vertices, with n − ℓ rooted trees lying on the horizontal axis, to
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which a total of k − ℓ yet incomplete edges (i.e. with only a left-end) have been attached to

certain vertices, in such a way that for every i = 1, . . . , n, the number of complete or incomplete

edges with left-end i is xi. Further, complete or incomplete edges are enumerated in such a

way that complete edges are listed before the incomplete ones. In particular for ℓ = n − k, in

the notation above, there is the identity Φn−k(x1, . . . , xn) = Φ(x1, . . . , xn).

Plainly, under the assumptions made in the statement, the initial configuration has the

uniform distribution in Φ0(x1, . . . , xn). We claim that the activation of the first arm yields

a random configuration in Φ1(x1, . . . , xn) which has again the uniform distribution. Indeed,

pick an arbitrary configuration ϕ ∈ Φ1(x1, . . . , xn). There are exactly n configurations in

Φ0(x1, . . . , xn) which may possibly yield ϕ by activating the first arm. More precisely, these

are the configurations which are obtained from ϕ by pruning its unique complete edge at its

right-end, and inserting this right-end (together with its inactive arms) on the horizontal axis

relatively to the n − 1 roots of ϕ. Further, starting from any of these n configurations, the

probability of getting ϕ after activating their first arm is exactly the probability that this arm

picks the right root amongst the n − 1 possible ones, that is 1/(n − 1). This establishes our

claim.

We then can iterate this argument, showing that the terminal configuration is uniformly

distributed on Φn−k(x1, . . . , xn) = Φ(x1, . . . , xn), as stated. �

3 Connexion with Galton-Watson forests

We now turn our attention to the situation when the number of arms of particles is given by

an i.i.d. sequence of random variables. Specifically, we consider a probability measure µ on Z+

and assume that the number of arms of the i-th particle, which it is henceforth convenient to

denote by ξi, is random with law µ, and that ξ1, . . . , ξn are indepedent. We shall see that the

terminal configuration of the system can then be described in terms of a Galton-Watson forest;

in this direction, we first develop some material in this field.

Consider a Galton-Watson process with reproduction law µ, so, roughly speaking, we have

a population model with discrete non-overlapping generations, in which each individual gives

birth at the next generation to a random number of children according to the law µ and

independently of the other individuals. We shall work on the event that the total descent of

each individual is finite a.s. By ranking the ancestors and the progeny of each individual, we

can represent the process by a planar forest with rooted trees, where roots correspond to the

ancestors at the initial generation, and each tree describes a genealogy, see e.g. Section 6.2 in

Pitman [5].

We denote by Fn,k the finite set of all planar forests with k rooted trees on a set of n vertices
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(vertices and edges are not yet labeled). Recall that vertices and edges in a forest in Fn,k

can be listed by using, for instance, the depth-first search algorithm (cf. Figure 6.1 in [5] on

its page 126). In this setting, assigning labels to the n vertices (respectively, to the n − k

edges) is equivalent to choosing a permutation on {1, . . . , n} (respectively, a permutation on

{1, . . . , n−k}). Thus, if for every ℓ ∈ N, Σℓ stands for the group of permutations on {1, . . . , ℓ},

then there is the canonical identification as the product space

Φn,k = Fn,k × Σn × Σn−k .

We then introduce a product probability measure on Fn,k×Σn×Σn−k, denoted by GW
(µ)
k,n, that

can thus be viewed as the law of a triplet of independent variables. The first random variable

with values in Fn,k is a Galton-Watson forest with reproduction law µ, having k trees and

conditioned to have a total size n (assuming implicitly that this event has positive probability),

and the second and third are simply uniformly distributed on Σn and Σn−k, respectively. We

may thus think of GW
(µ)
k,n as the law on Φn,k of a random configuration which is obtained by

picking a planar forest with k rooted tree on a set of n vertices according to a Galton-Watson

process with reproduction law µ, started with k ancestors and conditioned to have total size n,

and independently enumerating the edges and the vertices uniformly at random.

Theorem 1 Let ξ1, . . . be a sequence of i.i.d. variables with law µ. Fix integers 1 ≤ k ≤ n and

work conditionally on ξ1+ · · ·+ξn = n−k, provided that the probability of this event is nonzero.

Then the distribution of the terminal configuration of the grabbing particle system started with

n particles and such that the initial number of inactive arms of the i-th particle is ξi for every

i ∈ {1, . . . , n}, is the law GW
(µ)
n,k on Φn,k.

