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Realistic Haptic Rendering of Interacting
Deformable Objects in Virtual Environments

Christian Duriez, Student Member, IEEE, Frédéric Dubois,
Abderrahmane Kheddar, Member, IEEE, and Claude Andriot

Abstract—A new computer haptics algorithm to be used in general interactive manipulations of deformable virtual objects is
presented. In multimodal interactive simulations, haptic feedback computation often comes from contact forces. Subsequently, the
fidelity of haptic rendering depends significantly on contact space modeling. Contact and friction laws between deformable models are
often simplified in up to date methods. They do not allow a “realistic” rendering of the subtleties of contact space physical phenomena
(such as slip and stick effects due to friction or mechanical coupling between contacts). In this paper, we use Signorini’s contact law
and Coulomb’s friction law as a computer haptics basis. Real-time performance is made possible thanks to a linearization of the
behavior in the contact space, formulated as the so-called Delassus operator, and iteratively solved by a Gauss-Seidel type algorithm.
Dynamic deformation uses corotational global formulation to obtain the Delassus operator in which the mass and stiffness ratio are
dissociated from the simulation time step. This last point is crucial to keep stable haptic feedback. This global approach has been
packaged, implemented, and tested. Stable and realistic 6D haptic feedback is demonstrated through a clipping task experiment.

Index Terms—Computer hatics, Signorini’s law, Coulomb’s friction law, corotational deformable objects, Delassus operator, Gauss-
Seidel type resolution, real-time simulation.
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INTRODUCTION

ECENT advances in virtual reality enable haptic explora-

tion of virtual objects through various haptic interface
technologies [1]. Although some deformation algorithms of
the virtual objects are modeled and solved in real-time
using acceleration methods (Section 1), the majority of these
methods are based on the hypothesis of single point
interaction [2], [3]. With this assumption, a precomputation
stage is required to enable real-time interactivity. Unfortu-
nately, extending these methods to complex multiobject
interactions cannot be easily achieved. In addition, other
common contact methods such as the penalty or imposed
motion (see Section 2) do not adequately solve multiple
deformable object scenes. In this work, we focus on the
computation of the contact forces (Section 3) between
deformable objects including friction (Section 4), resulting
in realistic haptic feedback.

The majority of contact methods involving friction
between virtual objects in haptics are based on Coulomb’s
law. This nonlinear law describes two states on the tangential
contact space: the stick and the slip. This law is difficult to
solve correctly in a multicontact context. Between deformable
objects, previous methods often compute Coulomb’s law
explicitly from the data of the previous time step. This leads to
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a nice visual behavior, but the haptic feedback incurs drifts
mainly during the stick phase.

In the rigid body context, approximation strategies can
be used to allow implicit computation, such as k-sided
pyramids. We prove in this paper that it is not the fastest
strategy. A central contribution of this paper is the Gauss-
Seidel iterative algorithm adapted to multicontact and the
friction case does not necessitate any approximation on
Coulomb’s law.

To add these new components, the kinesthetic part is
incorporated within the physically-based engine which
computes interaction forces and behavior of several virtual
objects based on physical contact models. A manipulated
object, attached in some manner (see Section 7) to the haptic
display, is just part of the surrounding environment. Since
forces are already computed within the simulation engine,
obtaining haptic feedback forces can be easily extracted.

The realism of the contact models is a crucial issue in
haptics. If the contact space model is not correct, the
transparency, i.e., the rendering fidelity, will be affected
whatever the sophistication of the haptic display technol-
ogy. Indeed, in most applications [4], [5], haptic rendering
reflects the interactions due to contacts. They may be
numerous, and the topology of the contact space complex.
The next section introduces the difficult issue of calculating
contact and friction between deformable bodies.

2 CONTEXT

2.1 Deformation Models Used in
Real-Time Simulations

It is well-known that elastic objects have infinite degrees of
freedom and the deformation behavior equations are
impossible to solve analytically. Many authors have
proposed different techniques to speed up deformation
computations based on the finite element methods (FEM)
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[6], [7], [8]. Virtual objects are considered to be already
meshed and initialized with all related physical parameters
such as intrinsic mass and internal forces known in analytic
or numerical form. FEM methods are preferred to classical
discrete mechanical elements (DME) (gathering mass-
spring and particle based methods), but both classes of
methods lead eventually to a similar mathematical matrix
formulation:

Muf—i-Duf—i-K(ut) :ft7 (1)

where M and D are, respectively, FEM or DME mass and
damping matrices, K (u;) represents internal forces, f; is the
current applied force field equivalently distributed to each
node of the object’s mesh, and u; are the current nodes’
displacements. Different methods are then used to linearize
the problem in order to achieve real-time computation:

e For small displacements and linear elasticity:
K(w) ~ Ku,.

e The internal forces may be explicitly formulated:
K(w) ~ K(u;—1,0-1,1-1). In this case, internal
forces are shifted to the right-hand side of the
equation, having K(u,) ~ f/*, and subtracted from
applied external forces f;.

e Internal forces may be linearized: K(u;) ~ K'(u;_1,
Wy, ) uy.

