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Let (M, g) be a compact Riemannian n-manifold, n ≥ 3. We prove the existence of multiple solutions for equations like

is positive, and the exponent p takes critical and overcritical values. General results are obtained and specific examples are discussed, like S n , S 1 (t) × S n-1 , and S 1 (a) × S 2 (b) × S n-3 .

Introduction

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Our paper is concerned with the question of the existence of multiple smooth solutions for the equation

∆u + αu = f u p , u > 0 (E p )
where ∆ = -div (∇ ) is the g-Laplacian, α ∈ R + * , f ∈ C ∞ (M ) is positive and p ≥ n+2 n-2 . We say that the equation (E p ) is critical when p = n+2 n-2 and overcritical when p > n+2 n-2 . Indeed, the exponent n+2 n-2 is the classical critical Sobolev growth exponent. It appears 1 in particular in the equation one has to solve in the prescribed scalar curvature problem :

∆u + (n -2) S g 4(n -1) u = f u n+2 n-2 , u > 0 (1.1)
where S g is the scalar curvature of g. More precisely, if for f ∈ C ∞ (M ) there exists u ∈ C ∞ (M ) a positive solution of (1.1), then f is the scalar curvature of the g-conformal metric u 4 n-2 g. We are here interested in two particular cases of equation (1.1). On the standard sphere (S n , h n ), this problem is referred to as the Nirenberg problem. Its resolution is equivalent to the resolution of (1.1) with S hn = n(n -1). For references on the Nirenberg problem, see Hebey [START_REF] Hebey | Changements de métriques conformes sur la sphère. Le problème de Nirenberg[END_REF], Kazdan-Warner [START_REF] Kazdan | Scalar curvature and conformal deformations of Riemannian structure[END_REF] and Li [START_REF] Li | On Nirenberg's problem and related topics[END_REF]. There is also the intensively studied Yamabe problem, which consists in the search for conformal metrics with constant scalar curvature. It corresponds to the resolution of (1.1) with f = 1. The Yamabe problem is completly solved.

Concerning multiplicity and uniqueness of positive solutions for such equations, we refer to Aubin [START_REF] Aubin | Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF][START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère equations[END_REF], Bidaut-Véron and Véron [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF], Esposito [START_REF] Esposito | Uniqueness and multiplicity for perturbations of the Yamabe problem on S n[END_REF], Hebey-Vaugon [START_REF] Hebey | Meilleures constantes dans le théorème d'inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe[END_REF], Obata [START_REF] Obata | The conjectures on conformal transformations of Riemannian manifolds[END_REF], Pollack [START_REF] Pollack | Nonuniqueness and high energy solutions for a conformally invariant scalar equation[END_REF], Schoen [START_REF] Schoen | Variational Theory for the Total Scalar Curvature Functional for Riemannian Metrics and Related Topics[END_REF] and [START_REF] Schoen | On the Number of Constant Scalar Curvature Metrics in a Conformal Class[END_REF]. In particular, note that the Yamabe equation possesses a unique solution if there exists g ∈ [g] such that S g ≤ 0 or if there exists an Einstein metric g ∈ [g], where [g] stands for the conformal class of g. We are here especially interested on results of Hebey-Vaugon [START_REF] Hebey | Meilleures constantes dans le théorème d'inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe[END_REF] (see also Schoen [19]). In their work, the manifold is assumed to have big enough isometry groups and solutions are required to be invariant under the action of subgroups. Besides, all groups are finite which implies that the quotient space of all orbits can be equiped with a structure of manifold. In our results, this condition is not required. This is made possible thanks to the recent advances of Hebey-Vaugon [START_REF] Hebey | Sobolev spaces in the presence of symmetries[END_REF] and Faget [START_REF] Faget | Optimal constants in critical Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF][START_REF] Faget | Second-best constant and extremal functions in Sobolev inequalities in the presence of symmetries[END_REF] concerning the influence of isometry groups on Sobolev spaces and Sobolev inequalities.

Given G an isometry group, α ∈ R + * , and f ∈ C ∞ (M ) positive and G-invariant, we consider G-invariant solutions of the equation

∆u + αu = f u n+2-k n-2-k , u > 0, (E k αf )
where k ≥ 0 is the minimum dimension of the G-orbits. The energy of a solution u of (E k αf ) is defined by

E(u) = M f u 2(n-k) n-2-k dv g . (1.2) 
We obtain multiplicity of energies for solutions of (E k αf ) where each solution is invariant by the action of an isometry group G i such that all the G i -orbits have the same minimal dimension k. When k = 0, the equation (E 0 αf ) is critical and when k > 0, one has n+2-k n-2-k > n+2 n-2 and (E k αf ) turns out to be overcritical. The study of equation (E k αf ) is strongly related to the notion of first and second best constants in the Sobolev inequalities presented in section 2. The first best constant appears to be of importance in existence results and the second in multiplicity results.

Preliminaries

Let (M, g) be a compact Riemannian n-manifold, Is(M, g) its isometry group (Is(M, g) is a compact Lie group), and G a subgroup of Is(M, g). By taking its closure Ḡ for the standard topology, we can assume that G is compact. We note for any p ∈ [0, +∞],

C p G (M ) = {u ∈ C p (M ), ∀σ ∈ G, u • σ = u} H 2 1,G (M ) = {u ∈ H 2 1 (M ), ∀σ ∈ G, u • σ = u}
where the Sobolev space

H 2 1 (M ) is the completion of C ∞ (M ) with respect to the norm u 2 H 2 1 = ∇u 2 2 + u 2 2 . When no confusion is possible, we write C p G , H 2 1 , H 2 1,G instead of C p G (M ), H 2 1 (M ), H 2 1,G (M ). If n -k > 2, we let 2 ♯ = 2(n-k) n-2-k
, and Hebey-Vaugon [START_REF] Hebey | Sobolev spaces in the presence of symmetries[END_REF] proved that for any 1 ≤ q ≤ 2 ♯ , the embedding H 2 1,G ⊂ L q is continuous, and compact if q < 2 ♯ . For p < 2 ♯ -1, compactness of the embedding H 2 1,G ⊂ L p+1 implies, thanks to the variational method, that there exists a C ∞ G solution for the equation

∆u + αu = f u p , u > 0 (E p )
where ∆ =div(∇ ) is the g-Laplacian, α ∈ R + * , and f ∈ C ∞ G is positive. When p = 2 ♯ -1, the existence of solutions is more difficult to obtain because of lack of compactness.

For convenience in what follows, we recall some results about the action of an isometry group G on a compact manifold. We refer to Bredon [START_REF] Bredon | Introduction to Compact Transformation Groups[END_REF], Gallot-Hulin-Lafontaine [START_REF] Gallot | Riemannian Geometry[END_REF] and Hebey-Vaugon [START_REF] Hebey | Sobolev spaces in the presence of symmetries[END_REF] for more details. Since we can choose G compact, for any

x ∈ M, O G x = {σ(x), σ ∈ G} the G-orbit of x is a compact submanifold of M and S G x = {σ ∈ G, σ(x) = x} the isotropy group of x is a Lie group of G. A G-orbit O G
x is principal if for any y ∈ M, S G y possesses a subgroup which is conjugate to S G x . Principal orbits are of maximum dimension but the converse is false in general. Let Ω be the union of all principal orbits. Then Ω is a dense open subset of M, and Ω/G is a quotient manifold. More precisely, if π is the associated submersion, then (π, Ω, Ω/G) is a fibration where each fiber is a G-orbit. Note that if all G-orbits are principal, there exists a unique manifold structure on the topological space M/G and the metric g induces a quotient metric g on M/G such that π G : M → M/G is a Riemannian submersion.