Proof: We first work with a Galton-Watson process with reproduction law µ started with

k ancestors; the notation Pk will refer to the distribution of the process. Let (Xi)i≥0 be a

sequence of i.i.d. variables with law µ, introduce the downwards skip-free random walk Sℓ =

X1+· · ·+Xℓ−ℓ and the first-passage time T := min{ℓ ≥ 1 : Sℓ = −k}. By listing individuals in

the Galton-Watson process according to the depth-first search algorithm, it is well-known that

Pk can be identified with the distribution of the stopped sequence (Xi)1≤i≤T . More precisely,

in this setting, Xi represents the number of children of the i-th individual listed by depth-first

search.

Next pick an arbitrary planar forest f ∈ Fn,k with k rooted trees and n vertices (vertices

and edges are not labeled). The depth-first search algorithm enables us to encode f by some

sequence of integers (yi)1≤i≤n (more precisely, yi is the outer-degree of the i-th vertex found by

the depth-first search algorithm), and the probability that the genealogical forest induced by

the k ancestors of the Galton-Watson process is given by f thus equals µ(y1) · · ·µ(yn). As a
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consequence, for every permutations σ ∈ Σn and ς ∈ Σn−k, we have

GW
(µ)
n,k ((f, σ, ς)) =

µ(y1) · · ·µ(yn)

n!(n − k)!z

with z = Pk(T = n).

Then pick a planar forest ϕ with k rooted trees on a set of n labeled vertices, with labeled

edges, which belongs to the subset Φ(x1, . . . , xn). We can identify

ϕ = (f, σ, ς)

for a unique f ∈ Fn,k, σ ∈ Σn and ς ∈ Σn−k. More precisely, f is encoded via depth-first search

by the sequence (yi)1≤i≤n where xi = yσ(i), and therefore

GW
(µ)
n,k(ϕ) =

µ(x1) · · ·µ(xn)

n!(n − k)!z
.

This shows that, provided that µ(xi) > 0 for every i = 1, . . . , n, the conditional probability

GW
(µ)
n,k(· | Φ(x1, . . . , xn)) is simply the uniform law on Φ(x1, . . . , xn). We deduce by comparison

with Lemma 1 that for an arbitrary sequence of integers (xi)1≤i≤n which fulfills (2.1) and

µ(xi) > 0, the distribution of the terminal configuration in the grabbing particle system started

with n particles and such that the number of arms of the i-th particle is xi coincides with the

conditional law GW
(µ)
n,k(· | Φ(x1, . . . , xn)).

To conclude the proof, we just need to recall the following well-known consequence of the

ballot theorem (see, for instance, Lemma 6.1 in Pitman [5]). Under the conditional law Pk(· |

T = n) of the Galton-Watson process started with k ancestors and conditioned to have a total

population with size n, the sequence of the number of children of individuals listed uniformly

at random is given by a sequence of n independent random variables with law µ conditioned to

add-up to n − k. Recall that the event that this sequence is given by (x1, . . . , xn) is precisely

Φ(x1, . . . , xn). This completes the proof of the statement. �

4 Asymptotic behavior of the empirical measure

Our goal here is to investigate the asymptotic behavior of the empirical measure of the trees

resulting from the grabbing particle system started with n i.i.d. particles as n → ∞. More

precisely, we shall work with the following setting.
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Let µ be a critical or sub-critical probability measure on Z+, i.e. with mean

m :=

∞
∑

ℓ=1

ℓµ(ℓ) ≤ 1 .

Let ξ1, . . . be a sequence of i.i.d. variables with law µ, and for each n ≥ 2, set

k(n) := n − (ξ1 + · · · + ξn) .

We work conditionally on the event k(n) ≥ 1 and consider the grabbing particle system started

with n particles such that the initial number of inactive arms of the i-th particle is ξi for every i ∈

{1, . . . , n}. We write Pn for the distribution of its terminal configuration on Φn :=
⋃

1≤k≤n Φn,k,

and also denote by τ1, . . . , τk(n) the sequence of planar rooted trees in this terminal configuration,

ignoring labels on vertices and edges. That is to say that the sequence (τ1, . . . , τk(n)) is the image

of the terminal configuration by the canonical projection Φn,k(n) → Fn,k(n).

Recall that for every α ∈]1, 2], one says that µ belongs to the α-stable domain of attraction if

and only if there exists a sequence (an)n∈N of positive real numbers such that a−1
n (ξ1 + · · ·+ξn−

nm) converges in distribution as n → ∞ to some non-degenerate stable law with index α. This

holds for α = 2 if and only if the truncated second moment
∑

ℓ≤n ℓ2µ(ℓ) is slowly varying as

n → ∞, whereas for 1 < α < 2, this is equivalent to the requirement that the tail distribution

of µ, µ̄(n) :=
∑

i≥n µ(i), is regularly varying with index −α at ∞. In order to establish our

main limit theorem, we shall need the following technical result about the asymptotic behavior

of the distribution of first-passage times

Tk := inf{n ≥ 0 : ξ1 + · · · + ξn = n − k} , k ≥ 0.

