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Abstract

Our goal in the present work is to give an insight on some important
questions to be asked when choosing a Kriging model for the analysis
of numerical experiments. We are especially concerned about the cases
where the size of the design of experiments is small relatively to the
algebraic dimension of the inputs. We first fix the notations and recall
some basic properties of Kriging. Then we expose two experimental
studies on subjects that are often skipped in the field of computer
simulation analysis: the lack of reliability of likelihood maximization
with few data, and the consequences of a trend misspecification. We
finally propose an example from a porous media application, with
the introduction of an original Kriging method in which a non-linear
additive model is used as external trend.

Keywords: Metamodeling, Kriging, Maximum Likelihood, Deter-
minisitic Drift, Additive Models

1 Linear predictors for spatial interpolation

of numerical simulators

We study a deterministic numerical simulator as a function z : D ⊂ R
d → R,

where x ∈ D is the vector of inputs variables. We denote the set of the design
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points (or ”design”) by X = {x1, ...,xn} and by Z = {z(x1), ..., z(xn)} the
set of simulator responses associated with X. Kriging is a class of methods
coming from the field of geostatistics [15, 3], known as linear optimal pre-
diction in classical statistics. It provides at each point x ∈ D a prediction
Ẑ(x) linearly depending on Z, where the weights depend on the design and
on the Kriging model but not on the observations. The way the weights are
defined varies as a function of the type of Kriging -Simple (SK), Ordinary
(OK), Universal (UK), etc- and many parameters such as the trend functions,
the covariance kernel and their own parameters: threshold (or ”sill”), scales,
nugget, etc... denoted by the r-dimensional vector ψ. In the following, we
will concentrate on the parameters of sill and scale (r = 2), denoted respec-
tively either by ψ1, ψ2 or by σ2, p ∈ [0,+∞[. Most classic Kriging types
(including SK, OK, UK, and more) can be interpreted as random process
interpolation relying on the assumption that:

∀x ∈ D, z(x) = t(x) + ε(x) (1)

where t is a numerical deterministic function and ε(x) is one path of a cen-
tered stationary Gaussian Process (GP) with known stationary covariance
kernel k : h ∈ R

d −→ k(h) ∈ R. t is generally known up to a set of parame-
ters or a semi-parametric structure to be estimated within Kriging. Several
founder works [19, 7] on the application of Kriging to computer simulations
start off with an extremely simplified version of (eq.1). They assume that
the trend is an unknown constant (Ordinary Kriging, i.e. t(x) = µ ∈ R) and
that k is a generalized exponential kernel [20], letting the stochastic part of
(eq.1) account for the variability of z. Then the covariance parameters ψ
are estimated by maximizing the Gaussian likelihood of the observations Z.
On the other hand, recent approaches [8, 14] try to take advantage of more
complex trends, from linear and polynomial functions to Fourier series. In
other respects, [13] as well as [16] present an application of bayesian analysis
to Kriging interpolation of computer codes.

The motivation of this article is to raise some basic questions that should
become crucial when applying Kriging techniques with few observations re-
garding the dimension of inputs, which is quite often the case in numerical
simulation. The two coming sections, based on toy experiments, put a focus
on the estimation of the covariance parameters ψ and on the choice of the
trend t. The two following sections are dedicated at presenting an original
combination of additive models and Simple Kriging, with a heuristic fitting
methodology. The efficiency of this technique is illustrated on a 3-dimensional
example from a porous media simulation test case.
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2 Fitting covariance parameters by MLE with

a small sample

The Maximum Likelihood (ML) estimation method is widely used in Kriging
to choose covariance parameters on the basis of observations. Following the
assumptions from (eq. 1), ML estimation relies on the maximization of the
density of the observed values Z, seen as a function of the vector ψ:

L(ψ;Z) := f(Z|ψ) = (2π)−
n
2 det(Kψ)−

1
2 e−

1
2
(Z−t)TK−1

ψ
(Z−t) (2)

where Kψ is the covariance matrix of Z(X) = {Z(x1), ..., Z(xn)} provided
that ψ is the true vector of covariance parameters, and t is the vector of
values of t at X. The obtained result ψ̂ = argmaxψ{L(ψ;Z)} is closely
depending on Z, i.e. on the observed realization of Z(X). The behaviour of

ψ̂ relatively to ψ when the sample of observations fluctuates is a of impor-
tance. We recall that Z is assumed to be one realization of a multivariate
Gaussian random vector with given trend, covariance structure, and covari-
ance parameters ψ. Then L(.;Z) becomes a random function (fig. 1), and

ψ̂ = argmaxψ{L(ψ;Z)} becomes a random vector as well.

scale

va
ria

nc
e

0.0 0.2 0.4 0.6 0.8

5
10

15
20

25

scale

va
ria

nc
e

0.0 0.2 0.4 0.6 0.8

0
5

10
15

20
25

Figure 1: Two realizations of the random function −2 lnL(.;Z) corresponding
to two simulated response values Z, both with a Gaussian covariance kernel
(cg defined hereafter) and covariance parameters ψ = (5, 0.3). Left: ML

estimates are close to the actual parameters (bold dot) : ψ̂ ≈ ψ. Right:

ML fails to locate the actual parameters: ψ̂ 6= ψ.
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The distribution of ψ̂ has been studied in detail within the theory of likeli-
hood [23, 12]. A first order Taylor expansion leads to an asymptotic result [2]
based on Fisher’s Information Matrix I(ψ) (denoted by FIM in the sequel):






ψ̂
L

−→ N (ψ, I(ψ)−1)

I(ψ) =
(
E

[
∂ ln(L(.;Z))

∂ψi
(ψ)∂ ln(L(.;Z))

∂ψj
(ψ)

])

i,j∈[1,r]

(3)

In many computer experiments, one first picks a covariance kernel from a
parametric family: Gaussian, Exponential, Matèrn, etc...(the Gaussian co-
variance kernel is often chosen for its simplicity and regularity properties)
and the associated covariance parameters are then automatically fitted by
ML. However, the efficiency and robustness of this estimation method when
few data are available are rarely discussed. Our concern is to check in what
measure the first order asymptotic results hold with small samples. To do
so, we computed the theoretical FIM of Z:

∀i, j ∈ [1, r] (I(ψ))ij =
1

2
tr

(
K−1
ψ

∂K(.)

∂ψi
(ψ)K−1

ψ

∂K(.)

∂ψj
(ψ)

)
(4)

To obtain comparable results for different values of ψ, we introduce a relative
inverse FIM: (J (ψ))ij = (I−1(ψ))ij/(ψiψj). J is in fact the asymptotical

covariance matrix of ψ̂
ψ

, where the division is made component by component.
We conduct experiments with vectors taken from simulated monodimensional
Gaussian Processes to compute empirical means and variances of the ML es-
timators. For each simulation, we compute covariance parameters estimated
by ML and the Integrated Squared Error (ISE) between simulated (z(x))

and interpolated (Ẑ(x)) data:

ISE =
1

vol(D)

∫

D

|z(x) − Ẑ(x)|2dx (5)

where vol(D) is Lebesgue’s measure of the set D. ISE is approximated by av-
eraging the squared errors on a fine grid (i.e. 200 points). We finally collect
the averages and variance matrices of the relative values of the estimated
covariance parameters, the averages and variances of ISE (ISE is random
since it depends on the realization z), and the covariances between ISE and

ψreli = ψi−ψ̂i

ψi
. The latter two indicators are not presented in the tables. We

focus here on GPs with covariance kernels cg(h) = σ2e
−

h2

p2 (Gaussian) and

ce(h) = σ2e−
|h|
p (Exponential). The covariance parameters reduce to ψ =
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(σ2, p) ∈]0,+∞[×]0,+∞[ and the design X is chosen among uniform subdi-

visions of [−1, 1]: Xn = {−1,−1+ 2
n−1

, . . . ,−1+2(n−2)
n−1

, 1} (n ∈ N\{0, 1}). We
restrict our experiments to the designs X5 and X10 with both cg and ce, and
covariance parameters ψ1 = σ2 ∈ {5, 10}, and ψ2 = p ∈ {0.3, 0.4, 0.5, 0.6}.

Table 1: ML and ISE values on 1000 simulated realizations of GPs with
Gaussian covariance function, for relative parameters ψreli = ψi−ψ̂i

ψi
, i = 1, 2

and for X = X5. The second column shows that the relative ML estimates
are almost unbiased even with 5 observations. On the contrary, a comparison
between the third and fourth columns illustrates that the ψreli are clearly more
dispersed than given by the asymptotical approximation based on the FIM.

ψ E
[(
ψreli

)
i

]
V ar

[(
ψreli

)
i

]
asymptotical V ar

[(
ψreli

)
i

]
E[ISE](

5
0.3

) (
−0.034
0.018

) (
1.105 0.277
0.277 1.270

) (
0.402 0.071
0.071 2.048

)
4.976

(
5

0.4

) (
−0.147
0.042

) (
1.329 0.501
0.501 0.976

) (
0.427 0.111
0.111 0.452

)
3.287

(
5

0.5

) (
−0.222
0.033

) (
4.037 0.757
0.757 0.679

) (
0.479 0.131
0.131 0.217

)
1.947

(
5

0.6

) (
−0.187
0.027

) (
2.058 0.504
0.504 0.421

) (
0.538 0.135
0.135 0.133

)
0.706

(
10
0.3

) (
−0.131
0.006

) (
3.334 0.867
0.867 1.564

) (
0.402 0.071
0.071 2.048

)
10.138

(
10
0.4

) (
−0.083
0.106

) (
1.645 0.484
0.484 0.862

) (
0.427 0.111
0.111 0.452

)
6.398

(
10
0.5

) (
−0.166
0.024

) (
1.343 0.440
0.440 0.629

) (
0.479 0.131
0.131 0.217

)
3.678

(
10
0.6

) (
−0.256
0.012

) (
14.960 0.963
0.963 0.392

) (
0.538 0.135
0.135 0.133

)
1.459

In the case of a Gaussian covariance, we observe a negative relative bias 1

(−3.4% to −25.6%) in the estimation of ψ1 = σ2. This bias is decreasing
with the number of design points #X (see table 2 where the negative relative
bias varies between −4.2% and −7.5%), which seems in accordance with the
asymptotic unbiasedness of MLE. On the other hand, the relative bias of ψ̂2

has a small order of magnitude when #X = 5 and slightly oscillates around
0 when #X = 10.