We consider here C ∞ G solutions of (E p ) for p = 2 ♯ -1. The equation is written as

∆u + αu = f u n+2-k n-2-k , u > 0. (E k αf ) When k > 0, namely when there is no finite G-orbit, then n+2-k n-2-k > n+2 n-2 and (E k αf )
is, in some sense, overcritical. The study of (E k αf ) is strongly related to the problem of the attainability of sharp constants in functional inequalities associated with the continuous embedding H 2 1,G ⊂ L 2 ♯ . Following Faget [START_REF] Faget | Second-best constant and extremal functions in Sobolev inequalities in the presence of symmetries[END_REF], we introduce two assumptions (H 1 ) and (H 2 ) given by : (H 1 ) : for any orbit O G x0 of minimum dimension k and minimum volume A, there exists H a subgroup of Is(M, g) and δ > 0

such that i) in O x0,δ = {x ∈ M/d g (x, O G x0 ) < δ}, all H-orbits are principal, ii) for any x ∈ O x0,δ , O H x ⊂ O G x and O H x0 = O G x0 , iii) for any x ∈ O x0,δ , A = vol g O G x0 ≤ vol g O H x
. and (H 2 ) : for any orbit O G x0 of minimum dimension k and minimum volume A, there exists H a normal subgroup of G and δ > 0

such that i) in O x0,δ = {x ∈ M/d g (x, O x0 ) < δ}, all H-orbits are principal, ii) O H x0 = O G x0 . iii) for any x ∈ O x0,δ , x ∈ O G x0 , dimO G x > k = dimO G x0 , iv) for any x ∈ O x0 , x is a critical point of the function v H (y) = vol g O H y .
Faget [START_REF] Faget | Second-best constant and extremal functions in Sobolev inequalities in the presence of symmetries[END_REF] shows that :

Theorem F [Faget [8]] Let (M, g) be a compact Riemannian n-manifold, G a compact subgroup of Is(M, g), k the minimum G-orbit dimension, and A the minimum volume of G-orbits of dimension k. Assume that n -k > 2. If at least one of the assumptions (H 1 ) or (H 2 ) holds true, then there exists B > 0 such that for any

u ∈ H 2 1,G , u 2 2 ♯ ≤ K n-k A 2 n-k ∇u 2 2 + B u 2 2 , (2.1) 
where

K n-k = 4 (n-k)(n-2-k)ω 2/(n-k) n-k
, and ω n-k is the volume of the standard sphere 

(S n-k , h n-k ). The value K n-k A -2 n-
∈ H 2 1,G , u 2 2 ♯ ≤ K n-k A 2 n-k ∇u 2 2 + B 0,G (M, g) u 2 2 . (I G,opt S )
This inequality is optimal with respect to the first and to the second constants, i.e. none of them can be improved. When no confusion is possible we write B 0,G instead of B 0,G (M, g). Note that Hebey-Vaugon [START_REF] Hebey | Meilleures constantes dans le théorème d'inclusion de Sobolev[END_REF] proved earlier that when G = {Id}, then (I Id,opt

S

) holds true on every compact Riemannian n-manifold, n ≥ 3. As a remark, (I G,opt S ) is true if all Gorbits are principal of constant volume, since we can take H = G in (H 1 ). We then easily see that B 0,G (M, g) = B 0,Id (M/G, g).

(2.2)

Now we discuss the role of the first best constant in (I opt S ) with respect to the existence of solutions of (E k αf ). G-invariant solutions of (E k αf ) can be obtained by the variational method by minimizing I on P where :

I(u) = ∇u 2 2 + α u 2 2 M f |u| 2 ♯ dv g 2/2 ♯ , and 
P = u ∈ H 2 1,G , M f |u| 2 ♯ dv g > 0 .
We note Υ G := inf u∈P I(u). The main difficulty is the lack of compactness coming from the critical exponent 2 ♯ , but this is by now a classical problem. It was firstly solved for the Yamabe problem by working with subcritical exponent and then by passing to the limit exponent. Faget [START_REF] Faget | Optimal constants in critical Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF] proves that

Υ G ≤ A 2 n-k K n-k (max f ) 2/2 ♯ , (2.3) 
and that, if

Υ G < A 2 n-k K n-k (max f ) 2/2 ♯ , (2.4 
)

then there exists a solution u ∈ C ∞ G for (E k αf ) such that Υ G = I(u). Such a solution is said to be G-minimizing. Let (E k α ) be (E k αf ) when f = 1.
Propositions 1 and 2 below follow from the work of Faget [START_REF] Faget | Optimal constants in critical Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF]. Proof. By the definition of B 0,G , the strict inequality (2.4) holds true, and we can apply the results in Faget [START_REF] Faget | Optimal constants in critical Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF].

Proposition 2.2 Let (M, g) be a compact Riemannian n-manifold , n ≥ 4, G an isometry group, k be the minimum G-orbit dimension, and A be the minimum volume of G-orbits of dimension k.

Assume that n -k ≥ 4. Let x 0 ∈ M such that dimO G x0 = k and vol g O G x0 = A and let f ∈ C 2 G maximal at x 0 .
Assume that one of the assumptions (H 1 ) or (H 2 ) holds true for a subgroup H. With the notations introduced above, if

     (n -4 -k) ∆ g f (x 0 ) = 0 α < n-2-k 4(n-1-k) 3∆g ṽH (x0) A + S g (x 0 ) , (2.5) 
then there exists a G-minimizing C ∞ G solution for the equation (E k αf ).

Proof. For any ǫ > 0, let ũǫ be defined on O x0,δ by ũǫ = (ǫ + r2 )

1-N/2 -(ǫ + δ 2 ) 1-N/2
where r = d g (., x0 ) and N = n -k. We set u ǫ = ũǫ • π H , and after lengthy computations, we get that

I(u ǫ ) ≤ A 2/N KN f (x0) 2/2 ♯ × 1 + ǫ N (N -4) α 4(N -1) N -2 + (N -4)∆gf (x0) 2f (x0) - 3∆g ṽH (x0) A -S g (x 0 ) + •(ǫ) if N > 4 × 1 + ǫ ln ǫ 8 S g(x 0 ) + 3∆g ṽH (x0) A -6α + •(ǫ ln ǫ) if N = 4.
Thanks to (2.5), inequality (2.4) holds true and we can apply the results in Faget [START_REF] Faget | Optimal constants in critical Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF]. Proposition 2.2 is proved.

