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Discrete 3D model as complimentary numerical testing for anisotropic

damage

A. Delaplace (delaplace@lmt.ens-cachan.fr) and R. Desmorat
(desmorat@lmt.ens-cachan.fr)
LMT-Cachan, ENS de Cachan / CNRS UMR 8535 / Université Paris 6
61, avenue du Président Wilson, 94235 Cachan, France

Abstract. It is proposed to use a discrete particle model as a complimentary “numerical testing machine”
to identify the hydrostatic elasticity-damage coupling and the corresponding sensitivity to hydrostatic
stresses parameter. Experimental tri-axial tensile testing is difficult to perform on concrete material, and
numerical testing proves then its efficiency. The discrete model used for this purpose is based on a Voronoi
assembly that naturally takes into account heterogeneity. Tri-tension tests on a cube specimen, based on
a damage growth control, are presented. A successful identification of the hydrostatic sensitivity function
of a phenomenological anisotropic damage model is obtained.

Keywords: discrete model, anisotropic, damage, cross-identification, virtual testing

1. Introduction

Experimental testing is an essential task when designing structures or when developing
a constitutive model. Testing validates the accuracy of the structure design or the main
model features. But experimental tests are usually limited due to their cost, and sometime
to their complexity. In contrast with the past, tests number tends to decrease when plan-
ning a development campaign, and nonlinear numerical simulations are complimentary
used (see (Linde et al., 2006; Reese, 2006; Wang et al., 2006) for some recent examples).
In a near future numerical simulations may replace a non negligible part of experimental
validation. If the model used is robust and efficient, simulations have numerous advantages:
“perfect” boundaries and well-known loading conditions, limited cost, reproducibility.

The purpose here is to show that numerical simulations can help in the same way
to identify parts of phenomenological constitutive models, as they can help to study
bifurcation and instability (Delaplace et al., 1999). Material parameters identification is
usually done with standard experimental tests (e.g. tension, compression, torsion) but
which may be not sufficient for complex models or for models with a large number of
parameters. This feature leads to the development of specific experimental devices and
complex protocols in order to identify the “recalcitrant” or low sensitive parameters.

The phenomenological constitutive model considered in the present work is a 3D aniso-
tropic damage model based on a reduced number of parameters (Desmorat, 2004; Desmorat
et al., 2007). A function h(D) controls the evolution of the damage D under positive
hydrostatic stresses, and is tricky to determine for brittle heterogeneous material like
mortar or ceramic: the response is highly sensitive to this function under triaxial states
of stresses but becomes much less sensitive under uniaxial loading. It is proposed to use
a discrete particle model (see (Cundall and Strack, 1979) for first application to geo-
materials) well-adapted to describe material failure under tensile conditions, to perform
pertinent complimentary numerical testing and to identify both the scalar argument of the
function h(D) (is it the norm of the damage tensor? the mean or hydrostatic damage?)
and its expression. The 3D anisotropic damage and discrete particle models are described
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first, with a particular attention to parameters identification. A numerical identification
protocol is given aiming at cross-identifying the discrete and phenomenological models
damage hydrostatic responses.

2. Induced anisotropic damage model

The main idea of anisotropic damage models is to represent the non isotropic micro-cracks
damage pattern. It is essential in 3D to built a state potential which can be continuously
differentiated and from which derive the state laws: the elasticity law coupled with damage
and the definition of the thermodynamics force associated with damage. This key differ-
entiability feature ensures the stresses-strains continuity under complex non proportional
loading. Anisotropic damage is generally represented by a tensorial thermodynamics vari-
able D (Chaboche, 1978; Leckie and Onat, 1981; Cordebois and Sidoroff, 1982; Ladevèze,
1983; Chow and Wang, 1987; Murakami, 1988; Ju, 1989; Halm and Dragon, 1998; Lemaitre
and Desmorat, 2005) taken next as a second order tensor. An anisotropic damage model
for concrete has been proposed based on these assumptions (Desmorat, 2004; Desmorat
et al., 2007), based also on a splitting of the Gibbs free enthalpy (Papa and Taliercio,
1996; Lemaitre et al., 2000)

− into a deviatoric part fully affected by the damage tensor D through the effective
tensor H = (1−D)−1/2,

− and on a hydrostatic part affected by a sensitivity to hydrostatic stresses scalar func-
tion h(D) for positive hydrostatic stresses and not affected by damage for negative
hydrostatic stresses.

