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We study the stability loss delay phenomenon in the dynamic saddle-node bifurcation in a class of three-dimensional prey and predator systems. The dynamics of the predator is assumed to be slow comparatively to the dynamics of the preys. As an application, a wellknown model considered by Clark will be discussed.

Introduction

In most applications the dynamics of different variables of a system of ordinary differential equations are hierarchically scaled: for instance, in ecological models, often, the preys multiply much faster than the predators.

Hence, the study and management of systems with various time scales were considered by many authors and remain a high point of interest both from theoretical and practical points of view [START_REF] Boudjellaba | Oscillations in prey-predator-superpredator systems[END_REF][START_REF] Boudjellaba | Stability Loss Delay in Harvesting Competing Populations[END_REF][START_REF] Kokotovic | Singular Perturbation Methods in Control: Analysis and Design[END_REF][START_REF] Liu | Relaxation oscillations in a class of predator-prey systems[END_REF][START_REF] Lobry | Singular Perturbation Methods in Control theory[END_REF]. Properties of solutions of such systems can be studied by using singular perturbation theory or Tikhonov's theory [START_REF] Lobry | On Tikhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters multiplying the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF].

In singular perturbation theory, the delayed loss of stability phenomenon was first described through a typical example [START_REF] Shishkova | Study of a system of differential equations with a small parameter at the highest derivatives[END_REF]. The general theory, for slow and fast systems under the assumption that the fast equation undergoes a Hopf bifurcation, have been extensively studied in the literature, we refer to [START_REF] Neishtadt | Asymptotic investigation of the loss of stability by an equilibrium as a pair of eigenvalues slowly crosses the imaginary axis[END_REF][START_REF] Neishtadt | On delayed stability loss under dynamic bifurcations I Differential Equations[END_REF][START_REF] Neishtadt | On delayed stability loss under dynamic bifurcations II[END_REF] and for references and complements to [START_REF] Rachinskii | Dynamic Hopf bifurcations generated by nonlinear terms[END_REF][START_REF] Su | Persistent unstable periodic motions[END_REF][START_REF] Su | Persistent unstable periodic motions[END_REF]. An important aspect of the stability loss delay phenomenon is its close relation to the phenomenon of canard solutions (see [START_REF] Arnold | Dynamical Systems V, Bifurcation Theory and Catastrophe Theory[END_REF], p. 179-192 and [START_REF] Benoît Ed | Dynamic Bifurcations[END_REF]). Canard solutions are special trajectories of slow and fast systems that first move near the stable part of the slow manifold, then move near the unstable part of it. They were first studied in the framework of Non-Standard Analysis [START_REF] Benoît | Chasse au canard[END_REF][START_REF] Diener | Sept formules relatives aux canards[END_REF][START_REF] Zvonkin | Nonstandard Analysis and Singular Perturbations of Ordinary Differential Equations[END_REF] and then in the framework of geometric singular perturbation theory [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF], using center manifolds and blow-up [START_REF] De Maesschalck | Time analysis and entry-exit relation near planar turning points[END_REF][START_REF] Dumortier | Canard cycles and center manifolds[END_REF][START_REF] Krupa | Extending slow manifolds near transcritical and pitchfork singularities[END_REF][START_REF] Panazzolo | On the existence of canard solutions[END_REF][START_REF] Szmolyan | Canards in R 3[END_REF][START_REF] Wechselberger | Existence and Bifurcation of Canards in R 3 in the Case of a Folded Node[END_REF].

The theory of the stability loss delay for planar systems is well known [START_REF] De Maesschalck | Time analysis and entry-exit relation near planar turning points[END_REF][START_REF] Diener | Sept formules relatives aux canards[END_REF][START_REF] Dumortier | Canard cycles and center manifolds[END_REF][START_REF] Krupa | Extending slow manifolds near transcritical and pitchfork singularities[END_REF]. In the case of three dimensional systems, the theory is much more difficult. When the system admits two slow variables and one fast variable, some results have been obtained, we refer to [START_REF] Benoît | Canards et enlacements[END_REF][START_REF] Szmolyan | Canards in R 3[END_REF][START_REF] Wechselberger | Existence and Bifurcation of Canards in R 3 in the Case of a Folded Node[END_REF]]. When the system has one slow variable and two fast variables, results have been published in the case of the dynamic Hopf bifurcation [START_REF] Neishtadt | Asymptotic investigation of the loss of stability by an equilibrium as a pair of eigenvalues slowly crosses the imaginary axis[END_REF][START_REF] Neishtadt | On delayed stability loss under dynamic bifurcations I Differential Equations[END_REF][START_REF] Neishtadt | On delayed stability loss under dynamic bifurcations II[END_REF][START_REF] Rachinskii | Dynamic Hopf bifurcations generated by nonlinear terms[END_REF] and in the case of bifurcations of periodic solutions [START_REF] Su | Persistent unstable periodic motions[END_REF][START_REF] Su | Persistent unstable periodic motions[END_REF]. However, the situations where only one real eigenvalue of the fast system crosses zero, can be reduced locally to the planar case by center manifold reduction [START_REF] Krupa | Extending slow manifolds near transcritical and pitchfork singularities[END_REF].

In this paper, we propose to study the delayed loss of stability in a class of slow and fast systems under the assumption that the fast equation undergoes a saddle node bifurcation. More precisely, we consider the following system of ordinary differential equations:

x ′ = xM (x, y, E), y ′ = yN (x, y, E), E ′ = εP (x, y, E), (1.1) where M , N and P are smooth functions. We assume that ε is small , which means that reaction E is much slower than reactions x and y. We assume that the equilibrium (0, 0) of the fast equation corresponding to (1.1) is an unstable node for 0 ≤ E < a, a saddle point for a ≤ E < b and a stable node for E ≥ b where b > a > 0 are the bifurcation values at which the equilibrium (0, 0) collides with other equilibria of the system. System (1.1) admits x = y = 0 as a particular solution. This solution is a canard solution. Our main problem will be to describe the behaviour of the solutions of (1.1) in the vicinity of this canard solution : we calculate the entrance-exit function along the E-axis. A solution which jumps quickly near the e-axis with E 0 > b will move near this axis, with decreasing E, until E reaches a value E 1 < b. The mapping E 0 → E 1 is called the entranceexit function along the canard solution x = y = 0. The center manifold reduction predicts that locally (see [START_REF] Krupa | Extending slow manifolds near transcritical and pitchfork singularities[END_REF]), near the transcritical bifurcation for E = b, the entrance-exit function along the canard solution x = y = 0 of (1.1) is simply the entrance-exit function along the canard solution y = 0 of the reduction of system (1.1) to the invariant plane x = 0 (see Section 3.1). In this paper, we will calculate the global entrance-exit function E 0 → E 1 for all E 0 > b.