Thus, applying order 1 or 2 numerical integration to (1)
leads to:

I?ut = ’f(t,t—l,t—2)- (2)

K is analogous to a stiffness that depends on: 1) the intrinsic
properties of the object, 2) the numerical integration
method, and 3) the way K(u) is linearized (see [9] for
details).

2.2 Contact Solving between Deformable Bodies

Consider several objects' moving randomly and coming
into contact with each other. Rendering must guarantee
realistic deformation while preventing object interpenetra-
tion. We will develop a theory for the case of a pair of
objects in contact.”

Collision (or proximity) detection (CD) allows character-
izing the surface area where object could be “potentially” in
contact. This paper does not make new contributions in the
area of CD. Interested readers may refer to [10], [11] for a
review. After CD, we can build the contact space (i.e.,
colliding (or proximity) spots to each of which a normal is
associated, see [12], for instance).

When the contact space is defined, collisions need to be
resolved. The response is an update of nodes’ positions
inducing visual deformation. As stated before, the deforma-
tion behavior can be linearized to:

K, = f, (3)

where the index i is the numerical label of an object. At the
start of the contact process, u; and f; are unknown.

When contacts have coupling and friction, one cannot
presuppose the value of the forces or the behavior of the
node displacements. Therefore, there is one equation of

1. From now on, object(s) are considered to be virtual and deformable.
2. This is the most common situation in haptics, but we clearly
demonstrate an extension to n-bodies.
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motion for two vector unknowns and a contact model
which is not smooth. To avoid dealing with the contact
model as in most previous approaches, a hypothesis is
made about one of these two unknowns. The first approach
is that the force value is directly related to an interpenetra-
tion measure: This is the penalty method. The second
approach, called the imposed motion method, freezes
motion along the normal to all contacts.

2.3 Penalty Methods

Largely used for their simplicity, they require a penetration
measurement (e.g., depth, volume, etc.) which is given by
CD. If 6 is the scalar norm of the pene’rration,3 then
f; = —k;6 — b;6. Here, k; and b; are fixed arbitrary values
(sometimes, b; =0) that may be adapted during the
computation process [14], [13], [15].

Stability problems could arise when the integration
method is explicit. The penetration measurements during
CD give the values of the contact forces based on the
penalty law. Deformations then use these forces. In this
case, the contact solving process is straightforward, but
contact forces will only depend on the contacts” geometry
and on the arbitrary choice of the penalty factor. When the
method is implicit, the penalty laws are added to (3). The
process leads to a comparatively better solution if (and only
if) the penalty factor has a large value (a much higher value
than the elasticity modulus of the objects). However, this
leads to a nonlinear” stiff problem.

2.4 Imposed Motion

In imposed motion methods, contacts are considered as
“bilateral” constraints. The imposed motion of the contact
nodes are calculated using lagrangian multipliers [16]. This
fixes u;, in the contact space, according to a master-slave
scheme (the stiffer object is the master). The method may
result “sticky” effects during relative objects motion when a
contact force is badly oriented from the removal of an
associated contact from the list in order to keep unilateral
constraints [17]. This works well when the contact topology
changes are smooth, such as when the bodies are very soft
and collision velocities are low.

These methods can be very fast and relatively accurate in
some cases, but they cannot be easily generalized to contact
between all type of deformable objects. To the best of our
knowledge, they are always applied in frictionless contexts.
Moreover, imposing motion in the tangential motion space
is very problematic, particularly when the adherence is
supposed to be weak for nonrough surfaces, which is likely
to be the case in many applications.

2.5 Discussion

In the context of haptics, it appears that the interaction of
multiple deformable objects has not been adequately
solved. Based on the literature in this area and our
experience in haptics, we make the following observations:

3. In the multicontact case, values given for each contact are composed
into a vector noted 6.
4. The simplest penalty law is:
f=—ké if 6<0
f=0 if 6>0.
In this case, the function f with respect to 6 is piecewise-linear. When only
one contact point is considered, it is easy to consider separately the two
linear problems (if 6 < 0 or if 6 > 0) But, for two contacts, one obtains four
different linear cases, with three contacts eight different linear cases, for
20 contacts, 2% linear cases. So, generally, in multicontact case, the problem
is considered and treated as a nonlinear problem.



DURIEZ ET AL.: REALISTIC HAPTIC RENDERING OF INTERACTING DEFORMABLE OBJECTS IN VIRTUAL ENVIRONMENTS 3

Fig. 1. Contact between two deformable bodies.

e Contact models greatly influence the quality of
haptic feedback.

e Haptics output from real-time deformation algo-
rithms is based on simplified contact laws.

e 3D Coulomb’s friction model (or resolution in case of
multicontact) is simplified in current haptic simula-
tions.

Our work is the first to consider the problem of haptic

manipulation of several deformable objects with no-pene-
tration constraints and friction as described below.