The empirical covariance matrices of the ML estimates offer some surprising
results. In particular, the relative variances of ψ̂1 present huge fluctuations:
they vary sometimes of an order of more than 10 between two samples of 1000
realizations issued from the same GP; for instance by resimulating a GP with

1Mind the fact that by negative relative bias we understood an overestimation of ψ.
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Table 2: MLE and ISE measures on 1000 simulated GP realizations with
Gaussian covariance kernel, for X = X10. The aproximation based on
Fisher’s Information Matrix is still underestimating the estimation variances
but is less unprecise than in table (1).

ψ E
[(
ψreli

)
i

]
V ar

[(
ψreli

)
i

]
asymptotical V ar

[(
ψreli

)
i

]
E[ISE](

5
0.3

) (
−0.054
0.012

) (
0.432 0.105
0.105 0.085

) (
0.297 0.057
0.057 0.033

)
0.177

(
5

0.4

) (
−0.042
−0.019

) (
0.424 0.058
0.058 0.024

) (
0.340 0.044
0.044 0.014

)
0.009

(
5

0.5

) (
−0.067
−0.013

) (
0.46 0.051
0.051 0.013

) (
0.362 0.036
0.036 0.008

)
0.0004

(
5

0.6

) (
−0.075
−0.007

) (
0.728 0.059
0.059 0.012

) (
0.375 0.032
0.032 0.005

)
4.e-05

ψ = (10, 0.4) and #X = 5 we obtain V ar
[(
ψrel

i

)
i

]
=

(
43.555 3.242
3.242 0.971

)
. Since it is

in contradiction with normality and the order of magnitude given by (eq.4),
we shall analyze this phenomenon in detail. First, we observe that the ex-
treme values of V ar[ψ̂1] are caused by some outliers, highly perturbating the
non-robust estimate of variance. Second, the histogram in (fig.2) illustrates
that the distribution of the ψ̂1’s is rather lognormal than normal. Finally,
the comparison with the relative FIM shows that the empirical variance of
ψ̂1 is clearly larger than predicted by the second order Fisher approximation,
in particular with the smallest designs.

Concerning the relative variances of ψ̂2, the results are much more regular:
they decrease monotonically with ψ2 and with #X, both for the empirical and
theoretical quantities. Once again, the empirical variances tend to match the
theoretical variances as #X grows, even if the first ones are still typically two
times larger than the second ones for a sample of size 10. In other respects,
both tables illustrate some fundamental properties of the mean squared error.
Obviously decreasing with #X, the ISE is also decreasing with the range ψ2

and linearly increasing with the variance ψ1. Finally, we quantify the linear
dependence between the underestimation of both covariance parameters by
MLE and the ISE (not in the tables). It is worth noticing that ψ1 and ψ2

play drastically different roles here: it seems that a bad estimation of ψ1

is weakly correlated with the ISE. This result seems natural when consid-
ering that the OK predictor is not depending on the process variance, see
[3]. Conversely, the correlation between the ISE and the relative MLE er-
ror on ψ2 is significantly positive: it varies between 40.1% and 55.7% when
#X = 5 and between 15% and 62.5% when #X = 10. This coincides with

6



our previous qualitatives observations of larger ISE when the range is much
underestimated.

5 6 7 8 9 10 11 12 13

−
3

−
2

−
1

0
1

Size of the design of experiments

S
ca

le
 p

ar
am

et
er

log(hat_sigma2/sigma2)

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
20

40
60

80

Figure 2: Left: Comparison between the experimental law (gray boxplots)
and the asymptotic law (black lines) for the scale parameter for increasing
size of the design. The boxplots for the experimental laws have been done
using 1000 simulations, with Gaussian covariance function of parameters ψ =
(5, 0.5). For the asymptotic law the median is represented in continuous line
and the first and third quartiles in dashed lines. Right: Histogram of the
logarithm of relative errors obtained when estimating ψ1 by ML using 1000
GP realizations. The shape of this histogram suggests that the distribution
of relative errors is far closer to a lognormal law than to a Gaussian.

A similar study with exponential covariance function gives very different re-
sults both for the bias and the variances of ML estimates (the corresponding
tables are not presented here). Indeed, we observe very regular variances of
ML estimates while the bias reaches impressive orders of magnitude. How-
ever, the behaviour of the ISE and the correlations between ISE and relative
MLE errors follow the same sketch as in the Gaussian case.