Now we briefly discuss estimates on B 0,G (M, g). At the moment, the only compact Riemannian manifold where one knows its explicit value is the standard sphere (S n , h n ) when no isometry invariance is requiered, i.e. when G = {Id}. Noting B 0 instead of B 0,Id , one has that

B 0 (S n , h n ) = n(n -2) 4 . (2.6)
Lower bounds for B 0,G (M, g) have recently been obtained by Faget [START_REF] Faget | Second-best constant and extremal functions in Sobolev inequalities in the presence of symmetries[END_REF] : on a compact Riemannian n-manifold, n ≥ 4, with the same G, k, A and notations as above, if n -k > 4 and if (H 1 ) or (H 2 ) holds true, then

B 0,G (M, g) ≥ max A 2 n-k V 2 n-k g K n-k , n -2 -k 4(n -k -1) S g (x 0 ) + 3∆ g ṽH (x 0 ) A (2.7)
where V g is the volume of (M, g). We do not know yet upper bounds for B 0,G (M, g) in the general case. Hebey-Vaugon [START_REF] Hebey | Meilleures constantes dans le théorème d'inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe[END_REF] computed upper bounds on specific conformally flat manifolds. On (S 1 (t) × S n-1 , h 1 × h n-1 ), with t > 0, n ≥ 3 and when no isometry invariance is requiered, i.e. G = {Id} :

(n -2) 2 4 ≤ B 0 (S 1 (t) × S n-1 , h 1 × h n-1 ) ≤ 1 4t 2 + (n -2) 2 4 . (2.8) 
Note that this approximation is optimal when t → ∞. On the quotient manifold (S n /G, g), n ≥ 3, where G ⊂ O(n + 1) is a cyclic group of order A and acts freely on S n and g is the quotient metric induced by h n ,

A 2/n n(n -2) 4 ≤ B 0 (S n /G, g) ≤ 1 + A 2 4 n + 1 2 -1 + n(n -2) 4 .
(2.9)

As we will see, these estimates on B 0,G , especially the upper bounds, are fundamental in the problem of multiplicity of solutions.

Multiplicity results 1

Assuming that there exists two invariant solutions for (E k αf ), we give general conditions to separat the energies in Theorems 4.1.a and 4.1.b. Then we illustrate these theorems on specific examples where existence and multiplicity are compatible. We postpone the proof of Theorems 4.1.a and 4.1.b to section 4.

Theorem 1a

Let (M, g) be a compact Riemannian n-manifold, n > 4, G 1 and G 2 be two isometry groups such that the minimum dimensions of G 1 -and G 2 -orbits are the same. We denote by k ≥ 0 this common minimum orbit dimension, and let

A i > 0 be the minimum volume of G i -orbits of dimension k, i ∈ {1, 2}. We suppose that n -k > 2, A 1 < A 2 and that (I G2,opt S ) is valid. Assume that for α ∈ R * + and f ∈ C ∞ G1∪G2 positive there exist two solutions of (E k αf ) : u 1 ∈ C ∞ G1 which is G 1 -minimizing and u 2 ∈ C ∞ G2 which is G 2 -minimizing. If i) α ≤ B 0,G2 (M, g), (3.1) 
ii

) α ≥ n(n -4) (n -2) 2 B 0 (M, g), and (3.2 
) iii) α > B 0,G2 (M, g) - A 2 A 1 2 n-k -1 A - 4 (n-k)(n-2) 2 K 2 n-2 n-k V 2(n-2-k) (n-k)(n-2) g K n n-2 n n(n -4) (n -2) 2 n n-2 max f < f > 2(n-2-k) (n-k)(n-2) , (3.3) 
where < f > stands for the average value of f, then E(u 1 ) < E(u 2 ). In particular, u 1 and u 2 are distinct.

With similar global arguments, and basically only one technical variation in the proof, we can prove a slightly different result : Theorem 1b Let (M, g) be a compact Riemannian n-manifold, n > 4, G 1 and G 2 be two isometry groups such that the minimum dimensions of G 1 -and G 2 -orbits are the same. We denote by k ≥ 0 this common minimum orbit dimension, and let

A i > 0 be the minimum volume of G i -orbits of dimension k, i ∈ {1, 2}. We suppose that n -k > 4, A 1 < A 2 and that (I G2,opt S ) is valid. Assume that for α ∈ R * + and f ∈ C ∞ G1∪G2 positive, there exist two solutions of (E k αf ) : u 1 ∈ C ∞ G1 which is G 1 -minimizing and u 2 ∈ C ∞ G2 which is G 2 -minimizing. If i) α ≤ B 0,G2 (M, g), (3.4) ii) α ≥ (n -k)(n -4 -k) (n -2 -k) 2 B 0,G2 (M, g), and (3.5 
) iii) α > B 0,G2 (M, g) - A 2 A 1 2 n-k -1 A 2 n-k 2 V 2 n-k g K n-k (n -k)(n -4 -k) (n -2 -k) 2 n-k n-2-k max f < f > 2 n-k , (3.6) 
where < f > stands for the average value of f, then E(u 1 ) < E(u 2 ). In particular, u 1 and u 2 are distinct.

As a remark, if in Theorems 1.a and 1.b, one of the solutions u 1 or u 2 satisfies (2.4), then inequality iii) is not necessarily strict. We refer to the proof of Theorems 4.1.a and 4.1.b for more details on this claim. As a remark, the compatibility of conditions i), ii) and iii) is not automatic. In our examples, we choose f such that the right side in iii) is nonpositive so that iii) is valid. Then multiplicity holds true when α belongs to the interval defined by i) and ii). In the following Corollary of Theorem 4.1.a, we give general conditions in order to separate energies of an infinity of solutions. Corollary 3.1 Let (M, g) be a compact Riemannian n-manifold with n ≥ 3, and (G i ) i∈I a family of isometry groups of Is(M, g) such that for any i ∈ I, (I Gi,opt S ) is valid. For any i ∈ I, let k i be the minimum dimension of G i -orbits, and A i be the minimum volume of G i -orbits of dimension k i . We assume that ∀i ∈ I, k i = k. Given α ∈ R + * , and f ∈ C ∞ ∪i∈I Gi positive, we suppose that for any i ∈ I, there exists a G iminimizing solution

u i ∈ C ∞ Gi for (E k αf ). If α ∈ n(n-4)
(n-2) 2 B 0 (M, g); min i∈I (B 0,Gi ) and if for any i ∈ I and j ∈ I such that A j < A i we have that

A i A j 2 n-k > 1+(B 0,Gi -α) K n n-2 n K 2 n-2 n-k A 4 (n-k)(n-2) i (n -2) 2 n(n -4) n n-2 M f dv g max f 2(n-2-k) (n-k)(n-2)
, then E(u j ) < E(u i ).

Now we discuss specific examples. The two first examples concern critical equations and the third example concerns overcritical equations.

Example 3.1 Let (S n , h n ) be the standard sphere of odd dimension n ≥ 5 and G 1 and G 2 be two finite subgroups of O(n + 1) acting freely on S n of respective cardinal

1 < A 1 < A 2 . Let f ∈ C ∞
G1∪G2 positive and maximal at x 0 ∈ S n such that the derivatives at x 0 are zero up to the order n -3, and let < f > be the average value of f.

If max f < f > 2/n ≥ B 0,G2 (S n , h n ) - n 2 (n -4) 4(n -2) (n -2) 2 n(n -4) n n-2 4A 4 n(n-2) 2 n(n -2) A 2 A 1 2 n -1 -1
then there exist at least two C ∞ solutions of different energies for the critical equa-

tion ∆u + αu = f u n+2 n-2 , u > 0, (E 0 αf ) when α belongs to the interval α ∈ n 2 (n -4) 4(n -2) ; n(n -2) 4 .
One of these solutions is G 1 -invariant and the other is G 2 -invariant.