3 MODELING CONTACT FROM THE
SIGNORINI’S LAW

Our first contribution is in using Signorini’s law to resolve the
contacts between two bodies in a real-time multimodal
interactive simulation context. Signorini’s law is known in
continuous media mechanics and is used in offline simulation
of rigid or deformable objects [18], [19]. However, to the best
of our knowledge, its real-time resolution for deformable
objects and computer haptics has never been investigated.
The next section briefly describes its formulation for the
frictionless case (a detailed discussion can be found in [20]).

3.1 Formulation in Continuous Media Mechanics
We are using Signorini’s law to resolve the contact between
two bodies labeled D; and D,. To each particle P of D,
potentially in contact with D,, we associate a neighboring
particle @ of D, to test the contact between D; and D, (see
Fig. 1). The direction of QP is given by n.

Consider the unknown o{!)(P) (the stress exerted on D;
in P). We have:

ol (P)+a2(Q) = 0. (4)

The normal n, chosen arbitrarily,5 is directed toward the
inside of D;. The gap between the two objects at P is:

on(P) = QP @ n. ()

(The contracting product ® between two vectors is a dot
product).

5. We could have used the direction —n of PQ. By choosing the direction
n, the problem is solved by considering the unknown forces applied at
points P on D;. We could get the same solution by using the opposite
direction and taking the unknown forces applied at point @ on D;.

The Signorini contact model indicates that there is a
complementarity relation® between this gap 6,(P) and the
Cauchy stress ¢! (P), that is:

0<6,(P) LolD(P)>0. (6)
This model has several physical justifications:

e §,(P) > 0 guarantees noninterference.

e The pressure exerted by D, on D; is inevitably
directed toward object Dy, i.e., o) (P) > 0.

e If the contact between objects at P is active, 6,(P) =
0 and D, exerts a pressure on D; at point P.
Otherwise, 6,(P) > 0 and the stress exerted by D, at
P is null.

Signorini’s law does not give any indication of the
tangential constraints in the contact space. Coulomb’s law
will be added in Section 4.

3.2 Collision/Proximity Detection Issues

We assume that a collision/proximity detection algorithm
identifies m potential contacts between a pair of bodies D;
and D,. For every contact, one normal vector is provided.

As the surface of bodies is meshed with triangles, most of
the contacts will appear as the canonical collision of two
triangles (i.e., a collision of a vertex of one triangle with the
face of the other, or a collision between two edges. See the
two cases at the top of Fig. 3.).

However, other cases are possible. As Fig. 3 shows, in all
cases, several contact points may describe the contact. For
each contact point, we need collision (or proximity)
detection to provide:

e two contact points P and @,

e their barycentric position within their triangle, and

e (eventually) the contact normal 7i. If not provided, 77

is set to the initial direction of QP.

This data can be provided by a number of current CD
algorithms adapted to deformable bodies. However, the
nature of the shapes (nonconvexity, nonsmoothness, fast
variation of surfaces) may influence their performance.
Since this is the input to our algorithm, the data accuracy
from CD will influence our results. However, we make no
specific assumption about CD. As long as a collision/
proximity detection can provide the information needed,
our algorithm works robustly.

If CD misses some intersections, interpenetration be-
tween deformable bodies could be observed. However, if
the missed intersections are reported in the subsequent time
steps, a correct configuration can be restored. If the correct
contact configuration is restored quickly and motions are
not too fast, such events will not induce instabilities.

The goal of this paper is to clearly provide a solution to
multifrictional-contact solving between deformable models,
assuming efficient CD. The following section describes how
information provided by CD is used in an FEM formulation.

3.3 Discrete Formulation Using Linear

Finite Elements
Let ¥ be the interpolation functions used in FEM. Indeed,
the position of a point inside an element depends on the
position of the nodes and on the interpolation functions.

6. Complementarity is noted L ; this relation states that one of the two
values §,(P) or o) (P) must be null.
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Fig. 2. Each contact connects two points P and @ that are interpolated to
the nodes of the mesh, respectively, A, By, C; and Ay, By, Cs.

This work is based on linear interpolation functions using
tetrahedrons with four nodes. Although not very precise,
when combined with the contact model, they allow the use
of an equivalent formulation of Signorini’s problem in stress

or in force (see [20] for details).
Thus, using f,, the contact force on each potential

collision point output from CD, we can write:

0<6u(P) L fu(P)>0&0<6,(P) Lal)(P)>0. (7)
In FEM construction, each contact point is interpolated
from the nodes of the element to which it belongs. The
points are necessarily on the surface of the objects on
triangles. Let (A; B1C}) (Fig. 2) be the support triangle for P:

>

a={A;,B,,C1}

Up = U, (P)Uy(a). (8)

In the same way, for (43B,C5) and Q:

Vo (Q)Us(c). (9)

a={A,B,05}

Ug =

Uy and U, are the node displacements of D; and D,,

respectively. U;(«) is the 3D displacement of D;’s node o
As the interpolation functions are linear inside the

elements, one can equivalently interpolate the unknown
contact force at P, named fp.