To sum up this section about ML estimation:

• Fisher’s first order asymptotical results must be applied with much
care concerning the sample size. More precisely, it has been observed
here for n ≤ 5 that the distribution of the estimated range parameter

7



is asymmetrical with a higher variance than the inverse of Fisher’s
information, but quickly stabilizes to a Gaussian when n increases (from
5 to 13).

• On the other hand, the distribution of the estimated variance parame-
ter has a very large right tail but its shape is far from being gaussian
when n is very small (n ≤ 5). Furthermore, these results still hold
when n increases (from 5 to 13) and it seems that the Gaussian ap-
proximation becomes reasonable only for larger values of n.

Estimating covariance parameters by ML with few data appears to produce
very dispersed results. Hence, it seems unreasonable to neglect the uncer-
tainty associated with this phase of estimation when performing Kriging.
Bayesian techniques are a way to address this issue [16, 4]. In other re-
spects, [1] investigates an extended Kriging variance taking the estimation
of parameters into account; a this stage the latter relies on the first order
approximation. To finish with, frequentist approaches based on the max-
imization of penalized likelihood functions seem very promizing since they
provide estimators with the same asymptotic properties as ML in addition
to a more robust behaviour with few observations [11].

3 Kriging with trends: a bless or a curse?

Now we wish to examine another difficulty encountered when Kriging based
on few data: the selection and the estimation of deterministic trends. In
computer experiments, the most commonly used Kriging model seems to be
Ordinary Kriging. However, OK reaches one of its limits when the stationar-
ity assumption does not hold any longer, i.e. when non constant trends t(x)
are impossible to ignore. In this case, we are back to the general decompo-
sition of (eq.1), where z is assumed to be the sum of a deterministic trend
t and one realization of a centered GP ε. At this stage, we may consider
several subcases.
If t is known and the parameters of ε have to be estimated, a straightforward
solution is to perform Simple Kriging of the residuals {z(x) − t(x)}x∈D.
If t is unknown, it is common to distinguish between a linear and a more
general non-linear framework. The case in which t depends linearly on its
parameters and ε has a kwown covariance structure has been intensively
studied: it is well known as Universal Kriging [14]. When the covariance
parameters ψ are known and the trend is a linear combination of some cho-
sen basis functions fj (j ∈ [1, b], b ∈ N\{0}), the only unknowns are the
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parameters of the trend (∀j ∈ [1, b], βj ∈ R); indeed, if t(x) =
∑b

j=1 βjfj(x),
the βj’s can directly be estimated by Generalized Least Squares (GLS):

β̂(ψ2) = (FTK−1
ψ F)−1FTK−1

ψ Z = (FTR−1
ψ2

F)−1FTR−1
ψ2

Z (6)

where F denotes the evaluation of f(x) = [f1(x), . . . , fb(x)] at the n design
points and Rψ2 = (1/ψ1)Kψ (proportionality since the observations are noise-
free) is the correlation matrix of Z(X).
In practice, however, one has seldom the value of the covariance parameters
at disposal previous to performing UK. So one has to estimate a model with
linear trend and unknown covariance parameters ψ (in the following we will
also refer to this case as “UK”, like many practitioners do). Hence ψ and β
have to be estimated within Kriging. At a first sight, this is likely to create
a circularity problem: one needs a known trend to work on the residuals
and thus estimate ψ. On the other hand, estimating t without taking the
residuals into account may lead to unadapted trends (the estimation of the
trend parameters would rely on Ordinary Least Squares instead of GLS).

Fortunately, ML estimation gives a way to escape this vicious circle. As-
suming, like in section 2 that the covariance parameters to be estimated are
ψ = (σ2, p), and using MLE (and the same formula (6) for β̂), one can get a

straightforward formula for σ̂2, explicitly depending on ψ2:

σ̂2(ψ2) = (1/n)(Z − Fβ̂(ψ2))
TR−1

ψ2
(Z − Fβ̂(ψ2)) (7)

By injecting (6) and (7) in the expression of the likelihood, one can obtain

a concentrated likelihood function L(ψ2, σ̂2(ψ2), β̂(ψ2)) which clearly depends
only on ψ2 and which has to be maximized to get ψ̂2. The Kriging predictor
with plugged-in covariance parameters is then given by:

Ẑψ̂2
(x) = fT (x)β̂(ψ̂2) + rT (x)R−1

ψ̂2

(
Z − Fβ̂(ψ̂2)

)
(8)

where r(x) is a vector of correlation values between Z at an unknown point
x and at the points of the design X. Most of the time (apart in Bayesian
Kriging) the variability due to the estimation ψ2 is not propagated, and one
uses the regular UK prediction variance.