The usual saddle-node bifurcation is a collision and disappearance of a saddle and a node of a dynamical system [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF]. In (1.1), the saddle-node bifurcation is degenerate since the equilibrium does not disappear and is persistent. We believe that this non generic saddle-node bifurcation deserves a special study since systems like system (1.1), known in mathematical biology as Kolmogorov systems, are often considered in the literature [START_REF] Freedman | Persistence in Models of Three Interacting Predator-Prey Populations[END_REF][START_REF] Liu | Relaxation oscillations in a class of predator-prey systems[END_REF][START_REF] Schreiber | Coexistence for species sharing a predator[END_REF]. We impose biological meaningful conditions on the functions M , N , P such that the fast dynamics undergoes saddle-node bifurcations. We show that the system has a globally asymptotically stable (GAS) equilibrium and we describe the behavior of the trajectories towards this equilibrium. The results are illustrated in the Lotka-Volterra model of combined harvesting of two ecologically independent populations which was considered by Clark in his monography [START_REF] Clark | Mathematical Bioeconomics, The Optimal Management of Renewable Ressources[END_REF]:

x ′ = rx(1 -x/K) -q 1 Ex, y ′ = sy(1 -y/L) -q 2 Ey, E ′ = ε (p 1 q 1 x + p 2 q 2 y -c) E. (1.2)
The parameters r and s are the intrinsic growth rates, q 1 and q 2 are the catchability coefficients and K and L are carrying capacities for populations x and y respectively, E is the harvesting effort, p 1 and p 2 are the prices and cE is the cost of fishing. Clark stated, without proof, that under some conditions system (1.2) has a persistent equilibrium (x ∞ , y ∞ , E ∞ ) which is approached asymptotically (see [START_REF] Clark | Mathematical Bioeconomics, The Optimal Management of Renewable Ressources[END_REF], p. 312). The dynamics of (1.2) have been investigated when ε is not a small parameter and the conditions for system (1.2) to have a GAS equilibrium are known [START_REF] Schreiber | Coexistence for species sharing a predator[END_REF][START_REF] Vandermeer | Contributions to the global analysis of 3-D Lotka-Volterra equations: dynamic boundedness and indirect interactions in the case of one and two prey[END_REF]. The main problem in the study of dynamical systems arising in applications is to determine the asymptotic behavior of the solutions. In mathematical ecology, this problem is related to the study of the persistence of the species [START_REF] Freedman | Persistence in Models of Three Interacting Predator-Prey Populations[END_REF]. For instance, if there exists a GAS steady state of positive coordinates, then the system is persistent.

The paper is organized as follows. In Section 2, we apply Tikhonov's theory to system (1.1). In Section 3, we study the delayed loss of stability phenomenon in this system. In Section 4, the transcient behavior of the trajectories towards the equilibrium is investigated. In Section 5, the results are illustrated on Clark's model (1.2) and by numerical simulations.

Fast Dynamics and Slow Dynamics

Let us denote by τ the time in system (1.1). In terms of the slow time t = ετ , system (1.1) becomes

ε ẋ = xM (x, y, E) ε ẏ = yN (x, y, E), Ė = P (x, y, E). (2.1)
Throughout the paper, the dot designates the derivatives with respect to time t and the prime designates the derivatives with respect to time τ . We assume that (A0): P (x, y, 0) = 0 for all x ≥ 0 and y ≥ 0 and P (0, 0, E) < 0 for all E > 0.

We study (2.1) in the invariant non negative cone of R 3

C 3 = {(x, y, E) ∈ R 3 : x ≥ 0, y ≥ 0, E ≥ 0}.
2.1. The slow manifold. System (2.1) is a slow and fast system, with E as the slow variable and x, y as the fast variables. For this system, the fast equations are written as

x ′ = xM (x, y, E) y ′ = yN (x, y, E) (2.2) 
where E is a constant parameter. The following assumptions are made 

S 3 = {(x, y, E) ∈ C : M (x, y, E) = N (x, y, E) = 0} is the graph of a smooth function (x, y) = (ξ 1 (E), η 1 (E)) where 0 ≤ E ≤ c < b such that ξ 1 (E) > 0, η 1 (E) > 0 for 0 ≤ E < c and ξ 1 (c) = 0, η 1 (c) = η(c).
From assumption (A1) we see that the slow manifold

S = {(x, y, E) ∈ C : xM (x, y, E) = yN (x, y, E) = 0},
which is the set of equilibra of (2.2) consists of four curves (see Fig. 1): i) The curve S 1 = {(0, 0, E) ∈ C : E ≥ 0}. On this slow curve, the slow equation is

Ė = P (0, 0, E), E ≥ 0. (2.3)
ii) The curve S 2 = {(0, y, E) ∈ C : y = η(E), 0 ≤ E ≤ b}. On this slow curve, the slow equation is

Ė = P (0, η(E), E), 0 < E < b. (2.4)
iii) The curve

S 3 = {(x, y, E) ∈ C : x = ξ 1 (E), y = η 1 (E), 0 ≤ E ≤ c}. On this slow curve, the slow equation is Ė = P (ξ 1 (E), η 1 (E), E), 0 < E < c. (2.5)
iv) The curve S 4 = {(x, 0, E) ∈ C : x = ξ(E), 0 ≤ E ≤ a}. On this slow curve, the slow equation is Ė = P (ξ(E), 0, E), 0 < E < a.

(2.6) When E ≥ b, (0, 0) is the only equilibrium of (2.2); when max(a, c) ≤ E < b, (2.2) has two equilibria, (0, 0) and (0, η(E)); when 0 ≤ E < min(a, c), (2.2) has four equilibria, (0, 0), (ξ(E), 0), (0, η(E)) and (ξ 1 (E), η 1 (E)). In the case where c ≤ E < a, (2.2) has three equilibria, (0, 0), (ξ(E), 0) and (0, η(E)). In the case where a ≤ E < c, (2.2) has three equilibria, (0, 0), (0, η(E)) and (ξ 1 (E), η 1 (E)). The stability of these equilibria is summarized in the following assumption:
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(A2): The equilibrium (0, 0) is a stable node when E ≥ b, a saddle point when a ≤ E < b and an unstable node when 0 ≤ E < a respectively. The equilibrium (0, η(E)) is a stable node when c ≤ E < b and a saddle point when 0 ≤ E < c respectively. The equilibrium (ξ(E), 0) is a saddle point when 0 ≤ E < a. The equilibrium (ξ 1 (E), η 1 (E)) is a stable node when 0 ≤ E < c. The basin of attraction of all stable nodes is the positive cone C 2 = {(x, y) ∈ R 2 :

x > 0, y > 0} of R 2 . Hence, (2.2) has degenerate saddle-node bifurcations when E crosses values a, b and c. When E increases and crosses value a, the saddle (ξ(E), 0) and the unstable node (0, 0) collide and become the saddle (0, 0). When E increases and crosses value c, the saddle (0, η(E)) and the stable node (ξ 1 (E), η 1 (E)) collide and become the stable node (0, η(E)). When E increases and crosses value b, the stable node (0, η(E)) and the saddle (0, 0) collide and become the stable node (0, 0). We add the following assumption:

(A3): There exists E ∞ ∈ [0, c[ such that E = E ∞ is a GAS equilibrium
of the slow equation (2.5). There exists b 1 ∈ [0, c[ such that E = b 1 is a GAS equilibrium of the slow equation (2.4). There exists a 1 ∈ [0, a[ such that E = a 1 is a GAS equilibrium of the slow equation (2.6).

Assumptions (A0-A3) are just biologically reasonable and are satisfied in Lotka-Voltera type systems. By (A0), the population E of predators decreases if there is no prey (x = 0 = y). By (A2), if the population of predator is large (E > b), then both preys are led to extinction; if the population of predator is moderate (b > E > a), then the prey x cannot survive but the prey y is persistent and converges towards the stable steady state y = η(E); when the population of predators further decreases (E < a), both preys are persistent and converge towards the stable steady states x = ξ 1 (E), y = η 1 (E). To avoid complicated behaviours and to make possible a complete description of the transcient behaviour of trajectories towards the GAS equilibrium S of the system, we assumed, in (A1) and (A3), that the set defined by P = 0 intersects the curves S 2 , S 3 and S 4 at unique points B 1 , S and C 1 . These properties are satisfied by Clark's model. In geometric singular perturbation theory (GSPT) [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF][START_REF] Jones | Geometric singular perturbation theory[END_REF], system (2.1) is called the slow system and system (1.1) is called the fast system. In this paper the terminology of the classical singular perturbation theory [START_REF] Lobry | On Tikhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters multiplying the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF]] is adopted and we refer to (2.2), which is the limit of (1.1) when ε → 0, as the fast equations and to (2.4,2.6,2.5,2.3), which are limits of (2.1) when ε → 0, as the slow equations. Note that in GSPT, the slow manifold is not necessarily attracting, as in Tikhonov's theorem. In GSPT the results hold for the more general case of slow and fast systems for which the slow manifold is normally hyperbolic. However, in GSPT, the vector field must be smooth, not only continuous, as it is the case in Tikhonov's theory. GSPT shows that for small ε > 0, (2.1) has a locally invariant manifold which is O(ε)-close to the slow manifold as long as the slow manifold is normally hyperbolic. If this normal hyperbolicity of the slow manifold is violated (which is always the case at bifurcations of the slow manifolds), more delicate phenomena are expected.