Using the notation 〈x〉 = max(x, 0) for the positive part of a scalar, Gibbs free enthalpy
reads:

ρψ∗ =
1 + ν

2E
tr
[

Hσ
DHσ

D
]

+
1 − 2ν

6E

[

h(D) 〈trσ〉2 + 〈−trσ〉2
]

(1)

with E and ν the Young modulus and Poisson ratio of the initially isotropic material and
where (·)D denotes the deviatoric part. The purpose next is to determine h(D) function
for concrete.

The state laws derive from the state potential (1), the elasticity law reading then

ε = ρ
∂ψ∗

∂σ
=

1 + ν

E

[

Hσ
DH

]D
+

1 − 2ν

3E
[h(D) 〈trσ〉 − 〈−trσ〉]1 (2)

The strain energy release rate density – the thermodynamics force associated with the
damage D – is gained as Y = ρ∂ψ

∗

∂D .
Concerning damage, a criterion function f is considered defining the elasticity domain

by f < 0 and damage growth by the consistency condition f = 0 and ḟ = 0,

f = ε̂ − κ (trD) (3)

where ε̂ is Mazars equivalent strain (Mazars, 1984; Mazars et al., 1990),

ε̂ =
√

〈ε〉+ : 〈ε〉+ (4)
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built from the positive extensions (〈ε〉+ is the positive part of the strain tensor in terms
of principal values). The function κ allowing for modeling both tensile and compressive
response of concrete with a single set of material parameters is:

κ (trD) = a · tan
[

trD

aA
+ arctan

(

κ0

a

)]

(5)

The anisotropic damage growth is assumed induced by the square of the positive strain
tensor1 〈ε〉2+ as (λ̇ is the damage multiplier gained from the consistency condition),

Ḋ = λ̇〈ε〉2+ (6)

The numerical implementation of the model in a finite element code is given in (Desmorat
et al., 2007). The intrinsic dissipation due to damage remains positive (Desmorat, 2006).
A main feature of the model is the reduced number of material parameters introduced to
represent the full 3D anisotropic damage evolution: 5 including the elastic parameters,

− the elasticity parameters E, ν,

− the damage threshold κ0,

− the damage parameters A, a,

and the function h(D).
The first five parameters are easily identified from basic experimental tension and com-

pression tests. On the other hand, the function h(D) is more subtle to identify, because it is
acting on triaxial tension states difficult to represent with an experimental setup for brittle
materials. An identification for metallic materials of such a function has been successfully
realized (Lemaitre et al., 2000) but the procedure needed different small samples cut in
large uniaxialy pre-damaged plates. The small samples were then tested to measure their
damaged elastic properties related to h. The experimental protocol used is not conceivable
for quasi-brittle material. With the fact that tests with positive hydrostatic stresses are
very difficult to perform for these materials, numerical testing will prove useful in order
to cross-identify the sensitivity to hydrostatic stresses function h.

The numerical tests will be made by use of a discrete model, based on a simple statistic
representation of the material at the microstructure scale. Discrete modeling is robust
enough in tension-like loadings to be considered as a numerical testing machine under
such loading conditions (Kun and Herrmann, 1996; Bolander and Saito, 1998; D’Addetta
et al., 2002; Yip et al., 2006; Delaplace and Ibrahimbegovic, 2006). Tri-tension loading
tests can then be realized. Next section is devoted to the discrete model used.