Fi(a) = U, (P)fp with a = {A}, B, C}. (10)
And, similarly:
Fy(a) = U,(Q)fo with a = {Ay, By, Cy}. (11)

F) and F, are the force vectors in the space of the mesh
nodes of D; and Ds, respectively. And, ﬁl(a) is the force

applied to D;’s node o
With two objects, there is necessarily an arbitrary choice

for the direction of the unknown force. In the direction n, fp
is positive. This corresponds to the force that the object D,
exerts on Dq:

.)?P = _fQ = ﬁfn

In the contact space, the force f, is scalar. It will be

(12)

projected onto the contact normal.

Fig. 3. A collision between two triangles leads to several cases in terms
of contact point number. However, in all of these cases, it is possible to
have sufficient contact points to describe Signorini’s law correctly in
terms of the contact force exerted on these points.

3.4 Linear Complementarity Problem (LCP)
Formulation

To linearize Signorini’s problem, the contact space is frozen

during the current time step such that both the gap 6,(P)

and force f, on each contact can be considered as strictly

positive scalars.

With CD, one may compute the value of each gap for the
current time step if no contact forces are applied to the
object. This is called the free motion, and the corresponding
gap, projected along the contact’s normal, is denoted
5 P).

Deformation displacements Up and Uy are considered
between the free motion and the constrained motion (after
resolution of Signorini’s problem and the integration of the
contact forces):

6u(P) =n"(Up — Ug) + 62°°(P). (13)

By stacking relations (8), (9), and (13) for each contact,
one can write matrices H; and Hs such that:

8 = [H1], [U1] — [Ha), [Us] + 62 (14)

U, and U are the displacements of the nodes involved in
the contact. In the same way, by stacking all the forces
relations ((10) and (11)), we have:

[Fl] = [Hl}Tfn
[Fy] = —[Ho]" fo.

We now need to formulate a linear relation linking the
contact forces to the relative positions in contact space. As
stated in (3), it is possible to find a matrix C; = (I?i)fl,
analogous to a compliance, also named capacitance in [17].
In linear deformation cases, or when the stiffness may be
explicitly considered, the compliance may be preprocessed.
If the stiffness is linearized at every time step, the
compliance matrix can be condensed to only only nodes
involved in the contact.” In this case, the compliance is not
computed fast.

Having a mechanical compliance, a linear relation links
the constrained node positions P and external contact forces

(15)

7. If one node « is not involved in a contact, the node’s force F, is null in
(16). In order to build the LCP, the motion of « is not necessary. Then, a
condensate formulation of (16), excluding the node «, can be used.
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e

Fig. 4. Coulomb’s friction law.

F at P. Additionally, positions obtained from free motion
PP appear in the same expression, that is:

P = CF 4 P, (16)
For a pair of objects, the expected linear relation is:
8 = ((HC\[HI]" + [Ho]ColHa) ) fu + 63 (17)

If multiple objects are in contact in the same time step,
we can use the same formulation. The whole of the objects
linked by one or more contact(s) form a contact group.
Then, for every contact group, this formulation leads to the
following LCP:

fn 2 O
6 = [SiH;C;HI']f,, + 6fec >0 (18)
fn L 671‘

The matrix [2;H;C;H!] is also known as the Delassus
operator [21] and, from now on, it is labeled [W]. The
obtained LCP in (18) may be solved using several methods,
see [22]. In [20], simulation results in the frictionless case are
presented. A more truthful simulation needs to take into
account another phenomenon: static and dynamic friction.

4 CouLomB’s FRICTION LAw

Coulomb’s friction law (see Fig. 4) describes the macro-
scopic behavior in tangent contact space. To keep homo-
geneity with Signorini’s law, an integrated description of
Coulomb’s law is used. In this law, the tangential gap
measured in the contact space is the integrated value of the
tangential velocity:

6= 0= L] < o |1 fal (stick) 19
0 # 0= fy=—plfall iy (Slip).

The integration of this model with interactive haptic
simulations is a very challenging issue. Mathematical
difficulties are described first, followed by a discussion of
the previously proposed k-sided pyramids method that uses
approximation of friction cones. We will not use this
method because of its asymptotic complexity.

4.1 Tangential Nonlinearity

In 3D motion, nonlinearity comes from the tangential
direction of the friction force. Consider the slipping motion
(dynamic friction) of a single contact point. In Coulomb’s law,
the direction of the friction force must be in the direction of the
tangential motion. But, this motion is unknown and the
friction force is too. The only available equations are:

e the linearized system mechanical behavior, along
two tangential directions, ¢; and ¢:

Fig. 5. Approximation of the friction cone by 8-sided pyramids. The
hollow cone shows the actual friction model, and the red arrow shows
contact forces (static in the first two cases and dynamic in the last ones).

Wan (mlf)(IXZ) n
[VVl‘t}(QxQ) (ffl,)

or B
|: (6ﬁ<2):| B |: (th)(2><1)
" [ <6i{?:>} |

e Coulomb’s friction law, in case of dynamic friction,
which is a nonlinear relation along the unknown
tangential direction of the motion:

(20)

O

fr=—ullfall I (21)

It is not possible to separate the Coulomb’s law computa-
tions from contact calculations. Each contact’s force can
modify the state of the other contact spots through the tangent
space which is also coupled, locally, to the normal space. In
case of a single contact, fast and very precise solutions have
been proposed, see [3], for instance. But, in the general
multicontact case, since the dynamic friction is nonlinear, it
cannot be directly expressed in an LCP form. Thus, approx-
imation of Coulomb’s law has been proposed.