UK appears as a very convenient means to incorporate known determinis-
tic trends within Kriging. By the way, we will see in the next section that
overcoming the circularity problem is not easy in a more general non-linear
framework. Now we would like to go one step deeper in practical consider-
ations and raise a naive but complex question which has to be handled in
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real-world applications, and particularly in high-dimensional problems: how
can one come back to the nature of the trend from raw data? As soon as nei-
ther prior information nor obvious graphical clue is available, one has indeed
to select a trend on the basis of (X,Z). What means does he have to do so,
and what risk does he run in case of a bad choice? In order to show that
these questions are crucial, let us first perform some toy experiments. The
set-up is the following. A realization of a one-dimensional GP with known
covariance function and parameters is simulated on a regular grid (401 points
on [−1, 1]) and an affine trend is added; From this set we choose different
subsets of points and perform three types of Kriging : OK, UK with linear
trend and UK with quadratic trend.
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Figure 3: One realization (dashdot line) of a GP with linear trend is inter-
polated by Ordinary Kriging, based on 3 designs. The OK mean and 95%
confidence intervals are represented by bold lines and dotted lines, respec-
tively. The first design (left) is a regular grid; the associated OK prediction
seems satisfying, even if the trend model is misspecified. The second design
(center) is formed by 6 points concentrated at the boundaries of the domain;
The Kriging predictor fails to capture the shape of the realization at the
center of the domain. The third design is made of three points clustered at
the center of the domain; OK automatically comes back to the mean value
outside of the design and dramatically miss the actual trend.

We choose at first a subset of 5 regularly distributed points. Due to the fact
that the points are regularly spaced on the grid, all the three kriging give
similar good results, even if in two of the three cases the trend is misspecified
(fig.3 left for the case of Ordinary Kriging). This may lead to the conclusion
that specifying the trend is not very important and we could obtain good
results using OK. But if we perform the same Krigings on different designs,
where there are few points concentrated either on the boundaries or in the
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center of the domain, then the results are very bad (due to the ratio between
the parameter ψ2 and the subdivision length) when the trend is misspecified,
see (fig. 3, middle and right). The covariance parameters used for the sim-
ulated process in (fig. 3) and (fig. 4) are ψ = (5, 0.2). The results are even
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Figure 4: One realization (dashdot line) of a GP with linear trend is inter-
polated by three different Krigings, based on a regular grid (5 points evenly
spaced between −1 and 1). The GP is here represented between −2 and
2, such that all three cases can be referred to as extrapolations. UK with
affine trend (center) gives accurate results on the whole domain. On the con-
trary, both OK (left) and UK with quadratic trend (right) give good results
between −1 and 1 but dramatically fail in extrapolation.

worse if we use the Kriging predictor given by OK or by UK with quadratic
trend in extrapolation (fig.4, left and right). In the one dimensional case
the choice of the trend doesn’t seem to be essential while interpolating data
which are not very distant one from another with respect to the frequency
of variation of the process. On the contrary, when the design is not regular
and we are in extrapolation, the performances of Kriging are very sensitive
to the adequacy between the real trend of the process and the Kriging trend.

Hence it seems enough to properly fill the space to avoid the risks caused by
the choice of trend functions. But what is possible in one or two dimensions
becomes unrealistic when the dimension increases: a design with only one
point at each vertex of a cubic domain [0, 1]d has 2d points, i.e. 1024 points
in 10 dimensions and more than a billion points in 30 dimensions. As we
usually dispose of 10×d observations per dimension, which is already an op-
timistic case, choosing a trend based on data only appears as a very difficult
task. Let us see nevertheless what would be possible in order to choose a
trend starting from a data set (X, Z): the classical frame of linear regression
offers a panel of diagnostic tools dedicated to validating both assumptions
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on the trends and on the model of residuals. For instance, commonly used
indicators include R2 (and R2 adjusted), the F-ratio and the p-values for
each estimated regression coefficients, and numerous criteria to check the ad-
equacy of the residuals to the underlying model. In most cases the Gaussian
likelihood of the residuals is considered among the relevant criteria of model
selection (some model testing techniques or even based upon it).

Now it seems necessary to recall that the latter measures are exclusively done
at the design of experiments, also called “training sample” or “learning sets”
in the literature of statistical learning, see [6]. Selecting only on the basis of
a R2 fit would lead for instance to the systematic choice of models interpo-
lating (X, Z). However such models are not meant to be good in prediction
outside the design of experiments. This warning leads to the double message:

• Model complexity must be taken into account in selection procedures

• Testing the model at some test points not used in the model fitting
could be worth: this is for instance what cross-validation does.