3. Discrete model as particle assembly

In the considered discrete model, the material is described as a particles assembly (see
the pioneering work of (Cundall and Strack, 1979)), representative of the material hetero-
geneity. Two kinds of particle shapes are generally used: spherical or polyhedra. The first
one is very efficient thanks to the simple shape, especially for contact problems. But mesh

1 in terms of principal components, i.e. (i) make ε diagonal as εdiag = P−1
εP, (ii) take its positive part

〈εdiag〉+, (iii) turn it back to the initial basis, 〈ε〉+ = P〈εdiag〉+P−1
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generation is tricky, and space between particles needs a special treatment for dynamic
problems (see for example a full generation procedure in (Potyondy and Cundall, 2004)).
On the other hand, control of heterogeneity and mesh generation are easy to obtain with
polyhedra shapes. One chooses these last particles, computed from a Voronoi tessellation.
Heterogeneity is controlled through the randomness of the particle center. There is no
direct correlation between the Voronoi particles and the microstructure of a real material,
but the introduced randomness avoids any privileged orientation in the medium. Because
one wants a simple control of the boundary and loading conditions, a 3D regular grid is
generated on the sample and a particle center is generated inside each grid box (Moukarzel
and Herrmann, 1992). Figure 1 explains the successive steps of the mesh generation. A 2D
mesh is considered for a better visualisation, but the steps remain identical in 3D.

1. Create a grid on the mesh outline and place random points in each square;

2. Compute the Delaunay triangulation of the set of points;

3. Compute the dual Voronoi tesselation;

4. Cut the particles with the mesh outline.

Figure 1. Successive steps of the mesh generation.

The geometry considered next is simpler (a cube) but 3D. Two different meshes are
given in figure 2.

Figure 2. Two 3D samples used for this study (left: 8 × 8 × 8, right: 16 × 16 × 16).

eta3D.tex; 14/03/2008; 14:15; p.4



5

3.1. Particle interactions

Two kinds of interaction are taken into account, the cohesion forces and the contact forces.
Cohesion forces are necessary in order to represent the behavior of a cohesive material, as
contact forces are used for impact problems and for cyclic loading problems, to represent
cracks closure effect. In this study, only tension and tritension tests will be considered. No
contact forces are computed.

Because particles are underformable (an overlapping is allowed), particle interaction
should represent the elastic material behavior. For two particles, the interaction is repre-
sented through a 12× 12 local stiffness matrix. Generally, physical meaning of this matrix
is rendered as six elastic springs at the particle common boundary, or as an elastic beam.
This last representation is chosen and cohesive forces are represented by elastic Euler-
Bernoulli beams. If just cohesive forces are considered, the model is nothing else than a
lattice model (Schlangen and Garboczi, 1997; Van Mier et al., 2002).

An isotropic material is modeled here, characterized by two elastic parameters: E, the
Young modulus, and ν, the Poisson coefficient. These material parameters can be imposed
by choosing the right local beam parameters. For an elastic Euler-Bernoulli beams, these
parameters are:

− the Young modulus Eb (equals for all beams),

− the area Ab,

− the length ℓb,

− the moment of inertia Ib.

Ab and ℓb are imposed by the particle geometry. Then, elastic material parameters E and
ν are obtained through the beam Young modulus Eb and through the beam inertia. An
adimensional parameter α = 64Ib/(πφ

4) is introduced instead of Ib, with φ the diameter
of the equivalent circular section of the considered beam.

With a discrete model, a “sufficient number” of particles should be considered in or-
der to obtain convergence of the elastic properties of the media to the isotropic elastic
properties of the material. This convergence is shown on figure 3, for the following model
parameters Eb = 46 GPa and α = 0.74. For different particle densities and for different
meshes, the macroscopic elastic properties E and ν of the media have been computed.
Table I summarizes the results. As expected, parameters converge toward a finite values
as the density increases.

3.2. Nonlinear behavior

Quasi-brittle response of the material is obtained by considering a brittle behavior of the
beams. The breaking criteria depend on the beam axial strain and on the rotations of
extremities i and j leading to the following expression:

Pij (εij, |θi − θj|) ≥ 1 (7)

where εij is the beam strain, θi and θj are respectively the rotations of the end particles i
and j and where P (.) is a coupling function. If condition (7) is fulfilled, the beam breaks
irreversibly. Enhanced behavior can be considered, with for instance linear softening, but
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Table I. Elastic parameters for different particle densities.

particle number of E (GPa)(min-max) ν (min-max)

density realizations

4 2048 43.14 (35.91-50.69) 0.1622 (0.08978-0.2450)