4.2 k-Sided Pyramids Approximation
In rigid body dynamics, well-known approaches formu-
lated contact forces resolution as an LCP [23]. This is made
to solve the forces in implicit or semi-implicit schemes. For
multicontact interactive simulations with dry friction, a
solution often proposed (see [24] or [25]) is to approximate
Coulomb’s friction cone by a polyhedral one, Fig. 5. This
allows the keeping of an LCP formulation.

As the LCP matrix is copositive, Lemke’s algorithm
allows a solution to be found. The polygonal approximation
to the friction cone is written:

~

FC(P)=cone{@ + t, [r=1...k}, (22)

where k is the number of cone faces (triangles). Adapting
this formulation to our notation leads to the following
formulation:

0<8 L fr>0
0<A+6z L fz>0
: (23)
0<A+é; L fr>0
OSHfﬁ—Zlleft:l/\ZO

Note that A is not a physical quantity, although it usually
represents the sliding displacement at the contact, see [25].
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The methodology used to set the Delassus operator [W]
along a contact normal can be applied to write this operator
along normal and tangential components. That is, for one
contact:

fa W W, Wi, 01T fu bfree

fu Win Wi, Wiy 1| fa byree

0<| L : S N B ol
e Win Wit oo Wie 1| | fu e

A i -1 ... =1 0]|A 0
(24)

Gathering the relations on each contact, the method then
leads to a global LCP of size equal to m x (k + 2) if m is the
number of contacts. To have sufficient precision k = 8 faces
on pyramids are often used; this leads to an LCP 10 times
bigger than the frictionless one. In the next section, a new
approach that uses an iterative Gauss-Seidel-like algorithm
is proposed.

5 GAUSS-SEIDEL-LIKE ALGORITHM

In the area of computational mechanics of granular simula-
tions (see [26]), a Gauss-Seidel (GS) like algorithm has been
proposed to solve Signorini’s and Coulomb’s laws with a
guaranteed convergence. This method has been recently
applied in robotics [27]. In this section, we first present an
adaptation of this algorithm to deformable bodies; then, we
compare its performance to previous k-sided pyramids in a
real-time context.

5.1 Formulation

Considering a friction contact a, among m instantaneous
contacts, one can write the linearized behavior of the system
in the form:

a—

1 m
ba — [Waalfo = Z[Waﬁ]fﬁ + Z Waslfs +6gee> (25)

pB=1 fB=a+1

unknown

frozen

where [IV,] is a (3 x 3) matrix that models the coupling, in
the Delassus operator, between the contacts & and 3. The local
solution must agree with Signorini’s and Coulomb’s laws.

The resolution method used can be compared to the
block nonlinear Gauss-Seidel algorithm. A certain number
of iterations are made contact by contact. On each contact «,
this method consists of solving the contact and friction laws
by considering the contribution of other contacts (a # ()
“frozen.” The solution of every block equations (contact,
friction) is nonlinear and can be realized by a iterative
method in 3D [28].

Some notable remarks are:

o Using the estimated value fa, (25) can be rewritten in
the form:

—

a—

(Sny—[Wna](fn,_fa) =

(Wasl f+ D _[was)fs + 657
! f=a

=
Il
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e When we are near the solution, the value of W,,, is
not dominant because f,— f, — 0.

Hence, one may propose a method where W,, can be
replaced by a diagonal matrix with values judiciously
computed (as presented in Algorithm 1). Then, a method of
graph intersection can solve the contact and friction laws.
This method works well and is faster, even if it necessitates
doing more iterations than using an iterative method to
solve block equations.

Algorithm 1: Gauss-Seidel like resolution algorithm
Input: (6") 3msc1ys [Wiamxam)
Output: (f)zmx1)
set ¢; to Signorini’s law tolerance
set €5 to desired precision

k=0
fori = 1..mdo
0
(f,[ ])(:ixl} =0
At = Cig{[l{"if]rr)
R R b
A; = Anintlon
end
repeat
k=k+1
foreachi = 1 ... m do
(6 )ax1y = (07 ) ax1)
foreach j = 1...i—1 do :
(0" )ax1)+ = |n'-ij][:ixil}{.lrj '){:ixn
end
foreach j = i ... m do o
. r c—1
() axn+ =W fj][:ix:u(fj' Jiax1)
o
(F)a = FE )0 = (0)n/ Wil (1,1)
if (f,-“'))” > ¢; then
(£ = (F571), = (8=)e/As
i (A7)l > (S then
(k) _ Bl Nn
Ur; Jeki= m
end
else
| =0
end
end
o om0y
until 377, el < €21

5.2 Performance
In this section, we compare the GS-like approach to the LCP
one (i.e., when k-sided pyramids are used). The test
simulates a small deformable table, with four legs, that is
in contact with the floor (see Fig. 6). All simulations have
been performed using MATLABO. As results are biased by
implementation issues, figures mainly show a tendency.?
First, we can compare the two approaches in terms of
their precision. Vector ficp, the outcome of the pyramid
approach, is compared to the vector fgs computed by the
GS-like algorithm. The formula used to measure the gap v
between the two vectors is:

|l frep — fasl|

%) = 100
7(8) =100 el

(26)

8. The asymptotic complexity of the k-sided pyramids algorithm is
O(k x m?), where the asymptotic complexity of the Gauss-Seidel algorithm
is, in the worst case, O(m?) (see Section 5.4).
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Fig. 6. The same table with the same load. This example shows the
importance of the friction coefficient to the behavior of the table.