The following experiment is performed in an intent to illustrate the first point.
The second point will be illustrated in the next section. Here we investigate
on a simple case how trend selection may be misleading when likelihood is the
only criterion, without any consideration of model complexity. To do so, we
compute, for each trend form of the Kriging model, the optimal parameter
p̂ by ML, we compare the corresponding values of the likelihoods and we
select the kriging model having the highest value of likelihood. In table 3, we
compare three Kriging models (OK, UK with linear trend, UK with quadratic
trend) for three different functions: one realization of a one-dimensional GP
with 11 points and with Gaussian covariance function (ψ = (5, 0.4)), the
same realization plus a linear trend 0.5 + 5x, and the same realization plus
a quadratic trend 0.5 + 5x+ 5x2.
Here it is essential to notice that the likelihood values are necessarily larger
when adding more degrees of freedom to a statistical model. This constitutes
a misleading incentive to always choose the model with the largest number of
parameters within a given family. This happens for instance between Krig-
ing models with first order and second order polynomial trends. As can be
observed in table 3, L always increases (i.e. the values of −2 ln(L(p̂)) will
decrease) with the complexity of nested model. What we should really com-
pare are maximum likelihood values between models with the same number
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Table 3: Comparison of minimum −2 log(L) values obtained by fitting three
different Kriging models (OK, UK affine, UK quadratic) to three GP realiza-
tions. Each realization is drawn from the GP underlying one of the Kriging
models. The design is a regular grid on [−1, 1]. The results illustrate that
adding degrees of freedom to a Kriging model always lead to a larger value
of the maximum likelihood.

GP GP +linear t GP+quadratic t
kriging type p̂ −2 ln(L(p̂)) p̂ −2 ln(L(p̂)) p̂ −2 ln(L(p̂))
OK 0.4082 32.07 0.4445 36.90 0.4595 38.80
UK, linear t 0.4085 31.89 0.4085 31.89 0.4387 35.80
UK, quadratic t 0.4084 31.89 0.4084 31.89 0.4084 31.89

of degrees of freedom. On the last line of table 3, in the cases of the GP
without trend and of the GP with linear trend , the estimated values β̂ are
very close to but different from zero. Thus the model obtained by auto-
matically selecting the Kriging with highest likelihood will perform badly in
extrapolation because of the higher order terms of the polynomial. The same
phenomenon applies in an even more pronounced way with a linear trend in
the case of a centered GP (first column, second row).

As a conclusion to this section, we have pointed out that OK and UK may
seem to deliver similar results when the design is dense [22], but modeling
the trend matters in extrapolation situations [9]. Since working in high-
dimensional spaces means that we will practically always be in extrapola-
tion, we need exploratory and visualization tools dedicated at finding trends
in multivariate data. Recent methods of data mining and functional anal-
ysis may help [6]. We propose now to use additive models within spatial
interpolation.

4 Using non-linear additive models as exter-

nal drift

Linear models are often used by practitioners of quantitative disciplines since
they are simple to interprete and to assess. Additive models (AM ) are an
extension of linear models. A precise description of these models can be
found for instance in the book [5]. The advantage of AM is to conserve
the feature of non-interacting predictors, but they allow much more flexible
inference for each univariate problem, using kernel smoothers for instance
[24]. The generic expression for an additive model is the following:
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Zi = z(x) + εi
z(x) = α+

∑d

j=1 fj(xj)

The εi are n.i.i.d.

(9)

and the fjs are arbitrary univariate functions, one for each predictor but
possibly not the same kind of function for each dimension. Hence additive
models deal with additive functions observed in a Gaussian noise. x is in
fact assumed here to be a control variable, and not a random variable as in
[5]. This model may be used to approximate deterministic computer exper-
iments, provided that the response surface can reasonably be decomposed
in an additive way. Once the nature of the fjs is chosen, they can be esti-
mated using a powerful iterative procedure called backfitting algorithm, see
[6]. Backfitting means that f1 is estimated on the basis of all data (X,Z),
then f2 is fitted to the residuals Z − f1(X), and so on. Under mild assump-
tions, the backfitting algorithm converges and finds the unique solution of
the additive decomposition of (eq.10). In this section, we propose a combi-
nation of additive model and Kriging that offers the great flexibility of AMs
and yet interpolates the data. It seems very natural to combine both models
by using the following decomposition:






z(x) = t(x) + εSK(x)

t(x) = α+
∑d

j=1 fj(xj)

εSK(x) is a GP realization like in (eq.1)

(10)

This identity may at first seem similar to the equation of Universal Kriging.
However, in this case the non-linear nature of the trend prevents one from
solving the estimation globally. Indeed, a likelihood maximization would lead
to an optimization problem in infinite dimension:

max
ψ,(fj)j∈[1,d]

L(ψ, t;Z) (11)

To our knowledge such a problem is analytically intractable. On the other
hand, the backfitting algorithm is not suited anymore if we take the Kriging
part into account. Indeed, kriging the residuals after fitting a smoother in
one dimension would lead to an interpolation and thus end the iterative
procedure without fitting the additive parts in the other dimensions.

Kriging with external trend [3] seems to constitute a good alternative for
solving both the problem of the “general” form of trend and the one of the
circularity. Consequently, we consider now a two-step approach (see Alg.1):
first, the additive trend t(x) is estimated using the backfitting algorithm,
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and then Simple Kriging is applied to (Z − t) with covariance parameters
estimated on the basis of those residuals, by likelihood maximization or other.