8 512 35.19 (33.74-36.96) 0.1881 (0.1689-2.146)

16 256 31.96 (31.62-32.36) 0.1989 (0.1904-0.2064)

24 128 31.00 (30.80-31.17) 0.2020 (0.1974-0.2054)

32 64 30.56 (30.46-30.67) 0.2034 (0.2014-0.2055)

40 8 30.32 (30.28-30.37) 0.2040 (0.2032-0.2046)
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Figure 3. Convergence of elastic parameters with respect to particle density

computational cost increases much with the improvement. For brittle materials like con-
crete, brittle elastic behavior usually gives good results (Van Mier and Van Vliet, 2003).
Following (Herrmann and Roux, 1990; D’Addetta, 2004), the chosen breaking threshold
is:

Pij =

(

εij
εcr

)2

+

( |θi − θj|
θcr

)

≥ 1 (8)

where the first variable εcr acts mainly on tensile behavior as the second one θcr acts on
compressive behavior.

3.3. Solver

We present in this part the algorithm used for static problems. Basically, one has to solve
the discrete equilibrium equations, formally written

K(u)u = f (9)

K(u) is the global stiffness matrix, u the displacement vector, f the loading vector applied
to particles. The most common algorithm, also used in finite element codes, is the step-
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by-step monotonic loading algorithm, as follows for step k corresponding to the applied
load fk:

Step k

1. apply loading fk,

2. compute uk using an iterative method solving equation (9),

3. save couple (uk, fk),

4. find the mk links that satisfy

Pipjp ≥ 1 p ∈ {1, ..,mk}

5. change the stiffness matrix setting

Kk+1 = Kk −
mk
∑

p=1

LTipjpKipjpLipjp

where Lipjp is the connectivity matrix of element ipjp.

End step k

The drawback with this algorithm is that the response depends on the loading step
∆f = fk+1 − fk. Furthermore, if the loading step is too large, the algorithm may not
converge. Then, one prefers a second algorithm, called the elastic prediction algorithm
which ensures a unique response. Global loading does not correspond to a monotonic
increasing force or increasing displacement, but corresponds to a decreasing of the apparent
stiffness. Usually, just one beam is broken during one step. The algorithm is:

Step k

1. apply elastic loading f el,

2. compute uel using an iterative method solving equation (9),

3. compute θmin with

θmin = min
i,j∈(1,..,n)

i6=j

(

1

Pij

)

4. save couple (θminu
el, θminf

el),

5. change the stiffness matrix setting

Kk+1 = Kk − LTijKijLij

where Lij is the connectivity matrix of element ij.

End step k

Note that such an algorithm can also be used in a finite element code (Rots et al., 2006).
The two algorithms give the same response for stable crack propagation, and for a sufficient
small loading step for the monotonic algorithm. The response force-displacement obtained
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with the monotonic algorithm is nothing else than the envelope of the response obtained
with the elastic prediction algorithm. In the following, we will use this last algorithm to
avoid loading step dependency.

3.4. Discrete model parameter identification

3.4.1. Elastic parameters

The model elastic parameters are Eb, the beam Young modulus, and α, the inertia coeffi-
cient. These two parameters are identified by considering the isotropic elastic material
coefficients E, the Young modulus, and ν, the Poisson coefficient of the macroscopic
medium. This identification is easy when considering these two following properties:

− the material Young modulus E is proportional to beam Young modulus Eb.

− the material Poisson coefficient ν does not depend on the beam Young modulus.

These properties are shown on figure 4. Evolution and E and ν are plotted versus Ep with
a fixed α, and versus α with a fixed Eb.
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Figure 4. Evolution of elastic material parameters E and ν versus beam parameters Eb and α.

Then, the identification proceeds in two steps:

1. Calibrate α with respect to material Poisson coefficient (eventually by using figure 4,
right)

2. Calibrate Eb with respect to material Young coefficient (eventually by using figure 4,
left)

3.4.2. Nonlinear parameters

For the identification of the nonlinear parameters, one has to keep in mind that rupture of
quasi-brittle materials are mainly due to apparition of mode-I microcracks. Two variables,
εcr and θcr, control the nonlinear behavior for the chosen model. One identifies these
two variables on the peak stress values in tension and in compression. As for the elastic
parameters, identification of εcr and θcr proceeds in two steps. The tension peak stress
value depends indeed only on εcr: a simple tension test allows to identify εcr value. Then,
a simple compression loading is used to identify θcr value with respect to the peak stress.