Lemma 2 Assume that µ belongs to the α-stable domain of attraction for some α ∈]1, 2] and

that its support is not contained into a strict subgroup of Z. Let (an)n∈N be a sequence of positive

real numbers such that the law of a−1
n (ξ1 + · · ·+ ξn − nm) converges to an α-stable distribution

as n → ∞. Then for every fixed integers p, q and every real number b > 0 the limit

lim
P(Tk−p = n − q)

P(Tk = n)
= 1 ,

holds uniformly as k, n → ∞ such that |n(1 − m) − k| ≤ ban.

Proof: A celebrated identity of Kemperman (see, for instance, (6.3) in [5] on its page 122)

states that for every n, k ∈ N :

P(Tk = n) =
k

n
P(ξ1 + · · ·+ ξn = n − k) .
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On the other hand, our assumptions enable us to apply Gnedenko’s local limit theorem (see

Chapter 9 in Gnedenko and Kolmogorov [2]). Let gα denote the density of the limiting α-stable

distribution, we have

lim
n→∞

sup
k

∣

∣

∣

∣

anP(ξ1 + · · · + ξn = n − k) − gα

(

(1 − m)n − k

an

)∣

∣

∣

∣

= 0 .

Because the α-stable density gα is continuous and strictly positive everywhere (and thus

bounded away from 0 and ∞ on compact sets), this readily yields our claim. �

Remark : In the sub-critical case m < 1, Lemma 2 can also be deduced from a well-known

result due to Heyde (see Theorem 2 in [4], and also Theorem 2.9 in Gut [3]) which claims that

a−1
k (Tk − k/(1 − m)) converges in law as k → ∞ towards a non-degenerate α-stable variable

and a similar application of Gnedenko’s local limit theorem.

We also introduce the space of finite planar rooted trees with unlabeled edges and vertices,

T :=
⋃

ℓ≥1

Fℓ,1 .

We denote by T
(µ) the probability measure on T which is induced by the genealogical tree of

a single ancestor in a Galton-Watson process with reproduction law µ. We are now able state

our main limit theorem, which, roughly speaking, claims that the proportion of tree structures

identical to some fixed t ∈ T in the terminal configuration of the grabbing particle system

converges to T(µ)(t) in the L2-sense when the number of particles tends to infinity.

Theorem 2 Assume that µ is a critical or sub-critical probability measure on Z+ that belongs

to the α-stable domain of attraction for some α ∈]1, 2]. Then for every planar rooted tree t ∈ T ,

we have

lim
n→∞

En





∣

∣

∣

∣

∣

∣

1

k(n)

k(n)
∑

ℓ=1

1{τℓ=t} − T
(µ)(t)

∣

∣

∣

∣

∣

∣

2

 = 0 .

Proof: Note that the probability of the event k(n) ≥ 1 tends to 1 when µ is subcritical, and to

1−1/α when µ is critical. We shall therefore have to distinguish these two cases. We shall first

consider the sub-critical case; the general scheme of the proof will be the same in the critical

case, although of course some details need to be changed.

1. We assume that m < 1 and, for simplicity, that the support of µ is not contained into

a strict subgroup of Z (the modification needed to treat the opposite case is straightforward).

Since the number of trees k(n) tends to ∞ in probability as n → ∞, a standard argument

of propagation of chaos (see e.g. Sznitman [6]) reduces the proof to verifying that for every
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t1, t2 ∈ T , we have

lim
n→∞

Pn(τ1 = t1, τ2 = t2, k(n) ≥ 2) = T
(µ)(t1)T

(µ)(t2) . (4.2)

Indeed, let us take (4.2) for granted for the moment. The obvious inequality

∑

t1,t2∈T

Pn(τ1 = t1, τ2 = t2, k(n) ≥ 2) = Pn(k(n) ≥ 2) ≤ 1 =
∑

t1,t2∈T

T
(µ)(t1)T

(µ)(t2)

combined with Scheffé’s lemma show that the convergence (4.2) also holds in ℓ1(T × T ). It

follows that

lim
n→∞

Pn(τ1 = t) = T
(µ)(t) ,

and then by an argument based on exchangeability that

lim
n→∞

En





1

k(n)

k(n)
∑

ℓ=1

1{τℓ=t}



 = T
(µ)(t) .