Tests have been performed with a small friction coefficient

(1 = 0.1) to have dynamic friction (see Fig. 7).
As the GS approach does not introduce any approxima-

tion on the friction cone, the precision found with this
algorithm is better than with the LCP one. The test shows
that, to have v < 5 percent between the two approaches, it is

necessary to use 16-sided pyramids.
However, a more significant issue is the CPU processing

time when introducing dry friction between deformable
models with haptic feedback. Thus, in Fig. 8, we have
compared the computing time in 30 different cases of a load

on the table.
These tests clearly show that our proposed GS approach

is much more efficient when the number of instantaneous
contacts increases. We also demonstrate that, on the
contrary to what we would presuppose, the use of k-sided
approximations, even if they keep having LCP, should be
called into question in computer haptics; see Section 7 for a
thorough discussion about performance.

Influence of k on the precision of k-sided pyramids

8

= & ] 5
L i L

Gap(%) between results of LCP and of GS

4 é (Ii 1I0 1I2 1I4 ‘.6 18 20
Value of k

Fig. 7. Average gap v over 30 tests where a random motion in the

tangential plane is introduced to produce different slip directions.

Computation time comparison
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Fig. 8. Average CPU time, obtained from 50 tests with random motion in
tangential plane and random friction coefficient. Red circles denote
nonlinear friction cone resolution by GS, whereas the blue stars denote
the LCP resolution of the same problem using 8-sided pyramids.

5.3 Mechanical Coupling between Contacts

By introducing the Delassus operator [W], computing the
contact and friction force takes account of the material and
the structural property of the contacts. As in the multi-
contact case, each contact may be linked to others. The
coupling values are taken into account in the process
through Delassus operator. That makes a difference
compared to penalty methods. Also, the existence of
couplings is the reason why single contact methods cannot
be adapted to multicontacts easily.

To illustrate this, we have created a visualization for the
Delassus operator (Fig. 9) of the virtual table in contact with
floor. It is obvious that two contacts on the same leg are
much more coupled than two contacts on different legs.
Thus, four blocks of contacts appear, corresponding to the
contact of the four legs.

The coupling between contacts on different legs is very
small. By using reinforcements between the legs (Fig. 10),

|| || |
|||||||ll||||||l | |||||

|I
%107 |||||f| || ||| |l|

B owna

r'|'||||h'|l||'i ':I |'1

Fig. 9. Visualization of the Delassus operator during the contact between
the virtual table and the floor. In red, couplings are along the normal and
in blue and green, they are along tangential directions.



Fig. 10. Table with reinforcements.

we can increase the rigidity of the structure and also the
coupling between contacts.

On one hand, the tangential values of [IV] are lower.
Indeed, augmentation of stiffness induces smaller compli-
ance. On the other hand, Fig. 11 shows that the coupling
between contacts on different legs increases along the
direction of reinforcements.

Our process includes the mechanical properties of
multicontacts by using the Delassus operator which reflects
the linearized behavior of bodies in the contact space. Thus,
it will allow us to solve contacts and friction between
models that do not have the same mechanical impedance.

However, in dynamics, this computation may induce
constraints on the choice of time step. A solution to this
problem is presented in the following section.

5.4 Scalability of the Algorithm

The proposed algorithm deals with contact and friction
resolution. Therefore, its complexity depends on the
number of contacts and their coupling, and not on the
shape or the number of nodes of the object which are more
problematic for collision/proximity algorithms.

Since the Gauss-Seidel algorithm for frictional contacts is
based on iterative computations, it will output only
approximate solutions. The total number of operations
depends on the convergence velocity and on the tolerance
(i.e., €2) chosen to stop the algorithm. Note that this
tolerance may be a useful tool for tuning between
computation time and precision.

As it is known for all Gauss-Seidel methods, the
convergence velocity depends on the dominance of diag-
onal values. This property of diagonal dominance in the
Delassus operator is verified with deformable models that
use a finite element method in 3D linear elasticity.

If the deformation law is chosen to be linear (small
displacement case), a lot of computation need only be made
once. For instance, K can be condensed on the surface
nodes and factorized in a precomputed process. Then, to
compute the Delassus operator, one need only transform
the frames of reference (from the object’s frame to the
contact frame) and interpolate (from the object’s node to the
contact point). The complexity of this operation is O(m?), m
being the number of contacts, if there is mechanical
coupling between all contacts (in the worst case).