Figure 5 shows the evolution of the tension peak load versus εcr, for a fixed θcr, and
versus θcr, for a fixed εcr. As expected, the peak stress depends mainly on εcr with a linear
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relationship. Note that a dependence with respect to θcr exists for small values, but these
values have no physical meaning for the modeled material.
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Figure 5. Evolution of tension peak stress versus model parameters εcr and θcr.

As mentioned earlier, the second step consists in the evaluation of θcr from a simple
compression test. The relationship between peak stress and θcr is not linear, and identifying
this last variable is obtained using figure 6, where the evolution of the compression peak
stress is plotted versus θcr.
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Figure 6. Evolution of compression peak stress versus mean model parameter θcr.

Finally, the identified model parameters for a tension peak stress of 3 MPa and a
compression peak stress of -30 MPa are:

εcr = 1.8 × 10−4, θcr = 5.6 × 10−3

The response of the discrete model for these last values is plotted in figure 7, for either
tension or compression.

4. Cross-identification of function h(D)

A strategy for determining the sensitivity to hydrostatic stresses function h is developed by
using different relations gained from the elasticity coupled with damage law (2). Whatever

eta3D.tex; 14/03/2008; 14:15; p.9



10

-40 -20 0

 ε (x 10
-4

)

-30

-20

-10

0

σ 
(M

Pa
)

Figure 7. Discrete model response for parameters εcr = 1.8 × 10−4 and θcr = 5.6 × 10−4.

the chosen strategy, a tritension loading test has to be performed with a bulk modulus
evaluation for different damage values, test excessively difficult to realize experimentally.

4.1. Identification procedure

The identification strategy is based on the expression of the damaged – or effective – bulk
modulus:

K̃ =
trσ

3 tr ε
(10)

By using expression (2), one has:

K̃ =
K

h(D)
(11)

where K is the modulus of the virgin material. One can propose the following global
identification procedure. Note that the term “measure” (or measurement) means “measure
on the computed response by means of the discrete modeling”.

− Perform one elastic uniaxial tension test on a cube.

• Measure E, ν and the initial bulk modulus K = E/3(1 − 2ν)

− Perform n-nonlinear tritension tests using the discrete model for different increasing
loads q ∈ {1, ..n}.
Proceeds as follows:

1. Apply equally imposed displacements ūq1 = ūq2 = ūq3 on the cube faces and measure

the damaged bulk modulus K̃q.

2. Unload the specimen.

3. Apply an elastic uniaxial load in direction i.

• Measure the damaged Young modulus Ẽqi
• Compute the damage value as (obtaining of next expression is detailed in

appendix A)

Dq = 1 − 6(1 + ν)ẼqK̃q

E(9K̃q − Ẽqi )
(12)
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• Store the couple (K̃q,Dq)

− Identify h from the curve K/K̃q = h(Dq), q ∈ {1, ..n}.
For this last point two assumptions will be compared: a) h = h(DH) withDH = 1

3
trD

the hydrostatic damage and b) h = h(‖D‖) with ‖D‖ =
√

D : D the norm of tensor
D.

Note that if the iso-triaxial damage assumption is not satisfied, the two last points of
the protocol are changed into:

− Perform n-nonlinear tritension tests using the discrete model for different loads q ∈
{1, ..n}.
Proceeds as follows:

1. Apply equally imposed displacements ūq1 = ūq2 = ūq3 on the cube faces and measure

the damaged bulk modulus K̃q.