Algorithm 1 A first two-step approach to fit a Kriging with additive trend

1: Estimate the trend t by backfitting
2: Estimate the covariance parameters and fit a SK model on the basis of

the residuals at X

Unfortunately, there are significant drawbacks in the latter procedure, mainly
related to the uncontrolled trade-off between deterministic and stochastic
parts. Hence, the whole uncertainty reduces here to the Kriging variance es-
timated on the residuals; there is indeed no global uncertainty on the trend
unless we use only splines in the AM. This is likely to cause a large under-
estimation of the process variance associated with the model. Furthermore,
these residuals may be not very well suited to estimate the Gaussian pro-
cess part: the additive model is constructed to fit z accurately at the design
-possibly leading to overfitting-, thus the residuals at X are likely to vary
with a smaller magnitude than in prediction. Since we look for a model with
reasonable generalization properties, it seems necessary to find an alternative
way of estimating the covariance parameters.

We propose here a sequential estimation technique for combined Kriging
models like (eq.10). It is based on the idea that when the trend is non-linear,
the parameters of the GP model should be estimated on a validation set
rather than on the set at which the trend is fitted.

Algorithm 2 An alternative two-step approach to fit a Kriging with additive
trend
1: Consider two designs X1 and X2 ⊲ possibly obtained by splitting X
2: Estimate the trend t by backfitting, based on the data (X1, z(X1))
3: Estimate the SK covariance parameters on the basis of the residuals

{t(x) − z(x)}x∈X2

4: Fit the SK model on the basis of all residuals ⊲ with parameters
estimated at the previous step
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5 A 3-dimensional application of Kriging with

Additive Trend (KAT)

The previous approach is applied to a 3-dimensional example from an in-
dustrial test case. The data are obtained with a flow simulator and the
numerical response z, standing for the outcome of interest, is studied as a
function of three physical parameters characterizing the porous media and
denoted by x1, x2 and x3 ∈ [−1, 1]. The response is simulated at 1331 lo-
cations corresponding to a 11-level full factorial design, denoted by “F” in
the sequel. Our goal is to provide a surrogate of the simulator on the ba-
sis of a poor design of experiments. The metamodel should interpolate the
data (to respect the determinism of the underlying simulation) and provide a
prediction uncertainty that allows statistical-based exploration, for instance
to solve optimization problems. Furthermore, it should take into account a
prior knowledge inherited from a previous study: the phenomenon is almost
additive in its parameters.

Our initial design, “X1”, is a 20-elements Hammersley sequence. We first
perform a graphical analysis (fig. 5) of the response at X1, discuss the
hypothese of additivity, and propose several kinds of linear and additive
trends to model the data. Algorithm 1 is tested with the design X1 (Table
4). Then a second design, “X2”, is used for an intermediate validation of the
covariance parameters of the model previously obtained. X2 is made of 14
points taken from a 40-elements D-optimal design (see fig. 6). Algorithm 2
is then performed by re-estimating the covariance parameters of the previous
SK model on the basis of the residuals at X2. An original estimation method
is proposed, which differs from the traditional MLE: the process variance σ2

is fixed such that the standardized residuals have most of their values between
−2 and 2 [7] and the range parameter p is chosen in order to minimize the
ISE at the design X2 (fig. 7). The full factorial design F is finally used for a
phase of model validation (fig. 8).

A graphical analysis of the coplots at X1 does not reject the prior belief of ad-
ditivity. A first additive decomposition is then estimated using splines in all
directions (referred to as “GAM splines” in the following). We observe that
we might take a linear trend in the directions of x1 and x3, and a non-linear
trend in x2 without loosing much accuracy (see Table 4 for a quantitative
validation). Hence we choose to fit an additive model with mixed trends,
called “GAM mixed” in the sequel.

Different Krigings with external trend are fitted to the observed data at the
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Figure 5: Coplots of z on the Hammersley design X1 (left) and summary
of the additive components and the residuals obtained after application of
the backfitting algorithm (right). The additive model is here chosen with a
linear function in both directions of x1 and x3, and a smoothing spline in
x2’s direction.

design X1. In all cases, the SK part has a structure of isotropic GP with
Gaussian covariance (see section 2). We focus on the two additive trends
defined above and on two additional linear trends: a first and a second or-
der regression polynomial. For each model, we fit the trends respectively by
OLS and backfitting, and we measure their relevance using indicators com-
puted with the residuals at the design X1 (residuals deviance and p-values
when available). Then we fit a Kriging to the residuals, as explained in Al-
gorithm 1. For each Kriging, we store the maximum reached value of the
log-likelihood and the corresponding range and variance values. The results
are listed in (Table 4).

These results support the belief that a general additive trend is adapted for
these data: both the variance of residuals and the values of their likelihood
(compared to the 2nd order linear model, which uses more degrees of free-
dom) indicate their good fit to the data.

In practice, however, we care more about the model’s abilities to make correct
predictions at new points than about its mean squared error at the design.
Hence, model validation should not be blindly supported by the indicator R2

or the likelihood of the residuals at X1. First, we should consider the number
of degrees of freedom of the model. Second, it may be worth validating the
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Table 4: Optimal loglikelihood values and estimated covariance parameters
associated with the residuals provided by Algorithm 1 at X1 with different
trend structures. The R2 values are computed by comparing the residual
deviance after fitting the trend only, to the total variance of the response at
the design X1.