Moreover, if this computation of the Delassus operator is
too long, one can also build only the block diagonal part of
the matrix and calculate the frozen contribution of each
contact (see the right side of (25)) in each model frame of
reference (using K~'H” F) and map it to the contact frame.
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Fig. 11. The Delassus operator of the same table with reinforcements
(along one tangential direction, in green, along the other direction, in
blue).

The main computation during one iteration concerns the
contribution of all frozen contacts to the computed contact.
This computation is equivalent to a matrix-vector product
for each iteration. So, one iteration has an O(m x m’)
complexity where m' is the number of active contacts
(whose force is not null) if the Delassus operator is full, and
fewer operations if the operator is sparse. This is also
known to be the complexity of the GS algorithm.

6 COROTATIONAL APPROACH

Haptic rendering for rigid body simulation requires update
rates ranging from 500Hz to 1kHz. As our simulation runs
in real-time, the time step used in the simulation is about
one or two milliseconds. In this section, the dynamic case is
considered. The choice of the time step depends on the
mass/stiffness ratio of the deformable objects. This may
compromise the simulation of deformable light and
structured materials. A global corotational approach that
decouples a rigid global motion from a deformable local one
is incorporated. This method allows larger tolerance on the
time step which consequently allows haptic feedback to be
performed on all kinds of material, even very stiff ones,
without modification of the simulation parameters.

6.1 Time Step Choice

Consider (1) in its linearized form. Applying the Euler
implicit scheme leads to the following equation:

0] ) = (204 12)

M] | [D] [D] [M] .
A2 AL A2 A !

Jrftut—l .

(27)

E firi-1)

If no Dirichlet conditions are defined, the stiffness matrix
[K] is singular. In this case, the value of At must be adapted
in order to make, in K, the mass and damping matrices
dominant compared to the stiffness matrix.

Even if such conditions are defined, the problem is not
completely solved. If one increases [K] without decreasing
At, the deformation frequencies would not satisfy the well-
known Shannon theorem. Consequently, there is no other
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Current
configuration C
Reference configuration '
splits into Cy and C; Co-rotational J
configuration C; Defonnahon

N

configuration Cy

Rigid body motion

Fig. 12. Adapted from Felippa [30]. The motion of a deformable object
may be split in two parts: a deformable motion in its current configuration
and a rigid motion in the space.

solution than adapting the time step, according to the
“ratio” between the mass and the stiffness of body. In this
case, since the limit of the time step is known, we can adapt
the Gauss-Seidel-like iteration to satisfy the time step by
relaxing e,.

6.2 Delassus Operator with a Corotational
Global Approach

The approach proposed in [29] describes the motion of
deformable bodies. This model splits the global motion
(driven by a rigid model) from local relative displacement
(driven by a linear deformable model), as shown in Fig. 12.
Recent developments in corotational approaches can be
found in [30] and in [31]. We are using a global corotational
approach, which differs from the local one that might be
used for large deformations, see [32].

The rigid dynamic models can be written in their
generalized form (for details, see, for instance, [12]):

A(q)q 4 b(q, q) _ chtcrnal + Fconstraint7 (28)

where A(q) is a mass and inertia matrix, ¢ is the vector of
generalized degrees of freedom, b(q, ) the centrifugal and
Coriolis force vector, I'‘mal js the resultant of external
forces, and I'omstaint jg the resultant of contact forces.

The methodology proposed in [12] is used to add the
rigid motion in the contact space. In this work, a Jacobian J.
is introduced to map the motion space into the contact space
(for instance, the resultant T'®"%int of contact forces F is
computed with [eomtraint — JTE) This allows us to obtain
the acceleration of the gaps in the contact space due to rigid
motion:

611g1d

[TAT T f+ 67 (29)

With the corotational global approach, the motion of one
point is the sum of its rigid motion in the global space and
its local deformation (3). Thus, the two models can be
summed into compliance within the contact space. The
linearized behavior of the models may be written as:

A -1
6= {ZHCHT#—J(AIEQ) Jr

W]

fHote (30)

With this model, when the stiffness of the body
increases, the behavior tends to rigid body motion. And,
in the Delassus operator [W], mass and stiffness are
decoupled. This is why this model allows stable haptic

11y oow

Fig. 13. A rigid model in frictional contact with the floor. Friction cones
are represented by purple triangles and contact forces by brown arrows.
We show the solutions given by the Gauss-Seidel algorithm when only
the rigid model is considered (on the left) and when the corotational
global approach is used (on the right). Both solutions result in the same
behavior (the rigid body does not move), but with our method the contact
forces are much more realistic, from the physical viewpoint, and there is
only one solution.

feedback and real-time simulation with an arbitrary choice
of time step.

As an additional justification, we recall that modeling a
body as rigid or as deformable is not a matter of the object’s
intrinsic properties. Indeed, the model depends rather on the
ways each object is constrained and the nature of these
constraints. In most cases, a rigid model is a valid simplifica-
tion only when the deformations can be neglected.