2. Unload the specimen.

3. Apply three elastic uniaxial loads in the three loading directions x ≡ 1, y ≡ 2, z ≡
3.

• Measure damaged Young modulus Ẽq1 , Ẽq2 and Ẽq3
• Compute damage values for each direction (obtaining of next expressions is

detailed in appendix B)

1 −Dq
1 =

2(1 + ν)

E

(

5

Ẽq
1

− 1

Ẽq
2

− 1

Ẽq
3

− 1

3K̃q

) ,

1 −Dq
2 =

2(1 + ν)

E

(

− 1

Ẽq
1

+ 5

Ẽq
2

− 1

Ẽq
3

− 1

3K̃q

) ,

1 −Dq
3 =

2(1 + ν)

E

(

− 1

Ẽq
1

− 1

Ẽq
2

+ 5

Ẽq
3

− 1

3K̃q

) ,

• Store the set (K̃q,Dq
1,D

q
2,D

q
3)

− Identify h from the curve K/K̃q = h(Dq), q ∈ {1, ..n} with either assumption a) or
b).

4.2. Numerical results

The identification of function h(D) is performed on two cube samples (also illustrated in
figure 13). Two different cube sizes are considered, the increase in size corresponding to
an increase in the number of particles and in the number of degrees of freedom (dof). The
discrete model parameters are Eb = 45 GPa, α = 0.75, εcr = 1.8× 10−4, θcr = 5.0× 10−3.
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Table II. Samples tested for the determination of func-
tion h(D).

sample size number of particles number of dof

8 × 8 × 8 512 3 072

16 × 16 × 16 4 096 24 576

4.2.1. 8-cube sample results

Tritension response of the 8-cube sample is plotted in figure 8 (for the crack pattern
see directly figure 13). Stress-strain curves are plotted for the three directions of loading
and, more important, evolution of the damage moduli Ẽi, i ∈ {1, 2, 3} are the right-hand
curves (upperscripts q corresponding to the maximum applied displacement are omitted
next). From these values, the bulk modulus K̃ is computed. Recall that tr(D) = 3DH =

D1 +D2 +D3 and ‖D‖ =
√

D2
1 +D2

2 +D2
3 are respectively the hydrostatic damage and

the norm of the damage tensor in the principal framework. Note that tr(D) and ‖D‖ are
both equal in homogeneous uniaxial tension as then tr(D) = ‖D‖ = D1 (in direction 1).
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Figure 8. Stress-strain responses for the three directions during tri-tension (left), and evolution of stiffnesses
Ẽ1, Ẽ2, Ẽ3 (right).

For successive loading steps, tritension test is stopped and an uniaxial tensile loading is
applied elastically in order to obtain the corresponding principal damage valuesDi. Finally,
the evolution of the ratio K̃/K, i.e. the inverse of function h(D), is plotted in figure 9.
The left-hand side figure shows this evolution versus DH (assumption a), and the right-
hand side one versus the ‖D‖ (assumption b). In order to reveal the intrinsic property of
function h(D), curves obtained for uniaxial tension tests in the different directions x ≡ 1,
y ≡ 2, z ≡ 3 (instead of triaxial tension) are superimposed. One can see that h(DH) is
kept invariant when h(‖D‖) depends on the loading state. This result justifies the choice
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h = h(DH ) for the damage coupling in the hydrostatic part of Gibbs thermodynamics
potential rather than the choice h = h(‖D‖).
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Figure 9. Evolution of K̃/K = 1/h(D) versus hydrostatic damage (left, in fact versus
√

3DH for compari-
son) and versus the norm ‖D‖ (right) for the 8-cube sample: h(‖D‖) exhibits a loading dependency when
h(DH) is kept invariant and can be considered as intrinsic.

The second main conclusion concerns the final determination of function h. A linear
evolution of K̃/K is obtained over a wide range of damage values. Hence, 1/h(D) can be
considered as an affine function of DH characterized by a slope η, leading to:

h(D) =
1

1 − ηDH
(13)

Six samples have been broken in tritension for the identification of η. Evolution of K̃/K =
1/h(D) versus hydrostatic damage DH for the six samples is shown in figure 10. Parameter
η is evaluated from the best fitted line as

η ≈ 1.3

The form(13) of function h is in agreement with results obtained heuristicaly for metallic
materials (Lemaitre et al., 2000), with only a different value for parameter η (1.3 instead
of values ranging between 2 and 3). This relationship emphasizes the fact that η can be
considered as a material parameter: the hydrostatic stresses sensitivity parameter.