Model Loglikelihood Range σ2 R2
adj R2 p-value

1st order Linear + SK -121.91 1.04 26101.89 0.78 0.82 4.03e-06
2st order Linear + SK -100.69 0.048 1381.13 0.97 0.98 6.44e-08

GAM splines + SK -76.01 0.048 117.10 - 0.99 -
GAM mixed +SK -80.62 0.16 185.71 - 0.99 -

model outside of the design. Indeed, the residuals drawn from (fig. 5) are
computed at the same locations as those used to fit the trend.

Concerning the first point, we can compare the degrees of freedom of both
“2nd order linear” and “GAM mixed”: respectively 10 and 7. Regarding the
second point, we conduct a validation test on some additional data, inspired
by the cross-validation procedure. Following Algorithm 2, X2 is used to valid
and update the parameters associated with the model fitted at X1.
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Figure 6: Coplots representing both X1 (dots) and X2 (triangles) designs in
projection on all pairs of coordinates. The three graphics illustrate the space-
filling behaviour of X1 and the D-optimal nature of X2. X2 also appears to
be reasonably disconnected from X1.

The points of X2 are used to test the validity of the covariance parameters
of the model “GAM mixed”, previously estimated by ML. Figure 7 shows
the associated residuals standardized by the ML variance (left), and the
behaviour of the ISE at X2 as a function of p (right). We recall that the
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residuals should satisfy the assumption of normality in order to get relevant
Kriging variances, insuring correct statistical predictions.
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Figure 7: Standardized residuals at the validation design X2 (left) and vari-
ation of the ISE with respect to the covariance parameter p (right). One
can observe that the value of p found by ML at X1 (p1 = 0.16) is clearly
suboptimal to get an accurate Kriging predictor when extrapolating to X2.

Figure 7 (right) shows that the ISE at the validation design X2 can be sig-
nificantly reduced by increasing the range p. Following Algorithm 2, we re-
estimate the covariance parameters based on these residuals at X2. Instead
of using ML however , we prefer to directly use the work done hereabove to
compute the ISE as a function of the range. It appears indeed that the opti-
mal range to accurately fit the residuals at the validation design is given by
p2 = 1.4. Concerning the variance, we observe more satisfying standardized
residuals with σ2

2 = (2 × σML)2. So we keep σ2
2.

Remark: A ML estimation with the residuals at X2 delivers p = 0.97.

We finally test the model of Algorithm 2 at the design F (fig. 8). The
standardized residuals (with the variance σ2

2) and the ISE as a function of p
validate our empirical decisions made on the basis of the intermediate design
X2 (note that ML on X2 -see remark hereabove- gives also better results
than ML on X1 but the cross-validating strategy minimizing the ISE at X2

remained the best). To conclude with, the algorithm investigated performed
well on this example: Simple Kriging seems to constitute a good comple-
ment to additive models in an intent to interpolate data and also possibly
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Residuals at F after parameter re−estimation at X_2
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Figure 8: Left: Histogram of the standardized residuals at the test design
F with the model previously obtained by Algorithm 2 (GAM mixed, σ2 =
σ2

2, p = p2). Right: Variation of the ISE with respect to the covariance
parameter p: the value p2 = 1.4 previously chosen at X2 is almost optimal
again.

explain some non-additive part. The method we use here allows inference of
covariance parameters with values suited for a correct quantification of un-
certainty. This seems encouraging to develop further “cross-validation-like”
methods for the combination Additive model + Kriging.

6 Conclusions and perspectives

We observed in a one-dimensional frame that MLE could behave very differ-
ently from Fisher asymptotical results when n is small. This result should
be kept in mind when dealing with higher dimensions, and further studies
have to be done in this latter context. Since it relies on the simulation of
Gaussian vectors, the experimental approach presented here can easily be
transposed in a higher dimensional framework. Perspectives include the em-
pirical comparison of ML and penalized ML [11] when using classical designs.

Further experiments on the topic of trend selection illustrated the fact that
the likelihood cannot be considered as only criterion when comparing dif-
ferent functional families. This is suggesting methods penalizing complexity
(like in AIC and BIC). But we mainly wish to emphazise on the risks took
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when predicting with trended Kriging: in higher dimensions, we will all-
ways be in an extrapolation situation. Choosing a trend with the help of a
small design then seems very risky. This is an argument to consider Ordi-
nary Kriging in the cases where no prior information on the trend is available.

In other respects, we proposed a model combining an additive model and
Simple Kriging. The application to a simple industrial test case confirmed
that directly kriging the residuals by ML gives a poor result. Our attempt to
adapt a method inspired by cross-validation with a single test set gave here a
Kriging with different features from ML, apparently accounting well for the
non-additive part of the response. However, the question of the robustness
to a change of design has not been raised yet. This is a subject to be treated
in further works.
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