Equilibria of the system.

From assumption (A3), point

S = (x ∞ , y ∞ , E ∞ ) ∈ S 3 ,
where

x ∞ = ξ 1 (E ∞ ), y ∞ = η 1 (E ∞ ) (2.7)
is an equilibrium of (2.1). In fact (2.1) has at least four other equilibria,

A = (0, 0, 0), B = (0, η(0), 0), C = (ξ(0), 0, 0), D = (ξ 1 (0), η 1 (0), 0),
which lie in the invariant xy-plane. In the case where b 1 > 0

B 1 = (0, η(b 1 ), b 1 ) ∈ S 2 (2.8)
is an equilibrium of (2.1). It is a saddle point whose stable manifold is the invariant plane x = 0. When b 1 = 0 equilibria B and B 1 collide. In the case where a 1 > 0, (2.1) has another equilibrium

C 1 = (ξ(a 1 ), 0, a 1 ) ∈ S 4 . (2.9)
It is a saddle point whose stable manifold is the invariant plane y = 0. When

a 1 = 0 equilibria C and C 1 collide (see Fig. 1, right). 2.3. Application of Tikhonov's theory. From (A2), for all E ∈ [0, c[, the equilibrium (ξ 1 (E), η 1 (E)) of (2.2) is GAS in C 2 .
Moreover, by (A3), system (2.5) has a GAS equilibrium point E = E ∞ . Hence, Tikhonov's theory applies and predicts that in the region 0 ≤ E < c, the solutions of (2.1) jump quickly near the slow curve S 3 and then move near this slow curve towards S (see Proposition 4.1).

From (A2), for all E ∈ [c, b[, the equilibrium (0, η(E)) of (2.
2) is GAS in C 2 . Hence, Tikhonov's theory applies and predicts that in the region c ≤ E < b, the solutions of (2.1) jump quickly near the slow curve S 2 and then move near this slow curve with decreasing E, until E reaches the value c at which this slow curve loses its stability. One might believe then, that the solution will move, for E < c, near the attracting slow curve S 3 , towards S (see Fig. 2, left). In fact, due to the delayed loss of stability phenomenon, this behavior is not the right one and the solution will stay near the slow curve S 2 , until E reaches a value E 1 < c, (see Fig. 5, right). From (A2), for all E ≥ b, the equilibrium (0, 0) of (2.2) is GAS in C 2 . Again, Tikhonov's theory applies and predicts that in the region E > b, the solutions of (2.1) jump quickly near the slow curve S 1 and then move near this axis with decreasing E, until E reaches the value b at which this slow curve loses its stability (see Fig. 2, right). One might believe then, that the solution will move, for E < b, near the attracting slow curve S 2 , with decreasing E, until E reaches the value c and then will move, for E < c, near the attracting slow curve S 3 , towards S (see Fig. 2, right). In fact, due to the delayed loss of stability phenomenon, this behavior is not the right one and the solution will stay near the slow curve S 1 until E reaches a value E 1 < b (see Fig. 4, 6 or 7, right).

Delayed loss of stability

The mapping E 0 → E 1 (see Fig. 5) is called the entrance-exit function along the slow curve S 2 . Similarly, the mapping E 0 → E 1 (see Fig. 4, 6 or 7) is called the entrance-exit function along the slow curve S 1 . Our aim in this section is to calculate these entrance-exit function. As mentioned in the introduction, locally near the transcritical bifurcations for E = a, b, c, the entrance-exit functions are obtained by a center manifold reduction. Throughout the paper we denote by

µ(E) = M (0, 0, E) P (0, 0, E) , ν(E) = N (0, 0, E) P (0, 0, E) , λ(E) = M (0, η(E), E) P (0, η(E), E) , κ(E) = N (ξ(E), 0, E) P (ξ(E), 0, E) .
The functions µ and ν are defined for all E > 0. The function λ is defined for

E ∈]b 1 , b[. The function κ is defined for E ∈]a 1 , a[.

3.1.

Center manifold reduction. The invariant plane y = 0 is a center manifold of (2.1) at (x, y, E, ε) = (0, 0, a, 0). On this center manifold (2.1) reduces to the slow-fast planar system

ε ẋ = xM (x, 0, E), Ė = P (x, 0, E). (3.1) 
The particular solution x = 0 of this system is a canard solution. Let (x 0 , E 0 ) be an initial condition such that E 0 > a. From the theory of canard solutions in planar slow-fast vector fields, the corresponding solution of (3.1) will go quickly towards x = 0 and then remains close to this canard solution while E is decreasing and until E reaches a value E 1 = H(E 0 ) < a. Then it jumps to the neighborhood of the slow curve S 4 and converges towards the equilibrium (2.9). The entrance-exit function E 0 → E 1 = H(E 0 ) along the canard solution x = 0 of (3.1) is calculated as follows (see [START_REF] Diener | Sept formules relatives aux canards[END_REF], Formula VI). Let h(E) = E a µ(u)du. This function has a minimum at a (see Fig. 3, right). It is decreasing from +∞ to 0 on ]0, a] and increasing on [a, +∞[. It defines a mapping

H = h -1 + • h -: [a, ∞[→]0, a],
where h -and h + are the restrictions of h on [a, +∞[ and ]0, a] respectively. We have Similarly, the invariant plane x = 0 is a center manifold of (2.1) at (x, y, E, ε) = (0, 0, b, 0). On this center manifold (2.1) reduces to the slowfast planar system

H(E) E µ(u)du = 0. (3.2) b c b 1 E ✻ F (E) ✻ z z = f (E) b a a * E ✻ G(E) ✻ H(E) ✻ 0 z z = h(E) z = g(E)
ε ẏ = yN (0, y, E), Ė = P (0, y, E). (3.3) 
The particular solution y = 0 of this system is a canard solution. Let (y 0 , E 0 ) be an initial condition such that E 0 > b. The corresponding solution of (3. 

G(E) E ν(u)du = 0. (3.4) Let a * = G -1 (a). If E ∈ [b, a * ] then (see Fig. 3, right) H(E) < a ≤ G(E). If E > a * then, we either have H(E) < G(E) or H(E) > G(E), see Section 3.5. However, in (1.2), the property H(E) < G(E) is true for all E > a * , see Lemma 5.1.
For all y ∈ [0, b[, the curve y = η(E) is an attracting hyperbolic slow curve of (3.3). Hence this system admits an invariant curve y

= η(E, ε) such that η(E, 0) = η(E), defined for E ∈ [0, b 2 ] ⊂ [0, b[. Notice that b 2 can
be chosen as close to b as we want. This invariant curve belongs to a center manifold y = η(x, E, ε), such that η(0, E, ε) = η(E, ε). On this center manifold (2.1) reduces to

ε ẋ = xM (x, η(x, E, ε), E), Ė = P (x, η(x, E, ε), E). (3.5)
The particular solution x = 0 of this system is a canard solution. Let (x 0 , E 0 ) be an initial condition such that b > E 0 > c. The corresponding solution of (3.5) will go quickly towards x = 0 and then remains close to this canard solution while E is decreasing and until E reaches a value

E 1 = F (E 0 ) < c.
We calculate the entrance-exit function 

E 1 → E 0 = G(E 1 )
F (E) E λ(u)du = 0. (3.6)
From the previous analysis we deduce the following result:

Proposition 3.1. The trajectories

C 1 = {(0, 0, E) : E > 0} and C 2 = {(0, η(E, ε), E) : b 1 < E < b 2 }
are canard solutions of (2.1).