As a remark, when α = n(n-2)

4

, (E 0 αf ) is the Nirenberg equation and we recover a result of Hebey-Vaugon [START_REF] Hebey | Meilleures constantes dans le théorème d'inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe[END_REF].

Proof of Example 3.1. Since G i acts freely, S n /G i is a manifold. with a quotient metric induced by h n noted gi . As mentioned in section 2, since the G i -orbits are principal of constant cardinal, (I Gi,opt S ) holds true and with (2.2) and (2.9), we have that

B 0,Gi (S n , h n ) = B 0 (S n /G i , gi ) ≥ n(n -2) 4 . (3.7) 
We claim that for α ≤ n(n-2)

4 there exist two solutions u i ∈ C ∞ Gi , i = 1, 2, G i -minimizing for (E 0 αf ). The existence for α = n(n-2)
4 is given by Hebey-Vaugon [START_REF] Hebey | Meilleures constantes dans le théorème d'inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe[END_REF] since the derivatives of f are zero up to the order n -3. Besides, thanks to Proposition 2.2, there exists

u i ∈ C ∞ Gi solution of (E 0 αf ) if α < n -2 4(n -1) S gi (S n /G i ) = n(n -2) 4 .
Our claim is proved. Now according to Theorem 4. 

(S n , h n ) = n(n-2)

4

, as

α ≥ n 2 (n -4) 4(n -2) .
With this lower bound on α, in order to get (3.3), it suffices that

n 2 (n -4) 4(n -2) ≥ B 0,G2 (S n , h n )- A 2 A 1 2 n -1 n(n -2) 4A 4 n(n-2) 2 n(n -4) (n -2) 2 n n-2 max f < f > 2 n
with a inequality which is not strict, thanks to the remark following Theorem 4.1.b. This is exactly the assumption made on f. Thus u 1 and u 2 exists and are distinct when

α ∈ n 2 (n -4) 4(n -2) ; n(n -2) 4
and Example 3.1 is proved. Now we discuss the following example. Here, we apply Theorem 4.1.b and Theorem 4.1.a does not provide the result.

Example 3.2 On (S 1 (t) × S n-1 , h 1 × h n-1 ) with n > 4, and t ≥ n(n-4) 4(n-2) 2 , let G 1 = R 1 × Id S n-1 and G 2 = R 2 × Id S n-1 be two isometry groups, where R 1 and R 2 are finite subgroups of SO(2) with respective cardinal A 1 < A 2 . Let f ∈ C ∞ G1∪G2
positive and maximal at x 0 with derivatives at x 0 equal to 0 up to the order n -2 and such that

max f < f > 2/n ≥ (n -2) 2 4 + 1 4t 2 K n A 4 n(n-2) 2 (2πtω n-1 ) 2/n A2 A1 2/n -1 (n -2) 2 n(n -4) n n-2 . (3.8)
Then there exist at least two C ∞ solutions of different energies for the critical equation (E 0 αf ) when α belongs to the interval

α ∈ n(n -4) (n -2) 2 (n -2) 2 4 + 1 4t 2 ; (n -2) 2 4 .
One of these solutions is G 1 -invariant and the other is G 2 -invariant.

Proof of Example 3.2. The G i -orbits are finite and principal and thus

S 1 (t) × S n-1 / (R i × Id S n-1 ) = S 1 t A i × S n-1
with quotient metric h 1 × h n-1 . As already mentioned in section 2, (I Gi,opt

S

) holds true and with (2.2) and (2.8)

B 0,Gi S 1 (t) × S n-1 , h 1 × h n-1 ≥ (n -2) 2 4 . (3.9) 
We claim now that for

α ≤ (n -2) 2 4 (3.10)
there exist two C ∞ solutions for (E 0 αf ), minimizing for G i , i ∈ 1, 2. Since the second derivatives of f at x 0 are zero and S h1×hn-1 S 1 (t/A i ) × S n-1 = (n -1)(n -2), the existence condition (2.5) of Proposition 2.2 is written as α < (n-2) 2

4

.

If α = (n-2) 2 4 , (E 0 αf )
is the equation of the prescribed scalar curvature problem and it is solved by Escobar-Schoen [START_REF] Escobar | Conformal metrics with prescribed scalar curvature[END_REF] on compact conformally flat manifolds if f has derivatives at a maximum point which turn out to be zero up to the order n -2. Thus on

(S 1 (t/A i ) × S n-1 , h 1 × h n-1 )
there exists ũi a minimizing solution of the equation

∆ũ i + (n -2) 2 4 ũi = f ũ n+2 n-2 i , ũi > 0.
If

π i : S 1 (t) × S n-1 → S 1 (t/A i × S n-1 ) is the canonical submersion, then u i = ũi • π i is a G i -minimizing solution of (E 0 αf ) with α = (n-2) 2
. Our claim is proved. Then one has E(u 1 ) < E(u 2 ) if the three assumptions (3.4), (3.5) . Example 3.2 is proved. Now we discuss an example where there are non constant dimensions of orbits and the minimum dimension is 3.

Example 3.3 On (S 1 (a) × S 2 (b) × S n-3 , h 1 × h 2 × h n-3 ) with n ≥ 10 and 1 4a < b 2 < (n -5) 2 (n -7)(3n 2 -26n + 57) , (3.12) 
we consider the following isometry groups:

G 1 = Id S 1 (a)×S 2 (b) × O(n -6) × O(4) and G 2 = O(2) × O(3) × Id S n-3 .
Let x 0 = (θ, 0 R n-6 , z 0 ) where θ ∈ S 1 (a) × S 2 (b) and z 0 ∈ S 3 and let f ∈ C ∞ G1∪G2 be a positive function maximal at x 0 such that ∆f (x 0 ) = 0 and

max f < f > ≥ 4ab 2 2/(n-3) -1 -n-3 2 (n -5) 2 (n -3)(n -7) (n-3) 2 2(n-5)
.

(3.13)

Then there exist at least two C ∞ solutions with different energies for the over critical equation (E 3 αf ) when α belongs to the interval

(n -3) 2 (n -7) 4(n -5) ; min (n -3)(n -5) 4 , n -5 4(n -4) 2 b 2 + (n -6)(n -7) .
One of these solutions is G 1 -invariant and the other is G 2 -invariant.