Using again (4.2) and exchangeability, we get the asymptotic of the second moment

lim
n→∞

En









1

k(n)

k(n)
∑

ℓ=1

1{τℓ=t}





2

 = T
(µ)(t)2 ,

which establishes our claim.

So we now aim at checking (4.2). In this direction, we denote by |t| the size (number of

vertices) of a tree t ∈ T . Using Theorem 1, we know that for each fixed n ≥ 2

Pn(τ1 = t1, τ2 = t2, k(n) ≥ 2)

= cn

n
∑

k=2

P(ξ1 + · · ·+ ξn = n − k)GW
(µ)
n,k(τ1 = t1, τ2 = t2) , (4.3)

with

cn = 1/P(ξ1 + · · ·+ ξn ≤ n − 1) → 1 as n → ∞ .

Recall that m < 1 denotes the mean of the reproduction law µ, and fix an arbitrarily small real

number ε > 0. As a−1
n (ξ1 + · · · + ξn − nm) converges in distribution to some non-degenerate

stable law, we may thus find b > 0 such that

∑

k:|(1−m)n−k|≤ban

P(ξ1 + · · ·+ ξn = n − k) ≥ 1 − ε

10



whenever n is sufficiently large.

On the other hand, recall the following celebrated identity of Dwass [1]. The first passage

time process Tk = inf{n ≥ 0 : ξ1 + · · ·+ ξn = n− k} has i.i.d. increments, which have the same

distribution as the sequence of the sizes of trees in a Galton-Watson forest with reproduction

law µ. In particular the step T1 is distributed as |τ | under T(µ). By definition of the conditional

law, we have for k ≥ 3

GW
(µ)
n,k(τ1 = t1, τ2 = t2) = T

(µ)(t1)T
(µ)(t2)

P(Tk−2 = n − |t1| − |t2|)

P(Tk = n)
,

We know from Lemma 2 that the ratio in the right-hand side converges uniformly to 1 as

n, k → ∞ with |(1 − m)n − k| ≤ ban. As ε can be chosen arbitrarily small, this shows that

lim inf
n→∞

Pn(τ1 = t1, τ2 = t2, k(n) ≥ 2) ≥ T
(µ)(t1)T

(µ)(t2) .

We conclude the proof in a standard way. Specifically, from any increasing sequence of

positive integers we may extract by the diagonal procedure a sub-sequence (nj)j∈N such that

lim
j→∞

Pnj
(τ1 = t1, τ2 = t2, k(nj) ≥ 2) := ρ(t1, t2)

exists for every pair of trees (t1, t2) ∈ T 2. On the one hand, we get from Fatou’s lemma that

ρ is a sub-probability measure on T 2. On the other hand we have the lower-bound

ρ(t1, t2) ≥ T
(µ)(t1)T

(µ)(t2) .

As the right-hand side is a probability measure on T 2, this forces the identity

ρ(t1, t2) = T
(µ)(t1)T

(µ)(t2) ,

and the proof in the sub-critical case is complete.

2. We now assume that m = 1. The general pattern of the proof is similar to that in the

sub-critical case, and we shall focus on the parts which need to be modified. We have to check

that (4.2) holds, and in this direction we use the expression (4.3). In the critical case, 1/cn

converges to 1− 1/α and a−1
n (ξ1 + · · ·+ ξn − n) to some non-degenerate stable law. Thus there

is b > 0 such that

∑

2≤k≤ban

P(ξ1 + · · ·+ ξn = n − k) ≥ (1 − ε)(1 − 1/α)

for every sufficiently large n. The rest of the proof is just as in the sub-critical case. �
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We now conclude this work by briefly discussing the super-critical case, i.e. when m > 1.

The probability of the event k(n) ≥ 1 then tends to 0 as n → ∞, so the conditioning on

this event becomes singular. More precisely, it is readily seen that the conditional distribution

of k(n) given that k(n) ≥ 1 converges to some geometric law. In particular the number of

trees in the terminal configuration does not tend to infinity, and therefore the situation differs

crucially from that describes in Theorem 2. Nonetheless one can get an analogue of Theorem

2 in the supercritical case, provided that we condition on k(n) ≥ cn for some 0 < c < 1 with

m− 1 < c < m. Then standard arguments of large deviations can be incorporated to the proof

of Theorem 2 and yield a similar limit theorem in which T(µ)(t) has to be replaced by T(µ̃)(t),

where µ̃ is the unique law in the exponential family of µ with mean 1 − c. Details are left to

the interested reader(s).
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