Notice that C 1 ⊂ S 1 and C 2 is near S 2 . Let γ(t, ε) = (x(t, ε), y(t, ε), E(t, ε)) the solution of (2.1) with initial condition x(0, ε) = x 0 > 0, y(0, ε) = y 0 > 0, and E(0, ε) = E 0 > 0. We assume that the solution approaches one of the canard solutions C 1 or C 2 . The main problem is to calculate the entranceexit function of (2.1) along the canard solution. In the context of GSPT, the problem is completely solved locally (see [START_REF] Krupa | Extending slow manifolds near transcritical and pitchfork singularities[END_REF]) using a center manifold reduction. Hence, locally near the transcritical bifurcation at E = a, b, c, the entrance-exit functions of the three dimensional system (2.1) are simply the entrance-exit functions (3.2), (3.4) and (3.6) of the two dimensional systems (3.1), (3.3) and (3.5) respectively. More precisely, we have the following result: Theorem 3.2. There exists δ > 0, such that for small ε > 0, we have i) if E 0 ∈]c, min(b, c + δ)[ then the solution γ(t, ε) remains near the slow curve S 2 as long as E 1 < E < E 0 where E 1 = F (E 0 ) and jumps to the neighborhood of point (ξ 1 (E 1 ), η 1 (E 1 ), E 1 ) close to the unstable separatrix of the saddle point (0, η(E 1 )) of the fast dynamics. ii) if E 0 ∈]b, b + δ[ then the solution γ(t, ε) remains near the slow curve S 1 as long as E 1 < E < E 0 where E 1 = G(E 0 ) and jumps to the neighborhood of point (0, η(E 1 ), E 1 ) close to the unstable separatrix x = 0 of the saddle point (0, 0) of the fast dynamics. iii) if E 0 ∈] max(0, a -δ), a[ then the solution γ(t, ε) remains near the slow curve S 1 as long as E 0 < E < E -1 where E -1 = H -1 (E 0 ) and jumps (for reversed time) far from (0, 0, E -1 ) along the stable separatrix y = 0 of the saddle point (0, 0) of the fast dynamics.

In the following section we show how to solve this problem globally.

3.2.

Behavior in the vicinity of the slow curve S 1 . Let (x 0 , y 0 , E 0 ) be an initial condition such that 0 < x 0 < 1, 0 < y 0 < 1 and E 0 > b. If ε is small enough, the corresponding trajectory γ(t, ε) of (2.1) remains in the domain 0 < x < x 0 and 0 < y < y 0 and goes towards S 2 while E is decreasing as far as E > b. Denote now, the next intersection of this trajectory and the planes x = x 0 or y = y 0 by (x(t 1 , ε), y(t 1 , ε), E(t 1 , ε)) where t 1 = t 1 (x 0 , y 0 , E 0 , ε) depends on the initial condition (x 0 , y 0 , E 0 ) and on ε. We have

lim ε→0 E(t 1 (x 0 , y 0 , E 0 , ε), ε) = K(E 0 ) := max(G(E 0 ), H(E 0 ))
We have already noticed that if b < E < a * then G(E) > H(E), so this result is in agreement with the local one given by Theorem 3.2, case ii. More precisely, we have the following result: Proposition 3.3. For small ε > 0, the solution remains near the slow curve S 1 as long as

E 1 < E < E 0 where E 1 = K(E 0 ). i) If E 0 ∈ [b, a * ] or E 0 > a * and H(E 0 ) < G(E 0 )
, then the solution leaves the neighborhood of point (0, 0, E 1 ) and jumps to the neighborhood of point (0, η(E 1 ), E 1 ) close to the straight line x = 0 (see Fig. 4 and6). ii) If E 0 > a * and H(E 0 ) > G(E 0 ) then, the solution leaves the neighborhood of point (0, 0, E 1 ) and jumps to the neighborhood of point (ξ(E 1 ), 0, E 1 ) close to the straight line y = 0 (see Fig. 7).
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On the right: the asymptotic behavior of the solution of (2.1) with initial condition m 0 = (x 0 , y 0 , E 0 ), when b < E 0 < a * , showing the delayed loss of stability when E crosses values b and c. On the left: the asymptotic behavior in the coordinates (X, Y, E) of (3.7). The functions β (in blue), γ (in red) and δ (in green) are defined by (3.9) and (3.17) respectively.

Proof. Let x 0 < 1 and y 0 < 1 be positive and not too big. For small ε > 0 the solution remains in the domain 0 < x < x 0 and 0 < y < y 0 . The change of variables X = ε ln x, Y = ε ln y maps the open set 0 < x < 1, 0 < y < 1 into the octant X < 0, Y < 0. This change of variables transforms (2.1) into Ẋ = M (exp (X/ε), exp (Y /ε), E), Ẏ = N (exp (X/ε), exp (Y /ε), E), Ė = P (exp (X/ε), exp (Y /ε), E).

(3.7)

The initial condition (x 0 , y 0 , E 0 ) becomes (ε ln x 0 , ε ln y 0 , E 0 ). Since X < 0 and Y < 0, (3.7) is a regular perturbation of Ẋ = M (0, 0, E), Ẏ = N (0, 0, E), Ė = P (0, 0, E).

(3.8)

The solution of (3.8) with initial condition X(0) = 0, Y (0) = 0, E(0) = E 0 is given by E = E(t) and

X = β(E) := E E 0 µ(u)du, Y = γ(E) := E E 0 ν(u)du, (3.9) 
where E(t) is the solution of (2.3) such that

E(0) = E 0 . Let E 1 = K(E 0 ) and t 1 satisfies E(t 1 ) = E 1 . Hence E(t 1 , ε) = E 1 + o(1)
. When E is asymptotically equal to E 1 , i.e. when t is asymptotically equal to t 1 , the solution jumps far from the neighborhood of the E-axis as shown below.

Case i. If E 0 ∈ [b, a * ] (see Fig. 4, left), or E 0 > a * and H(E 0 ) < G(E 0 ) (see Fig. 6, left), then E 1 = G(E 0 ). Thus, according to (3.4) and h(G(E 0 )) < h(E 0 ), we have

X 1 = E 1 E 0 µ(u)du < 0, Y 1 = E 1 E 0 ν(u)du = 0. (3.10) Since X(t 1 , ε) = X 1 + o(1) and Y (t 1 , ε) = o(1)
, the solution reaches again the plane y = y 0 asymptotically at time t 1 , and x(t 1 , ε) = exp((X 1 +o(1))/ε) is exponentially small. Thus, asymptotically at time t 1 , the solution jumps (see Fig. 4 or 6, right) from the neighborhood of point (0, 0, E 1 ) to the neighborhood of point (0, η(E 1 ), E 1 ) close to the straight line x = 0. Case ii. If E 0 > a * and H(E 0 ) > G(E 0 ) (see Fig. 7, left) then E 1 = H(E 0 ). Thus, according to (3.2) and g(H(E 0 )) < g(E 0 ), we have

X 1 = E 1 E 0 µ(u)du = 0, Y 1 = E 1 E 0 ν(u)du < 0. (3.11) Since X(t 1 , ε) = o(1) and Y (t 1 , ε) = Y 1 +o(1)
, the solution reaches again the plane x = x 0 asymptotically at value E 1 and y(t 1 , ε) = exp((Y 1 + o(1))/ε) is exponentially small. Thus, asymptotically at time t 1 , the solution jumps (see Fig. 7, right) from the neighborhood of point (0, 0, E 1 ) to the neighborhood of point (ξ(E 1 ), 0, E 1 ) close to the straight line y = 0.