Proof of Example 3.3. The G 2 -orbits are S 1 (a)× S 2 (b)× {z}, where z ∈ S n-3 , and thus they are principal of constant dimension 3 and constant volume 8π 2 ab 2 . The quotient metric on S 1 (a) × S 2 (b) × S n-3 /G 2 = S n-3 is h n-3 . According to section 2, (I G2,opt S ) holds true and with (2.2) and (2.6)

B 0,G2 = B 0 (S n-3 , h n-3 ) = (n -3)(n -5) 4 . The G 1 -orbit of x = (θ, y, z) ∈ R 5 × R n-6 × R 4 where θ ∈ S 1 (a) × S 2 (b), and (y, z) ∈ S n-3 , is O G1 x = {θ} × S n-7 ( y ) × S 3 ( z ). If y = 0 and z = 0, dimO G1 x = n -4 is maximum. For x 0 = (θ, 0 R n-6 , z 0 )
, where θ ∈ S 1 (a) × S 2 (b) and z 0 ∈ S 3 , we have 4). H is a normal subgroup of G 1 , and for any x = (θ, y, z) such that z = 0,

O G1 x0 = {θ} × {0 R n-6 } × S 3 and dimO G1 x0 = 3 is minimum (thus O G1 x0 is not a principal orbit) and volO G1 x0 = 2π 2 . We set H = Id S 1 (a)×S 2 (b)×R n-6 × O(
O H x = {θ} × {y} × S 3 ( z ),
where z ∈]0, 1]. The maximum volume for H-orbit is archieved at x 0 . Moreover the Horbits are principal and

O H x0 = O G1 x0 . If x ∈ O G1 x0 , then O G1 x = {θ}×S n-7 ( y )×S 3 ( z ) with y = 0 and z = 0 and dimO G1 x = n -4 > 3.
Finally assumption (H 2 ) is true with H and (I G1,opt S ) is valid. Now in order to get G i -invariant and -minimizing solutions of (E 3 αf ), we use Proposition 2.2. The condition (2.5) for G 2 is

α < (n -3)(n -5) 4 . ( 3 

.14)

For G 1 , we have ∆ g ṽH (x 0 ) ≥ 0 and thus (2.5) holds true if α < n -5 4(n -4) S g (x 0 ).

Thanks to Proposition 3.1 below, this inequality holds true if and holds true if (3.14) does. The second one (3.5) is stated here as

α < n -5 4(n -4) 2 b 2 + (n -6)(n -7) . ( 3 
α ≥ (n -3) 2 (n -7) 4(n -5) . ( 3 

.16)

The last condition (3.6) is stated here as α >

(n -3)(n -5) 4 1 -(4ab 2 ) 2/(n-3) -1 (n -3)(n -7) (n -5) 2 n-3 n-5 max f < f > 2/(n-3)
.

By (3.13), the right side of this inequality is nonpositive so that (3.6) holds true. Finally (3.14), (3.15) and (3.16) guarantee existence and multiplicity of two solutions for

(E 3 αf ) when α ∈ (n -3) 2 (n -7) 4(n -5) ; min (n -3)(n -5) 4 ; n -5 4(n -4) 2 b 2 + (n -6)(n -7)
.

This interval is not empty thanks to (3.12). Example 3.3 is proved.

Proposition 3.1 below was used in the above proof.

Proposition 3.1 On a product manifold (V m × S n-m , g × h n-m ) where (V m , g) is a compact Riemannian m-manifold, we consider the isometry groups

G = Id V × O(r 1 ) × O(r 2 ), and 
H = Id V × Id R r 1 × O(r 2 )
where

r 1 ≥ r 2 et r 1 + r 2 = n -m + 1. Let x 0 = (θ 0 , 0 R r 1 , z 0 ) with θ 0 ∈ V and z 0 ∈ S r2-1 .
Then assumption (H 2 ) holds true and with the notations used above, we have that S g(x 0 ) ≥ S g (θ 0 ) + r 1 (r 1 -1).

We postpone the proof of Proposition 3.1 to section 7.

4 Proofs of Theorems 1.a and 1.b

For convenience, we introduce a general inequality :

for crit > 2 fixed, ∃P > 0, ∃D > 0, ∀u ∈ H ⊂ H 2 1 (M ), u 2 crit ≤ P ∇u 2 2 + D u 2 2 (I P D )
where H ⊂ H 2 1 is a functional space such that the inclusion H ⊂ L crit is critical in sense of being continuous but not compact. Theorems 1.a and 1.b are direct corollaries of the following Theorem 4.1. In order to get Theorem 1.a from Theorem 4.1, it suffices to set H = H 2 1 , crit = 2n n-2 , P = K n , and D = B 0 (M, g). In this case, (I P D ) is the optimal Sobolev inequality (I Id,opt S ) which holds true according to Hebey-Vaugon [START_REF] Hebey | Meilleures constantes dans le théorème d'inclusion de Sobolev[END_REF] on every compact Riemanian n-manifold, n ≥ 3. To get Theorem 1.b from Theorem 4.1, it

suffices to set H = H 2 1,G2 , crit = 2 ♯ , P = K n-k A -2 n-k 2 
, and D = B 0,G2 (M, g). In this case, (I P D ) is the optimal G 2 -Sobolev inequality (I G2,opt

S

) which holds true according to Theorem [F] when we assume (H 1 ) or (H 2 ). Theorem 4.1 Let (M, g) be a compact Riemannian n-manifold, n ≥ 3, G 1 and G 2 be two isometry groups such that the minimum dimensions of G 1 -and G 2 -orbits are the same. We denote by k ≥ 0 this common minimum orbit dimension, and let A i > 0 be the minimal volume of G i -orbits of dimension k, i = 1, 2. We suppose that n -k > 2, A 1 < A 2 and that (I G2,opt S ) holds true. Assume that for α ∈ R + * and f ∈ C ∞ G1∪G2 positive, there exist two solutions of (E k αf ) :

u 1 ∈ C ∞ G1 which is G 1 -minimizing and u 2 ∈ C ∞ G2 which is G 2 -minimizing. If i) α ≤ B 0,G2 (M, g) (4.1) ii) α ≥ (4 -crit)crit 4 D (4.2) iii) α > B 0,G2 (M, g) - A 2 A 1 2 n-k -1 A 2-crit n-k 2 K crit-2 2 n-k V (crit-2)(n-2-k) 2(n-k) g P crit 2 (4 -crit)crit 4 crit 2 max f < f > (crit-2)(n-2-k) 2(n-k) (4.3)
then E(u 1 ) < E(u 2 ). In particular u 1 and u 2 are distinct.

Proof of Theorem 4.1.

Since u i is G i -minimizing, the strict inequality E(u 1 ) < E(u 2 ) is equivalent to the strict inegality Υ G1 < Υ G2 . According to (2.3), it suffices then to prove that A 2 n-k 1 K n-k (max f ) 2/2 ♯ < Υ G2 . (4.4) 
Note that if u 1 satisfies (2.4), then the equality in (4.4) is sufficient to get E(u 1 ) < E(u 2 ).

Let us now search for a lower bound for Υ G2 . Since u 2 is G 2 -minimizing and with (I G2,opt S ), we get that

1 Υ G2 ≤ (max f ) 2/2 ♯ Υ n-k 2 G2 K n-k A 2 n-k 2 ∇u 2 2 2 + B 0,G2 u 2 2 2 . Thus 1 Υ G2 ≤ (max f ) 2/2 ♯ K n-k A 2 n-k 2   1 + B 0,G2 -α Υ n-k 2 G2 u 2 2 2   . (4.5) 
Since by (4.1), B 0,G2 -α ≥ 0, we search for an upper bound for u 2 and integrating over M gives :

∇u 2 crit 2 2 2 = 4 crit(4 -crit) M f u 2 ♯ -2+ 4 crit 2 dv g -α M u 4 crit 2 dv g .
Then by Hölder's inequality

M f u 2 ♯ -2+ 4 crit 2 dv g ≤ M f u 2 ♯ 2 dv g 2 ♯ -2+ 4 crit 2 ♯ M f dv g 2-4 crit 2 ♯
and by

(I P D ) ∇u 2 crit 2 2 2 ≥ 1 P u 2 crit 2 2 crit -D u 2 crit 2 2 
2 . In particular, we have that

1 P u 2 crit 2 2 crit ≤ 4 crit(4 -crit) M f u 2 ♯ 2 dv g 2 ♯ -2+ 4 crit 2 ♯ M f dv g 2-4 crit 2 ♯ + D - 4α crit(4 -crit) M u 4 crit 2 dv g .
Now by (4.2) and since u 2 is a G 2 -minimizing solution we obtain that

u 2 2 2 ≤ 4P (4 -crit)crit crit 2 Υ crit-2+n-k 2 G2 M f dv g crit-2 2 ♯
.