Note that the isotropic damage assumption is satisfied for this sample (equality D1 =
D2 = D3 during loading).

4.2.2. 16-cube sample results

Figure 11 shows the results for the 16-cube sample. As for the 8-cube sample, h(DH) is
kept invariant with respect to the loading conditions, but not h(‖D‖). Identification of
parameter η (eq. 13) is obtained from figure 12 in which bulk modulus measurements on
uniaxialy damaged specimens are superimposed.

Note that localization occurs for the y ≡ 2 and z ≡ 3 directions after the peak load
making the specimen a full structure instead of an equivalent Gauss point. One has to
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Figure 10. Evolution of K̃/K = 1/h(D) versus hydrostatic damage DH for the six 8-cube samples. Straight
line corresponds to K̃/K = 1 − ηDH .

limit the identification of the damage hydrostatic parameter to the beginning of the
loading (prior to localization) if the iso-triaxial damage assumption is used. Parameter
η is evaluated to be:

η ≈ 1.2
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Figure 11. Evolution of K̃/K = 1/h(D) versus hydrostatic damage (left, in fact versus
√

3DH for
comparison) and versus the norm ‖D‖ (right) for the 16-cube sample.

The crack patterns obtained for the two samples are shown in figure 13. Note that the
number of beams to break before failure varies from 1500 beams for the 8-cube sample to
8 000 for the 16 one. Using elastic prediction algorithm needs to solves 8 000 systems of
24 576 degrees of freedom.
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Figure 12. Evolution of K̃/K = 1/h(D) versus hydrostatic damage DH for the 16-cube sample. Straight
line corresponds to K̃/K = 1 − ηDH .

Figure 13. Crack patterns for the two samples (left 8 × 8 × 8, right 16 × 16 × 16).

5. Identification of the anisotropic damage model

One can now represent the response of the anisotropic damage model with the identified
sensitivity to hydrostatic stresses function h(D) = 1/(1−ηDH ), the elasticity law reading:

ε =
1 + ν

E

[

(1 − D)−1/2
σ
D(1 − D)−1/2

]D
+

1 − 2ν

3E

[

〈trσ〉
1 − η

3
trD

− 〈−trσ〉
]

1 (14)

The monotonic response in tension and compression is plotted in figure 14. On this curve,
the effect of parameter η cannot be noticed (it does not affect compression). The sensitivity
to η is shown in figure 15, with as different values considered η = 0, η = 1.25, η = 3. As
expected, the response in uniaxial tension is not much influenced by this parameter. On
the other hand, tritension response strongly depends of η. Note that the value η = 0
corresponds to unphysical response with no damage developed in tritension.
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Figure 14. Response of the model in tension and compression (E = 37 GPa, ν = 0.2, κ0 = 5 × 10−5,
a = 3 × 10−4, A = 5 × 103 and η = 1.25).
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Figure 15. Effect of parameter η for uniaxial (continuous line) and triaxial (dashed line) tension tests
(E = 37 GPa, ν = 0.2, κ0 = 5 × 10−5, a = 3 × 10−4 and A = 5 × 103).

6. Conclusion

The popularity and the use of a constitutive model depend on its robustness, its simplicity,
and its easiness to implement in a numerical code. Concerning simplicity, the number, the
physical meaning and the identification easiness of material parameters is an important
feature to be considered. Both the discrete and anisotropic damage models have been
developed with respect to these considerations with quite a reduced number of parameters
introduced.

The experiments needed to identify the coupling – through a function h – between
positive hydrostatic stresses and anisotropic damage have been advantageously replaced
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by numerical testing and models cross-identification. A 3D discrete particle analysis has
allowed us to determine the sensitivity to hydrostatic function h(D) as an intrinsic function
of the hydrostatic damage DH ,

h(D) = h(DH ) =
1

1 − ηDH
(15)

The value of the sensitivity to hydrostatic stresses parameter has also been determined
for quasi-brittle materials,

η ≈ 1.25

and is then quite different from the values obtained for metals for which η ∈ [2, 3].
To conclude, the advantages of numerical testing approach are numerous and have

proven efficient:

− All tensile tests (uniaxial, biaxial, triaxial) can easily be considered in discrete model-
ing when the application of the corresponding loading conditions are most delicate in
experiments. One performed a tri-tension loading on a cube sample without developing
a specific setup device.