3.3.

Behavior in the vicinity of the slow curve S 2 . Let (x 0 , y 0 , E 0 ) be an initial condition such that 0 < x 0 < 1 and c < E 0 < b. If ε is small enough, the corresponding trajectory γ(t, ε) of (2.1) remains between the planes x = x 0 and x = 0 and goes towards S 2 while E is decreasing as far as E > c. Denote now, the next intersection of this trajectory and the plane x = x 0 by (x 0 , y(t 1 , ε), E(t 1 , ε)) where t 1 = t 1 (x 0 , y 0 , E 0 , ε) depends on the initial condition (x 0 , y 0 , E 0 ) and on ε. We have

lim ε→0 E(t 1 (x 0 , y 0 , E 0 , ε), ε) = F (E 0 ).
Thus, the result of Theorem 3.2, case i, holds for all c < E 0 < b, not only for c < E 0 < min(b, c + δ). More precisely, we have the following result:

Theorem 3.4. Let E 0 ∈]a, b[. The solution remains near the slow curve S 2 as long as E 1 < E < E 0 where E 1 = F (E 0 ) and jumps to the neighborhood of point (ξ 1 (E 1 ), η 1 (E 1 ), E 1 ) close to the unstable separatrix of the saddle point (0, η(E 1 )) of the fast dynamics (see Fig. 5).
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On the right: the asymptotic behavior of the solution of (2.1) with initial condition m 0 = (x 0 , y 0 , E 0 ), when c < E 0 < b, showing the delayed loss of stability when E crosses the value c. On the left: the asymptotic behavior in the coordinates (X, E) of (3.12). The function α is defined by (3.15).

Proof. The change of variable X = ε ln x maps the strip 0 < x < 1 into the half space X < 0. This change of variable transforms (2.1) into

Ẋ = M (exp (X/ε), y, E), ε ẏ = yN (exp (X/ε), y, E) Ė = P (exp (X/ε), y, E) (3.12)
The initial condition becomes (ε ln x 0 , y 0 , E 0 ). System (3.12) is a slow and fast system, with X, E as the slow variables and y as the fast variable. We have lim ε→0 exp X/ε = 0 since X < 0. Thus, the fast equation is written as

y ′ = yN (0, y, E) (3.13)
The equilibrium y = η(E) of (3.13) is attracting for all E ∈ [0, b[. Thus, on the slow surface y = η(E), the slow equation is

Ẋ = M (0, η(E), E), Ė = P (0, η(E), E). (3.14)
According to Tikhonov's theory, y goes very quickly towards the stable equilibrium y = η(E). Then a slow transition develops near the surface y = η(E). This slow transition is approximated by the solution of (3.14) with initial condition X(0) = 0, E(0) = E 0 . This solution is given by E = E(t) and

X = α(E) := E E 0 λ(u)du, (3.15) 
where E(t) is the solution of (2.4) such that E(0) = E 0 . Thus, according to (3.6), we have again (see Fig. 5, left) X = 0 for E 1 = F (E 0 ). Returning to the original variables, we see that the trajectory γ(t, ε) crosses again the plane x = x 0 when E is asymptotically equal to E 1 = F (E 0 ). Then (see Fig. 5, right), a fast transition brings the trajectory from the neighborhood of point (0, η(E 1 ), E 1 ) to the neighborhood of point (ξ(E 1 ), η(E 1 ), E 1 ) close to the unstable separatrix of the saddle point (0, η(E 1 )) of the fast dynamics.

As stated in Proposition 3.3, the jump of the solution, far from the slow curve S 1 , happens when E is asymptotically equal to E 1 = K(E 1 ). After this jump, the asymptotic behavior of the solution is given by Theorems 3.5 and 3.6 below, where b

0 = G -1 (b 1 ) if b 1 > 0 and b 0 = ∞ if b 1 = 0, a 0 = H -1 (a 1 ) if a 1 > 0 and a 0 = ∞ if a 1 = 0. Theorem 3.5. Let E 0 ∈ [b, a * ] or E 0 > a * and H(E 0 ) < G(E 0 ).
For small ε > 0, the solution remains near the slow curve S 1 as long as E 1 < E < E 0 and near the slow curve S 2 as long as

E 2 < E < E 1 where E 1 = G(E 0 ) and E 2 is defined as follows: if E 0 = b 0 then E 2 = E 1 = b 1 ; if E 0 < b 0 (resp. E 0 > b 0 ) then E 2 ∈]b 1 , a[ (resp. E 2 ∈]0, b 1 [
) and E 2 is given by

E 1 E 0 µ(E)dE + E 2 E 1 λ(E)dE = 0. (3.16)
Afterwards, it jumps from the neighborhood of point (0, η(E 2 ), E 2 ) to the neighborhood of point (ξ 1 (E 2 ), η 1 (E 2 ), E 2 ) close to the unstable separatrix of the saddle point (0, η(E 2 )) of the fast dynamics (see Fig. 4 and6).

Proof. The asymptotic behavior of the solution for t ∈ [0, t 1 ] is described in Proposition 3.3, case i. For t > t 1 we use, the same change of variable as in the proof of Theorem 3.4, X = ε ln x which maps the strip 0 < x < 1 into the half space X < 0. This change of variable transforms (2.1) into (3.12) with conditions

X(t 1 , ε) = X 1 + o(1), Y (t 1 , ε) > 0, and E(t 1 , ε) = E 1 + o(1)
, where X 1 is defined by (3.10). According to Tikhonov's theory, y goes very quickly towards the stable equilibrium y = η(E). Then, a slow transition develops near the surface y = η(E). This slow transition is approximated by the solution of (3.14) with initial condition

X(t 1 ) = X 1 , E(t 1 ) = E 1 . If E 1 = b 1 , this solution is given by X = δ(E) := X 1 + E E 1 λ(u)du, (3.17) X, Y X 1 0 E E 0 E 1 = G(E 0 ) ❄ E 2 H(E 0 ) ❄ a b Y = γ(E) X = β(E) X = δ(E) ✲ x y E m 0 E 0 E 1 ✻ E 2 a * a c b S γ 0 γ 1 γ 2 γ 3 γ 4 γ 5
Figure 6. On the right: the asymptotic behavior of the solution of (2.1) with initial condition m 0 = (x 0 , y 0 , E 0 ), when E 0 > a * and H(E 0 ) < G(E 0 ), showing the delayed loss of stability when E crosses values b and c. On the left: the asymptotic behavior in the coordinates (X, Y, E) of (3.7). The functions β (in blue), γ (in red) and δ (in green) are defined by (3.9) and (3.17) respectively.

where E = E(t) is the solution of (2.4) such that E(t 1 ) = E 1 . In the case where Fig. 4,left). We have again X = 0 at value E 2 . Returning to the original variables, we notice that the trajectory γ(t, ε) crosses again the plane x = x 0 when E is asymptotically equal to E 2 . Then (see Fig. 4, right), a fast transition brings the trajectory from the neighborhood of point (0, η(E 2 ), E 2 ) to the neighborhood of point (ξ 1 (E 2 ), η 1 (E 2 ), E 2 ), close to the unstable separatrix of the saddle point (0, η(E 2 )) of the fast dynamics. When E 0 > a * and H(E 0 ) < G(E 0 ) the proof is similar to the case where E 0 ∈ [b, a * ], adapted to Fig. 6. Now E 1 ∈]0, a[ and E 2 , given by (3.16), satisfies E 2 ∈]0, E 1 [ (see Fig. 6,left).