Reporting this inequality in (4.5)

1 Υ G2 ≤ (max f ) 2/2 ♯ K n-k A 2 n-k 2 1 + (B 0,G2 -α) 4P (4 -crit)crit crit 2 Υ crit-2 2 G2 M f dv g crit-2 2 ♯
and with the upper bound for Υ G2 given by (2.3),

1 Υ G2 ≤ (max f ) 2/2 ♯ K n-k A 2 n-k 2 ×   1 + (B 0,G2 -α)A crit-2 n-k 2 P crit 2 K crit-2 2 n-k 4 (4 -crit)crit crit 2 M f dv g max f crit-2 2 ♯   .
Note that if u 2 satisfies (2.4), the above inequality is strict. Finally thanks to (4.4) we have

E(u 1 ) < E(u 2 ) if (max f ) 2/2 ♯ K n-k A 2 n-k 1 > (max f ) 2/2 ♯ K n-k A 2 n-k 2 ×   1 + (B 0,G2 -α)A crit-2 n-k 2 P crit 2 K crit-2 2 n-k 4 (4 -crit)crit crit 2 M f dv g max f crit-2 2 ♯  
or isolating α and introducing < f > the average value of f :

α > B 0,G2 - A 2 A 1 2 n-k -1 A 2-crit n-k 2 K crit-2 2 n-k P crit 2 (4 -crit)crit 4 crit 2 max f V g < f > crit-2 2 ♯
which is exactly (4.3). Theorem 4.1 is proved. Note that the remark following Theorem 4.1.b is also proved since if u 1 or u 2 satisfies (2.4), then the previous inequality is not necessarily strict.

Multiplicity results 2

We provide another general result for multiplicity in Theorem 5.1 below. Then we illustrate the Theorem on specific examples. We postpone the proof of Theorem 5.1 to section 6.

Theorem 5.1 Let (M, g) be a compact Riemannian n-manifold, n ≥ 3, G 1 and G 2 be two isometry groups such that the minimum dimensions of G 1 -and G 2 -orbits are the same. We denote by k ≥ 0 this common minimum orbit dimension, and let A i > 0 be the minimum volume of G i -orbits of dimension k, i = 1, 2. We suppose that n -k > 2 and A 1 < A 2 , and that (I G2,opt S ) holds true. Assume that for α ∈ R *

+ and f ∈ C ∞ G1∪G2 positive, there exist two solutions of (E k αf ) : u 1 ∈ C ∞ G1 which is G 1 -minimizing, and u 2 ∈ C ∞ G2 , which is G 2 -minimizing. If i)
α ≤ B 0,G2 (M, g), and

(5.1)

ii) α > B 0,G2 (M, g) - A 2 n-k 2 -A 2 n-k 1 K n-k V 2 n-k g inf f max f 2 2 ♯ < f > 2 n-k , (5.2) 
where < f > stands for the average value of f, then E(u 1 ) < E(u 2 ). In particular, u 1 and u 2 are distinct.

Here again, if u 1 satisfies (2.4), then inequality ii) is not necessarily strict. In the following Corollary to Theorem 5.1, f = 1 and we obtain three different solutions for (E k α ).

Corollary 5.1 Let (M, g) be a compact Riemannian n-manifold, n ≥ 3, G 1 and G 2 be two isometry groups such that the minimum dimensions of G 1 -and G 2 -orbits are the same. We denote by k ≥ 0 this common minimum orbit dimension, and let A i > 0 be the minimum volumes of G i -orbits of dimension k, i = 1, 2. We suppose that n -k > 2 and A 1 < A 2 , and that (I G1,opt

S

) and (I G2,opt S ) hold true. Then :

1) If B 0,G2 (M, g) - A 2 n-k 2 K n-k V 2 n-k g < B 0,G1 (M, g) - A 2 n-k 1 K n-k V 2 n-k g (5.3)
then there exist two solutions of different energies for the equation

∆u + αu = u n+2-k n-2-k (E k α ) when α belongs to the interval α ∈   B 0,G2 (M, g) - A 2 n-k 2 -A 2 n-k 1 K n-k V 2 n-k g ; min i=1,2 B 0,Gi (M, g)   .
(5.4)

One of these solutions is non constant and G 1 -invariant, the other is G 2 -invariant.

2) If moreover

A 2 n-k 2 K n-k V 2 n-k g < min i=1,2 B 0,Gi (M, g) (5.5)
then the constant solution ūα = α n-2-k 4

of (E k α ) is different from the two previous solutions given in 1) when α belongs to the interval

α ∈   max    B 0,G2 (M, g) - A 2 n-k 2 -A 2 n-k 1 K n-k V 2 n-k g , A 2 n-k 2 K n-k V 2 n-k g    ; min i=1,2 B 0,Gi (M, g)   .
(5.6) Proof of Corollary 5.1. Part 1) is a corollary of Theorem 5.1 when f = 1 and where existence of solutions is given by Proposition 2.1. We have here α < B 0,Gi . In particular (2.4) holds true and by the remark following Theorem 5.1, inequality ii) in Theorem 5.1 is not necessarily strict. Theorem 5.1 claims that the two solutions have different energies when α belongs to the interval in (5.4). In particular, with (2.7), we have that

α n-k 2 V g ≥ A 1 K n-k 2 n-k . But α n-k 2 V g is the energy of constant solution α n-2-k 4 . Since E(u 1 ) < A 1 K -n-k 2 n-k , we get that E(u 1 ) < E(α n-2-k 4
) and u 1 is not constant. Part 1) is proved and

E(u 1 ) < E(u 2 ) = Υ n-k 2 2 < A 2 K -n-k 2 n-k . Then E(u 2 ) < E(α n-2-k 4 ) if α ≥ A 2 n-k 2 K n-k V 2 n-k g
. This is compatible with (5.4), thanks to (5.5), and part 2) is proved. Now we discuss specific examples. In the three following examples, the manifold is S 1 (t) × S n-1 and we fix f ≡ 1. The first example concerns the critical equation (E 0 α ) and the two other examples concern the overcritical equation (E k α ) with k = 1. In the first example, we pass from the Yamabe multiplicity to an interval of multiplicity.