− Different loading paths can be realized on the same sample. This point is very impor-
tant for brittle heterogeneous materials for which response variability is observed for
different samples. In our case, one has performed 3 uniaxial tensile loadings in the 3
space directions on the same triaxially damaged specimen, experiment that could not
be envisaged on a real specimen.

− The procedure for parameter identification is not restricted by the experimental setup.
Then, the most suitable and robust procedure can be used, rather than an identifi-
cation based on a difficult experimental test with then possibly ill-defined boundary
conditions.

As a final remark, let us emphasize that numerical identification is obviously a com-
plimentary procedure for experimental testing, and one does not imagine a full model
identification with just numerical tests. But again this approach is an excellent possibility
to identify specific material parameters.

Appendix

A. Damage measurement under iso-damage assumption

This appendix details the computation of the damage parameter of a specimen under an
uniaxial elastic tensile loading. Before this loading, the specimen has been damaged under
a tritension test, with the iso-damage assumption, i.e. D1 = D2 = D3 = 1

3
trD = DH . In

the following, tensile load is supposed to be applied in the x-direction. Strain is computed
from relation (2):

ε11 =
2

3

1 + ν

E(1 −DH)
σ11 +

1 − 2ν

3E
σ11h(D)

eta3D.tex; 14/03/2008; 14:15; p.17



18

Note that if DH = 0, the elastic relation ε11 = σ11/E is recovered (with the initial value
h(0) = 1 for the virgin material). By using the expressions K = E/(3(1 − 2ν)) for the
elastic bulk modulus and K̃ = K/h(D) for the damaged bulk modulus,

ε11 =

(

2

3

1 + ν

E(1 −DH)
+

1

9K̃

)

σ11 (16)

The definition of the damaged Young modulus Ẽ11 = σ11/ε11 altogether with equation (16)
lead to the final relation:

1 −D1 =
6K̃Ẽ(1 + ν)

E(9K̃ − Ẽ)
(17)

B. Damage measurement under anisotropic state

This appendix details the computation of the damage variable of a specimen submitted
to an uniaxial elastic tensile load. Recall that before this loading, the specimen has been
damaged under a tritension test, with different damage values D1 6= D2 6= D3. In the
following, tensile load is supposed to be applied in the x-direction. The strain in x-direction
is derived from relation (2):

ε11 =
1 + ν

9E

(

4

1 −D1

+
1

1 −D2

+
1

1 −D3

)

σ11 +
σ11

9K̃

For tensile loads in y and z directions, the strains ε22 and ε33 can be derived in the same
way. These formula lead to the three relations of the damaged Young’s moduli,

1

Ẽ11

=
1 + ν

9E

(

3

1 −D1

+
1

1 −D1

+
1

1 −D2

+
1

1 −D3

)

+
1

9K̃
(18)

1

Ẽ22

=
1 + ν

9E

(

3

1 −D2

+
1

1 −D1

+
1

1 −D2

+
1

1 −D3

)

+
1

9K̃
(19)

1

Ẽ33

=
1 + ν

9E

(

3

1 −D3

+
1

1 −D1

+
1

1 −D2

+
1

1 −D3

)

+
1

9K̃
(20)

making the term
∑

k
1

1−Dk
= 1

1−D1
+ 1

1−D2
+ 1

1−D3
appears in each expression. Adding the

last three relations gives:

1

Ẽ11

+
1

Ẽ22

+
1

Ẽ33

=
2(1 + ν)

3E

(

1

1 −D1

+
1

1 −D2

+
1

1 −D3

)

+
1

3K̃
(21)

Finally, using relations (18) and (21) leads to the final form:

1 −D1 =
2(1 + ν)

E
(

5

Ẽ11
− 1

Ẽ22
− 1

Ẽ33
− 1

3K̃

) (22)

One can check that under iso-damage assumption, i.e. Ẽ11 = Ẽ22 = Ẽ33, relation (17)
is recovered.
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