E 0 ∈ [b 0 , a * ], E 2 defined by (3.16) satisfies E 2 ∈]b 1 , a[. And when E 0 ∈ [b, b 0 ], E 2 defined by (3.16) satisfies E 2 ∈]0, b 1 [ (see
Note that the mapping E 1 → E 2 given by formula (3.16) is not equal to the entrance-exit function E 1 → F (E 1 ) of the slow curve S 2 as it was the case in Theorem 3.4. Indeed, in Theorem 3.5, the solution is exponentially close to the plane x = 0 before it arrives near the slow curve S 2 . Recall that in Theorem 3.4 the solution arrived from a point (x 0 , y 0 , E 0 ) which was not very close to the plane x = 0.

3.4.

Behavior in the vicinity of the slow curve S 4 . Theorem 3.6. Let E 0 > a * . If H(E 0 ) > G(E 0 ) then, for small ε > 0, the solution remains near the slow curve S 1 as long as E 1 < E < E 0 and near the slow curve S 4 as long as

E 2 < E < E 1 where E 1 = H(E 0 ) and E 2 is defined as follows: if E 0 = a 0 then E 2 = E 1 = a 1 ; if E 0 < a 0 (resp. E 0 > a 0 ) then E 2 ∈]a 1 , E 1 [ (resp. E 2 ∈]0, a 1 [) and E 2 is given by E 1 E 0 ν(E)dE + E 2 E 1 κ(E)dE = 0. (3.18)
Afterwards, it jumps from the neighborhood of point (ξ(E 2 ), 0, E 2 ) to the neighborhood of point (ξ 1 (E 2 ), η 1 (E 2 ), E 2 ) close to the unstable separatrix of the saddle point (ξ(E 2 ), 0) of the fast dynamics (see Fig. 7).
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On the right: the asymptotic behavior of the solution of (2.1) with initial condition m 0 = (x 0 , y 0 , E 0 ), in the case where E 0 > a * and H(E 0 ) > G(E 0 ), showing the delayed loss of stability when E crosses values b and c. On the left: the asymptotic behavior in the coordinates (X, Y, E) of (3.7). The functions β (in blue), γ (in red) and ρ (in green) are defined by (3.9) and (3.22) respectively.

Proof. The asymptotic behavior of the solution for t ∈ [0, t 1 ] is described in Proposition 3.3, case ii. For t > t 1 we use the change of variable Y = ε ln x which maps the strip 0 < y < 1 into the half space Y < 0. This change of variable transforms (2.1) into

ε ẋ = xM (x, exp (Y /ε), E), Ẏ = N (x, exp (Y /ε), E), Ė = P (x, exp (Y /ε), E) (3.19) 
with conditions

X(t 1 , ε) > 0, Y (t 1 , ε) = Y 1 + o(1)
, and

E(t 1 , ε) = E 1 + o(1)
, where Y 1 is defined by (3.11). System (3.19) is a slow and fast system, with Y, E as the slow variables and x as the fast variable. We have lim ε→0 exp Y /ε = 0 since Y < 0. Thus, the fast equation is written as

x ′ = xM (x, 0, E) (3.20) 
The equilibrium x = ξ(E) of (3.13) is attracting for all E ∈ [0, a[. And on the slow surface x = ξ(E), the slow equation is Ẏ = N (ξ(E), 0, E),

Ė = P (ξ(E), 0, E). (3.21) 
According to Tikhonov's theory, x goes very quickly towards the stable equilibrium x = ξ(E). Then a slow transition develops near the surface x = ξ(E). This slow transition is approximated by the solution of (3.21) with initial condition

Y (t 1 ) = Y 1 , E(t 1 ) = E 1 . If E 1 = a 1 , this solution is given by Y = ̺(E) = Y 1 + E E 1 κ(u)du, (3.22) 
where

E = E(t) is the solution of (2.6) such that E(t 1 ) = E 1 . If E 0 < a 0 (resp. E 0 > a 0 ), then E 2 given by (3.18) satisfies E 2 ∈]a 1 , E 1 [ (resp. E 2 ∈ ]0, a 1 [) (see Fig. 4, left).
We have again Y = 0 at value E 2 . Returning to the original variables, we see that the trajectory γ(t, ε) crosses again the plane y = y 0 when E is asymptotically equal to E 2 . Then (see Fig. 7, right), a fast transition brings the trajectory from the neighborhood of point (ξ(E 2 ), 0, E 2 ) to the neighborhood of point (ξ(E 2 ), η(E 2 ), E 2 ), close to the unstable separatrix x = ξ(E 2 ) of the saddle point (ξ(E 2 ), 0) of the fast dynamics.

3.5. Example. Notice that Assumptions (A0-A3) are not necessary to prove Proposition 3.3. The results stated in this proposition require only the following hypothesis : for all E, P (0, 0, E) < 0 and there exist b > a > 0 such that ∀E = a, (E -a)M (0, 0, E) < 0 and ∀E = b, (E -b)N (0, 0, E) < 0.

We can further divide system (1.1) by P (x, y, E) and consider the system

x ′ = x m(x, y, t, ε), y ′ = y n(x, y, t, ε), t ′ = ε.

(3.23)

We denote µ(t) = m(0, 0, t, 0) and ν(t) = n(0, 0, t, 0) and we assume that there exist a < b such that ∀t = a, (t -a)µ(t) > 0 and ∀t = b, (t -b)ν(t) > 0.

Let H and G be the involutions defined by H(t) t µ(u)du = 0, and

G(t) t ν(u)du = 0.
The mapping t → H(t) is the entrance-exit function along the canard solution x = 0 of (3.23) reduced to the invariant plane y = 0. The mapping t → G(t) is the entrance-exit function along the canard solution y = 0 of (3.23) reduced to the invariant plane x = 0. We have the following theorem whose proof is very similar to the proof of Proposition 3.3 and is left to the reader.

Theorem 3.7. For small ε > 0, the solution of (3.23) with initial condition x(t 0 ) = x 0 > 0 and y(t 0 ) = y 0 > 0 remains near the canard solution x = y = 0 as long as t 0 < t < t 1 where t 1 = min(H(t 0 ), G(t 0 )). a) If H(t 0 ) < G(t 0 ) then the solution leaves the neighborhood of point (0, 0, t 1 ) close to the orbit y = 0 of the fast dynamics.

b) If H(t 0 ) > G(t 0 ) then the solution leaves the neighborhood of point (0, 0, t 1 ) close to the orbit x = 0 of the fast dynamics.