Example 5.1 On (S 1 (t) × S n-1 , h 1 × h n-1 ), n ≥ 3, let G 1 = R 1 × Id S n-1 and G 2 = R 2 × Id S n-1
be two isometry groups, where R 1 and R 2 are finite subgroups of SO [START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère equations[END_REF] 

with respectif cardinals A 1 < A 2 . If t > max    A 2 ω n 2πω n-1 n n -2 n/2 ; A 2 2 (2πω n-1 ) 2/n (A 2/n 2 -A 2/n 1 ) n(n -2)ω 2/n n n 2(n-1)
   then there exist at least three C ∞ solutions of different energies for the critical equation (E 0 α ) when α belongs to the interval

α ∈   max    (n-2) 2 4 + A 2 2 4t 2 - A 2 n 2 -A 2 n 1 n(n-2)ω 2/n n 4(2πtωn-1) 2/n , A 2/n 2 n(n-2)ω 2/n n 4(2πtωn-1) 2/n    ; (n-2) 2 4   .
(5.7)

In this example, (5.5) does not hold true, so part 2) of Corollary 5.1 does not apply. The constant solution ūα = α 1 4 exists for any α > 0. If u 2 = ūα then there exist at least three solutions of different energies when α belongs to the interval in (5.9). Now if u 2 = ūα then u 2 exists for any α > 0. The solution u 1 exists when α < 1 ≤ B 0,G1 and its energy verifies

E(u 1 ) < A 1 K -3 2 3 . Thus u 1 is not constant if A 1 K 2 3 3 ≤ E(ū α ) = α 3 2 V h1×h3 namely if α ≥ 3 4t 2/3 . The interval of double multiplicity is here [ 3 4t 2 3
, 1[. Example 5.2 is proved.

The last example involves infinite non principal orbits.

Example 5.3 On (S 1 (t) × S n-1 , h 1 × h n-1 ) with n ≥ 4 and t > n-1 n-3 n-1 2 
, let

G 1 = Id S 1 (t) × O(n -2) × O(2) and G 2 = O(2) × Id S n-1
be two isometry groups. There exist at least two C ∞ solutions of different energies for the overcritical equation

∆u + αu = u n+1 n-3 (E 1 α ) when α belongs to the interval α ∈ (n -1)(n -3) 4t 2 n-1 ; (n -3) 2 4 .
One of these solutions is G 1 -invariant and nonconstant, the other one is G 2 -invariant.

Proof of Example 5.3. The group G 2 is the same as in Example 5.2. The G 2 -orbits are S 1 (t) × {θ} where θ ∈ S n-1 , of dimension 1 and constant volume 2πt. The quotient manifold is (S n-1 , h n-1 ) and (I G2,opt S ) holds true with

B 0,G2 S 1 (t) × S n-1 , h 1 × h n-1 = (n -1)(n -3) 4 .
We easily check that

B 0,G2 - A 2 n-k 2 K n-k V 2 n-k h1×hn-1 = 0.
The G 1 -orbits are sphere products possibly reduced to a point :

∀x = (θ, y, z) ∈ S 1 (t) × R n-2 × R 2 ⊂ S 1 (t) × S n-1 , O G1 x = {θ} × S n-3 ( y ) × S 1 ( z ).
For x 0 = (θ, 0 R n-2 , z 0 ), where θ ∈ S 1 (t), and z 0 ∈ S 1 , we have that 

O G1 x0 = {θ} × {0 R n-2 } × S 1 . Thus dimO G1 x0 =
B 0,G1 > (n -1)(n -3) 4t 2 n-1 . By (2.7) we know that B 0,G1 ≥ max (n -1)(n -3) 4t 2/(n-1) ; (n -3) 4(n -2) S g (x 0 ) + 3∆ g ṽH (x 0 ) A 1 .
Since volO H x0 = volO G1 x0 is maximal on H-orbits we have ∆ g ṽH (x 0 ) ≥ 0 and according to Proposition 3.1, S g(x 0 ) ≥ (n -2)(n -3). In particular

B 0,G1 ≥ max (n -1)(n -3) 4t 2/(n-1) ; (n -3) 2 4 = (n -3) 2 4 since t > n-1 n-3 n-1 2 
. Thus (5.3) holds true. Finally part 1) of Corollary 5.1 guarantees a double multiplicity when α belongs to the interval in (5.4) whose endpoints are

B 0,G2 - A 2 n-1 2 -A 2 n-1 1 K n-1 V 2 n-1 h1×hn-1 = (n -1)(n -3) 4t 2 n-1 and min{B 0,G1 , B 0,G2 } ≥ min (n -3) 2 4 , (n -1)(n -3) 4 = (n -3) 2 4 .
Example 5.3 is proved.

6 Proof of Theorem 5.1

The proofs of Theorems 4.1 and 5.1 are similar but with an important difference in the way we find an upper bound for u 2 2 . In order to prove Theorem 5.1 it suffices, as in the proof of Theorem 4.1, to prove that

A 2 n-k 1 K n-k (max f ) 2/2 ♯ < Υ G2 . (6.1)
We search for a lower bound for Υ G2 and similar arguments as in proof of Theorem 4.1 lead us to inequality (4.5)

1 Υ G2 ≤ (max f ) 2/2 ♯ K n-k A 2 n-k 2   1 + B 0,G2 -α Υ n-k 2 G2 u 2 2 2   . (6.2)
Thanks to (5.1), B 0,G2 -α ≥ 0, and we search now for an upper bound for u 2 2 . Here is where the proof diverges from the proof of Theorem 4.1. We obtain with Hölder's inequality and since u 2 is G 2 -minimizing that

M u 2 2 dv g ≤ Υ n-2-k 2 G2 min f M f dv g 2 n-k .
Reporting this inequality in (6.2) and isolating Υ G2 gives :

Υ G2 ≥ A 2 n-k 2 (max f ) 2/2 ♯ K n-k -(B 0,G2 -α) M f dv g 2 n-k min M f .
Finally (6.1), and thus also the strict inequality E(u 1 ) < E(u 2 ), hold true if

A 2 n-k 1 (max f ) 2/2 ♯ K n-k < A 2 n-k 2 (max f ) 2/2 ♯ K n-k -(B 0,G2 -α) M f dv g 2 n-k min f , or else α > B 0,G2 - A 2 n-k 2 -A 2 n-k 1 K n-k min f (max f ) 2/2 ♯ (V g < f >) 2 n-k .
The last inequality is not necessarily strict when u 1 satisfies (2.4). Theorem 5.1 is proved.

Proof of Proposition 3.1

We start with the following Lemma. Lemma 7.1 Let (M, g) be a compact Riemannian n-manifold, n ≥ 3, of constant sectional curvature K g (M ), and G be an isometry group such that all G-orbits are principal, and thus of constant dimension k. Assume that k < n. Then S g (y) ≥ K g (M ) (n -k)(n -k -1), (7.1) for all y ∈ M/G, where g is the quotient metric induced by g on M/G.

As a remark, if the G-orbits are finite, the canonical submersion π : M → M/G is a local isometry and inequality (7.1) is an equality.

Proof of Lemma 7.1. On (M/G, g), which has dimension n -k, we have the following relation between the sectional K g and the scalar curvature: S g S g (y) = Since the H ′ -orbits are principal on Ω 2 ⊂ S n-m , thanks to lemma 7.1, and since dim Ω 2 /H ′ = n -m -r 2 + 1 = r 1 and K h n-m (S n-m ) = 1, we have S hn-m (t 0 ) ≥ r 1 (r 1 -1). Finally S g(x 0 ) ≥ S g (θ 0 ) + r 1 (r 1 -1), Proposition 3.1 is proved.

Proposition 2 . 1

 21 Let (M, g) be a compact Riemannian n-manifold , n ≥ 3, G an isometry group, k be the minimum G-orbit dimension. Assume that n -k > 2 and that (I G,opt S ) holds true. If α ∈]0, B 0,G [, then there exists a C ∞ G and G-minimizing solution for the equation (E k α ).

. 15 )

 15 Energies of both solutions obtained under conditions (3.14) and (3.15) are different if the three multiplicity conditions of Theorem 4.1.b hold true. The first condition (3.4) is α ≤ (n-3)(n-5) 4

2 2 .

 2 Multiplying (E k αf )

1

 1 is minimum and volO G1 x0 = 2π. Similar arguments as in the proof of Example 3.3 show that (H 2 ) holds true if we choose the normal subgroup H of G 1 as H = Id S 1 (t)×R n-2 × O(2). Thus (I G1,opt S ) holds true. Now assumption (5.3) of Corollary 5.1 becomes

4 [e i e j ] v 2 ≥ 1 .

 421 (i,j)∈[1,n-k] 2 ,i =j K g(ẽ i , ẽj ) (7.2)for all y ∈ M/G, where (ẽ 1 , ..., ẽn-k ) is an orthonormal basis of T y (M/G). O'Neil's formula links the sectional curvatures K g of M and K g of (M/G) byK g(ẽ i , ẽj ) = K g (e i , e j ) + 3 K g (e i , e j )where e i = dπ x \ (Kerdπx) ⊥ -1 (ẽ i ) ∈ (Ker dπ x ) ⊥ , and where [e i e j ] v ∈ Ker dπ x is the vertical composant of [e i e j ] ∈ T x (M ). Since K g is constant and with (7.2), we finally obtainS g (y) ≥ K g (M ) (n -k)(n -k -1)and Lemma 7.1 is proved. Now we prove Proposition 3.Proof of Proposition 3.1. On the open setΩ = {x = (θ, y, z) ∈ V m × S n-m , z = 0},all H-orbits are principal and (H 2 ) holds true. We have thatΩ contains O H x0 = {θ 0 } × {0 R r 1 } × S r2-1 ; thus there exist an open set Ω 1 ∋ θ 0 of V m and an open set Ω 2 ∋ {0 R r 1 } × S r2-1 of S n-m such that O H x0 ∈ Ω 1 × Ω 2 ⊂ Ω and we have (Ω 1 × Ω 2 ) /H = Ω 1 × (Ω 2 / H ′ )whereH ′ = Id R r 1 × O(r 2 ). The metric on (Ω 1 × Ω 2 ) /H is the quotient metric g = g × hn-m where hn-m is the quotient metric induced by h n-m on S n-m /H ′ . Now x0 = π H {θ 0 } × {0 R r 1 } × S r2-1 = {θ 0 } × {t 0 } with t 0 = π H ′ {0 r1 } × S r2-1 ∈ Ω 2 /H ′and where π H ′ : Ω 2 → Ω 2 /H ′ is the canonical submersion. Thus S g (x 0 ) = S g (θ 0 ) + S hn-m (t 0 ) .

  When assumptions (H 1 ) or (H 2 ) hold true for a subgroup H we use in the sequel the following notations : π H is the canonical submersion O x0,δ → O x0,δ /H and g is the quotient metric induced by g on O x0,δ /H such that π H is a Riemannian submersion.

	k is the best possible in (2.1), i.e. the smallest
	constant such that (2.1) holds true for all u ∈ H 2 1,G .
	For
	any x ∈ O x0,δ , we note x = π H (O H x ) and ṽH the function defined for any y ∈ O x0,δ /H by ṽH (y) = vol g (π -1 H (y)).
	When inequality (2.1) holds true, we define the second best constant by
	B 0,G (M, g) := inf{B > 0, ∀u ∈ H 2 1,G , (2.1) is valid with B}.
	If (2.1) holds true, we can take B = B 0,G (M, g) in (2.1), so that for any u

  and (3.6) of Theorem 4.1.b hold true.

	(3.4) is valid by (3.9) if α ≤ (n-2) 2 4	. (3.5) holds true thanks to the upper bound in (2.8) if
		α ≥	n(n -4) (n -2) 2	1 4t 2 +	(n -2) 2 4	.	(3.11)
	By (2.8) and (3.8), the right side of (3.6) is nonpositive. Then (3.6) is valid. Thus existence
	and multiplicity are compatible if α satisfies (3.10) and (3.11) which is possible if t ≥
	n(n-4)	1/2				
	4(n-2) 2					

One of these solutions is G 1 -invariant, the other is G 2 -invariant and the third one is the constant solution ūα = α n-2 4 .

As a remark, when α = (n-2) 2

4

, (E 0 α ) is the Yamabe equation on S 1 (t) × S n-1 and we recover a multiplicity result of Hebey-Vaugon [START_REF] Hebey | Meilleures constantes dans le théorème d'inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe[END_REF].

Proof of Example 5.1. The actions of the groups are already presented in Example 3.2. In particular, (I Gi,opt S ) holds true and with (2.2) and (2.8) we have that

(5.8)

We claim that there exist two solutions

The double existence for α < (n-2) 2 4 is indeed given by (2.5). For α

this is given by the the resolution of the Yamabe problem on S 1 (t/A i ) × S n-1 and with similar arguments to the one used in Example 3.2. Now Corollary 5.1 guarantees that u 1 , u 2 and the constant solution have different energies if (5.3) and (5.5) hold true. First by (5.8), (5.3) holds true if

. Under these two conditions on t, Corollary 5.1 gives the triple multiplicity when α belongs to the interval in (5.6) which contains the interval in (5.7, thanks to (5.8). Example 5.1 is proved.

The next example involves the Hopf fibration and concerns overcritical equations on S 1 (t) × S 3 .

Example 5.2 On (S 1 (t) × S 3 , h 1 × h 3 ), where t > 1, let

be two isometry groups. There exist at least two C ∞ solutions of different energies for the overcritical equation

.

(5.9)

One of these solutions is G 1 -invariant and nonconstant, the other is G 2 -invariant.

Besides if u 2 is not the constant solution, then there exist at least three different solutions when α belongs to the interval in (5.9). On the other hand, if u 2 is the constant solution, the interval of multiplicity for α extends to [ 3 4 t 2/3 ; 1[. Proof of Example 5.2. The G 2 -orbits are S 1 (t) × {θ}, where θ ∈ S 3 . Thus they are principal of dimension 1 and constant volume 2πt and we have that S 1 (t) × S 3 /G 2 = S 3 with quotient metric h 3 . As already mentioned, (I G2,opt S ) holds true and with (2.2) and (2.6)

The group {(σ, σ), σ ∈ SO(2)} gives the Hopf fibration S 3 → S 2 (1/2) with fiber S 1 and h 2 as quotient metric on S 2 (1/2). The G 1 -orbits are {ρ} × S 1 where ρ ∈ S 1 (t). Thus they are principal of dimension 1 and constant volume 2π and we have (S

Here again (I G1,opt

S

) holds true and

Part 1) of Corollary 5.1 gives a multiplicity interval for α if (5.3) holds true. We easily check that

Thus (5.3) becomes here B 0,G1 > 3 4t 2/3 . By (2.7) we know that B 0,G1 ≥ max 3 4t 2/3 , 1 = 1 since t > 1, and thus (5.3) holds true. Part 1) of Corollary 5.1 guarantees then a double multiplicity when α belongs to the interval in (5.4). We easily see that this interval is here α ∈ 3 4 t 2/3 ; 3 4

.