In the case where H(t 0 ) = G(t 0 ), our analysis does not predict the orbit along which the fast transition far from (0, 0, t 1 ) should hold. By continuous dependence, all orbits of the fast dynamics arise as transition orbits, since the transition holds close to y = 0 when H(t 0 ) < G(t 0 ), and close to x = 0 when H(t 0 ) < G(t 0 ). GSPT [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF][START_REF] Jones | Geometric singular perturbation theory[END_REF] could provide tools to address this question. Finally, we give an example to illustrate Theorem 3.7. Consider the system

x ′ = xµ(t), y ′ = yν(t), t ′ = ε, (3.24) 
where µ and ν are given by The mapping H and G are given by (see Fig. 8)

µ(t) = 2(t + 1) if t ≤ -1 (t + 1)/2 if t ≥ -1 , ν(t) = (t -1)/2 if t ≤ 1 2(t -1) if t ≥ 1 z = µ(t) z = ν(t) z t ✻ -4 -3 ✻ -2 ✻ 5/2 3 ✻ 7/2 t 0 1 5 z z = G(t) z = H(t) z t z = t
H(t) = -2t -3 if t ≤ -1 -(t + 3)/2 if t ≥ -1 , G(t) = (3 -t)/2 if t ≤ 1 3 -2t if t ≥ 1
Hence we have H(t) > G(t) if and only if t < -3 or t > 3. According to Theorem 3.7, for all t 0 < -3 the solution of (3.24) with initial condition x(t 0 ) = x 0 and y(t 0 ) = y 0 remains near the canard solution x = y = 0 as long as t 0 < t < G(t 0 ) and jumps far from (0, 0) along the orbit x = 0. On the other hand for all t 0 ∈] -3, -1[ the solution of (3.24) with initial condition x(t 0 ) = x 0 and y(t 0 ) = y 0 remains near the canard solution x = y = 0 as long as t 0 < t < H(t 0 ) and jumps far from (0, 0) along the orbit y = 0. These results are confirmed by the explicite solutions of (3.24), see Fig. 9:

x(t, ε) = x 0 e 1 ε R t t 0 µ(s)ds , y(t, ε) = y 0 e 1 ε R t t 0 ν(s)ds . x t y t 0 t 1 x t y t 0 t 1 Figure 9
. Explicit solutions of (3.24) with ε = 0.05. On the left is the case t 0 = -2, t 1 = H(t 0 ) = 1 showing that the solution jumps far from the canard solution near the plane y = 0. On the right is the case

t 0 = -4, t 1 = G(t 0 ) = 7/2
showing that the solution jumps far from the canard solution near the plane x = 0.

Persistence

Let Γ ε = {γ(t, ) : t ≥ 0} the positive semi orbit corresponding to the solution γ(t, ) of (2.1) with initial condition x(0, ε) = x 0 > 0, y(0, ε) = y 0 > 0 and E(0, ε) = E 0 > 0. Our aim is to determine the limit of Γ ε as ε → 0. In what follows, we denote by [α, β] both interval [α, β] in the case where α ≤ β or interval [β, α] in the case where α ≥ β. Let γ 0 is the positive semi orbit corresponding to the solution of (2.2) starting at (x 0 , y 0 ).

4.1.

Asymptotic behavior for all t ≥ 0. We begin with the asymptotic behavior of the solutions when E 0 < a.

Proposition 4.1. Let E 0 ∈]0, a[. Then lim ε→0 Γ ε = γ 0 ∪ γ 1 , where γ 1 = {(ξ 1 (E), η 1 (E), E) : E ∈ [E 0 , E ∞ ]}.
Proof. For all E ∈ [0, a] , the equilibrium (ξ 1 (E), η 1 (E)) of (2.2) is GAS. Moreover, by assumption (A3), the solutions of (2.5) are converging towards E = E ∞ , which is a GAS equilibrium. The result follows from Tikhonov's theory.

Assume now that E 0 ∈ [a, b]. From Theorem 3.4, we see that the solution γ(t, ε) reaches the neighborhood of point (ξ 1 (E 1 ), η 1 (E 1 ), E 1 ). Then, as shown in Proposition 4.1, it is approximated by a solution of (2.5). More precisely, we have the following result:

Proposition 4.2. let E 0 ∈ [a, b] and E 1 = F (E 0 ). Then lim ε→0 Γ ε = γ 0 ∪ γ 1 ∪ γ 2 ∪ γ 3 , where γ 1 = {(0, η(E), E) : E ∈ [E 1 , E 0 ]}, γ 3 = {(ξ 1 (E), η 1 (E), E) : E ∈ [E 1 , E ∞ ]},
and γ 2 is the orbit of (2.2) connecting (0, η(E 1 ), E 1 ) to (ξ 1 (E 1 ), η 1 (E 1 ), E 1 ).

Proof. Apply Theorem 3.4. and Proposition 4.1 (see Fig 5).

Assume that E 0 > b. From Theorems 3.5 and 3.6 we see that the solution γ(t, ε) reaches the neighborhood of point (ξ(E 2 ), η(E 2 ), E 2 ). Then , as shown in Proposition 4.1, it is approximated by a solution of (2.5). In the next propositions, we set two results, in the case where H(E 0 ) < G(E 0 ) and in the case where

H(E 0 ) > G(E 0 ). Proposition 4.3. Let E 0 > b. We assume that H(E 0 ) < G(E 0 ). Let E 1 = G(E 0
) and E 2 defined by (3.16) in the case where E 0 = b 0 and

E 2 = E 1 = b 1 in the case where E 0 = b 0 . Then lim ε→0 Γ ε = γ 0 ∪ γ 1 ∪ γ 2 ∪ γ 3 ∪ γ 4 ∪ γ 5
, where

γ 1 = {(0, 0, E) : E ∈ [E 1 , E 0 ]}, γ 2 = {(0, y, E 1 ) : y ∈ [0, η(E 1 )]}, γ 3 = {(0, η(E), E) : E ∈ [E 2 , E 1 ]} γ 5 = {(ξ 1 (E), η 1 (E), E) : E ∈ [E 2 , E ∞ ]}, and γ 4 is the orbit of (2.2) connecting (0, η(E 2 ), E 2 ) to (ξ 1 (E 2 ), η 1 (E 2 ), E 2 ).
Proof. Apply Theorem 3.5. and Proposition 4.1 (see Fig. 4 or 6).

Proposition 4.4. Let E 0 > a * . We assume that H(E 0 ) > G(E 0 ). Let E 1 = G(E 0
) and E 2 defined by (3.18) in the case where E 0 = a 0 and E

2 = E 1 = a 1 in the case where E 0 = a 0 . Then lim ε→0 Γ ε = γ 0 ∪ γ 1 ∪ γ 2 ∪ γ 3 ∪ γ 4 ∪ γ 5
, where

γ 1 = {(0, 0, E) : E ∈ [E 1 , E 0 ]}, γ 2 = {(x, 0, E 1 ) : x ∈ [0, ξ(E 1 )]}, γ 3 = {(ξ(E), 0, E) : E ∈ [E 2 , E 1 ]}, γ 5 = {(ξ 1 (E), η 1 (E), E) : E ∈ [E 2 , E ∞ ]}, and γ 4 is the orbit of (2.2) connecting (ξ(E 2 ), 0, E 2 ) to (ξ 1 (E 2 ), η 1 (E 2 ), E 2 )
Proof. Apply Theorem 3.6. and Proposition 4.1 (see Fig. 7).

4.2.

Practical semi global asymptotic stability. When b 1 = 0 and a 1 = 0, the limit lim t→+∞,ε→0

(x(t, ε), y(t, ε), E(t, ε)) = (x ∞ , y ∞ , E ∞ ), ( 4.1) 
is uniform with respect to the initial condition in any compact subset of the positive cone C 3 [START_REF] Boudjellaba | Stability loss delay in a class of slow and fast ecological models[END_REF]. This means that equilibrium S is practically semiglobally asymptotically stable. The notion of practical semi-global asymptotic stability in systems depending on parameters, which is very important for applications, appeared first in control theory and is related to the well known problem of stabilization [START_REF] Byrnes | Bifurcation analysis of the zero dynamics and the practical stabilization of nonlinear minimum-phase systems[END_REF].

In the case where b 1 > 0, (2.8) is an equilibrium of (2.1) and some solutions could stay near this equilibrium for a very long time so that the limit (4.1) would not be uniform. Indeed, assume that H(b 0 ) < G(b 0 ). Then, according to Theorem 3.3, the solution of (2.1) with initial condition E(0, ε) = b 0 will jump quickly near the slow curve S 1 and remains close to this curve, as long as b 1 < E < b 0 . Then, the solution will jump quickly from the neighborhood of (0, 0, b 1 ) to the neighborhood of (0, η(b 1 ), b 1 ) and stay for a long time near this equilibrium before jumping towards (ξ 1 (E 1 ), η 1 (b 1 ), b 1 ).

Similarly, in the case where a 1 > 0, (2.9) is an equilibrium of (2.1) and some solutions could stay near this equilibrium for a very long time so that the limit (4.1) would not be uniform. Indeed, assume that H(a 0 ) > G(a 0 ). Then, according to Proposition 3.3, the solution of (2.1) with initial condition E(0, ε) = a 0 will jump quickly near the slow curve S 1 and remains close to this curve, as long as a 1 < E < a 0 . Then, the solution will jump quickly from the neighborhood of (0, 0, a 1 ) to the neighborhood of (ξ(a 1 ), 0, a 1 ).

Applications to Clarks's model

In this section we consider system (1.2). Assume that all parameters of (1.2) are positive.

The fast dynamics are illustrated in Fig. 10. We have On the other hand, the subset Π = {(x, y) : p 1 q 1 x + p 2 q 2 y = c} intersects Γ = {(ξ(E), η(E)) : 0 < E < a} at a unique point, so assumption (A3) holds, if and only if (see Fig. 11,right) sq 1 -rq 2 sq 1 p 2 q 2 L < c < p 1 q 1 K + p 2 q 2 L.

a = c = r q 1 , b = s q 2 , ξ 1 (E) = ξ(E) = K 1 - q 1 r E , η 1 (E) = η(E) = L 1 - q 2 s E .
(5.

2)

The equilibrium S = (x ∞ , y ∞ , E ∞ ) is given by

x ∞ = (sq 1 c -(sq 1 -rq 2 )p 2 q 2 L) K ∆ , y ∞ = (rq 2 c + (sq 1 -rq 2 )p 1 q 1 K) L ∆ , E ∞ = (p 1 q 1 K + p 2 q 2 L -c) rs ∆
, where ∆ = sp 1 q 2 1 K + rp 2 q 2 2 L. We have the following result. Proof. We have

h(E) = E a
r -q 1 u -cu du = q 1 E -r ln E -q 1 a -r ln a c .

Let E > b and u = H(E). We have q 1 u -r ln u = q 1 E -r ln E. Thus, u = ϕ(u), where ϕ(u) := Ee Hence the functions ϕ and ψ satisfy ψ(u) < ϕ(u) for all u ∈]0, E[, so that H(E) < G(E), see Fig. 12 Thus, under conditions (5.1) and (5.2), the asymptotic behavior of the solutions is given by Propositions 4.1, 4. For clarity, we draw the projections of the trajectories, related to two sets of initial values (see Fig. 13 and Fig. 14), on the planes (E, y), on the left, (E, x), in the center and (x, y), on the right. The behavior of the first trajectory with x 0 = 4, y 0 = 4 and E 0 = 3 < a * is in accordance with the results of Theorem 3.5 and Proposition 4.3. The behavior of the trajectory with x 0 = 0, y 0 = 0 and E 0 = 6 > a * supports the results of Theorem 3.5 and Proposition 4.3.

(

  A1): The subset S 2 = {(x, y, E) ∈ C : x = N (x, y, E) = 0} is the graph of a smooth function (x, y) = (0, η(E)) where 0 ≤ E ≤ b, η(E) > 0 for 0 ≤ E < b and η(b) = 0. The subset S 4 = {(x, y, E) ∈ C : y = M (x, y, E) = 0} is the graph of a smooth function (x, y) = (ξ(E), 0) where 0 ≤ E ≤ a < b such that ξ(E) > 0 for 0 ≤ E < a and ξ(a) = 0. The subset

Figure 1 .

 1 Figure 1. The slow manifold of system (2.1): attracting parts of the slow manifold are indicated by a bold line, non attracting parts of the slow manifold are indicated by a dashed line. On the left is the case a ≤ c. On the right is the case a ≥ c showing the fast dynamics (with two arrows) on the invariant planes x = 0 or y = 0, the slow dynamics (with one arrow) on the slow manifold and the equilibria A, B, B 1 , C, C 1 , D and S.

SFigure 2 .

 2 Figure 2. The asymptotic behavior of the solution of (2.1) with initial condition m 0 = (x 0 , y 0 , E 0 ) when c < E 0 < b (on the left) and E 0 > b (on the right). The expected asymptotic behavior, when E crosses the value c (on the left) or the values b and c (on the right) is not correct. The correct behavior, showing the delayed loss of stability, is described in Fig. 4, 5, 6 or 7.

Figure 3 .

 3 Figure 3. On the left: the function f defining the entranceexit function E → F (E) along the slow curve S 2 . On the right: the functions g and h defining the mappings E → G(E) and E → H(E) respectively.

  3) will go quickly towards y = 0 and then remains close to this canard solution while E is decreasing and until E reaches a value E 1 = G(E 0 ) < b. Then it jumps to the neighborhood of the slow curve S 2 and converges towards the equilibrium (2.8). The entrance-exit function E 0 → E 1 = G(E 0 ) along the canard solution y = 0 of (3.3), is calculated as follows. The function g = E b ν(u)du has a minimum at b (see Fig. 3, right). It is decreasing from +∞ to 0 on ]0, b] and increasing on [b, +∞[. It defines a mapping G = g -1 + • g -: [b, ∞[→]0, b] where g -and g + are the restrictions of g on [b, +∞[ and ]0, b] respectively. We have

  along the canard solution x = 0 of (3.5) as follows. The function f (E) = E c λ(u)du, is defined for all E ∈]b 1 , b]. The function f reaches its minimum at c (see Fig. 3, left). It is decreasing from +∞ to 0 on ]b 1 , c] and increasing on [c, b]. It defines a mapping F = f -1 + • f -: [c, b[→]b 1 , c], where f -and f + are the restrictions of f on [c, b[ and ]b 1 , c]. We have

Figure 8 .

 8 Figure 8. The functions µ , ν of (3.24) and the related functions H and G showing that G(-4) = 7/2 < 5 = H(-4) and G(-2) = 5/2 > 1 = H(-2).

Figure 10 .

 10 Figure 10. The fast dynamics of system (2.2). The equilibrium (0, 0) is attracting for E > b. The equilibrium (0, η(E)) is attracting for a < E < b. The equilibrium (ξ(E), η(E)) is attracting for 0 < E < a.

Figure 11 .

 11 Figure 11. On the left: the slow manifold of system (1.2). Attracting parts of the slow manifold are indicated by a bold line, non attracting parts of the slow curve are indicated by a dashed line. On the right: the relative positions of Γ and Π. For the set of parameters (5.3) we have P (ξ(0), 0) > 0.

Lemma 5 . 1 .Figure 12 .

 5112 Figure 12. For (1.2), the functions H and G satisfy H(E) < G(E) for all E > b.

q 2 E

 2 Hence H(E) is a fixed point of the function v = ϕ(u). We haveϕ(0) > 0, ϕ(E) = E, ϕ ′ (E) = E a > 1 and ϕ ′′ (u) > 0. Hence the function v = ϕ(u) has a unique fixed point u = H(E) in ]0, E[. -s ln E -q 2 b -s ln b c . Thus u = G(E) is a fixed point of the function v = ψ(u) := Ee u-E b . We have ψ(0) < ϕ(0), ψ(E) = ϕ(E) = E and 1 a > 1 b .

2 and 4 . 3 .Figure 13 .

 4313 Figure 13. Numerical solutions of (1.2) with x 0 = 4, y 0 = 4 and E 0 = 3 < a * .
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