6.3 “Quasi-Rigid” Application

Using a corotational global model, our method includes
frictional rigid contacts in the limit of increasing stiffness. In
this case, the deformable part can only be seen as a
physically plausible mechanical compliance that solves part
of the indetermination that appears when Coulomb’s
friction law is adopted.

Indeed, it is known that, in rigid body mechanics,
frictional extensions lead to nonunique solutions [23], [25]
that, however, respect Coulomb’s law and result in the
same rigid motion, as shown in Fig. 13. These nonunique-
nesses usually induce convergence problems. The nonlinear
Gauss-Seidel method is able to obtain one result even if
there is more than one solution, but the solution is
influenced by the contact treatment ordering.

Very recent work [33], [34] has proposed adding small
deformations to rigid objects in order to add sufficient
degrees of freedom and to obtain solutions which are
always unique and smoother. Our approach can be used in
exactly the same way. However, what distinguishes our
method from previous ones is that we use a mechanical
compliance based on an FEM model, leading to more
plausible results.

7 ForceE FEEDBACK COMPUTATION AND STABLE
HAPTIC FEEDBACK ISSUES

The models and algorithms we described have been
implemented, packaged, and experimented with haptic
feedback scenarios. First, the coupling used to allow haptic
feedback on a corotational model is described. Then, snap-
in tasks with computations timing results are presented
together with our haptic set-up.

7.1 Force Feedback Coupling

Our approach here is a continuation of Adams and
Hannaford’s work [35], where the stability is straightfor-
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Fig. 14. Haptic feedback simulation of a snap-in operation with a flexible
tool into a “quasi-rigid” pipe.

ward and the feedback forces depend strongly on the
behavior of the object. However, the update rate will
influence the parameters used for the coupling.

Indeed, a 6D virtual coupling between the interface and
the rigid part of the corotational model uses impedance for
the interface and admittance for the simulation. This virtual
coupling may be considered intuitively as a 6 degrees of
freedom stiffness and damping between positions and
velocities measured at the interface and given by the
simulation. This creates the force that is sent both to haptic
feedback and to the real-time simulation. To obtain intuitive
deformations, Dirichlet conditions for the deformable part
of the model are defined in the neighborhood of the
grabbed spot.

7.2 Snap-In Task

The example we give in this paper is a virtual snap-in task
between two objects, one being deformable (a clip) and the
other being either rigid or deformable (a pipe). This
example has been chosen (actually proposed by our
collaboration with industry in the field of virtual prototyp-
ing (VP) development), because it has a nonlinear behavior
from the computer haptics point-of-view, and requires a
sustained haptic perception/action coordination.

To demonstrate the device independence given by the
adopted methodology, we implemented the similar scenar-
io using two different setups. The first configuration uses an
ordinary PC with a PHANToM Desktop from Sensable as a
haptic device (Fig. 14).

The second setup uses two haptic 6dof devices,
Virtuose6D, from Haption and a workbench from BARCO.
This configuration offers the possibility to blend in the same
space haptic and visual rendering and allow the operator to
work in a standing position, see Fig. 15.

The scenario is defined as follows: First, the operator
needs to grab the virtual clip, and to move it to the pipe
where it should be snapped-in. Through the haptic device,
the operator reaches for the clip’s handle, and by a simple
button press, attaches it to the haptic device by a virtual 6
degrees of freedom coupling. When the clip reaches the
pipe spot, the first collisions occur; subsequent haptic
feedback will help the operator to correctly position the clip
on the pipe to start the snap-in process. The snap-in process
consists of three phases: a pushing phase, an unstable
equilibrium phase, and the final clipping phase.

The pushing phase consists of the operator applying
forces on the clip toward the pipe. Here, the contact points
stick due to static friction. When the deformation starts,
there is an induced resistance due to deformation forces and
dynamic friction, until the deformation reaches its max-
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Fig. 15. CEA/LIST virtual prototyping configuration set-up. Here, two 6
degrees of freedom force feedback devices VIRTUOSESGD are used.

imum (the distance between the two branches of the clip is
maximum). At this moment, we reach the second phase.

The second phase is instable since it is an instant-time
state. At this instant, if the applied forces decrease, the clip
may come back in an abrupt way, especially if the object to
be snapped-in is rigid, as in Fig. 14. If the forces are
sufficient, the clip goes to the third phase.

In the third phase, the motion of the clip is relatively
abrupt, especially if the pipe is rigid, since the closing clip
forces induced from the deformation relaxation are sig-
nificant.

Fig. 16 shows screen snapshots from deformable/
deformable interactive snap-in. When both objects are
deformable, it is not easy to keep coordination of the
motion and force. The most impressive haptic sensation is
when user tries to withdraw the clip. Here, static friction
and clip deformation give a significant resistance to the
motion of the clip, while, as the user moves the interface,
the haptic virtual coupling accumulates potential energy.
Thus, in the very last phase, the clip moves out from the
cylinders in a very abrupt way.

As this motion could be very fast, this example shows the
importance of the implicit resolutions of models, contact,
and friction laws. The values used to calculate the stiffness
of the clip (Young Modulus E = 700M Pa and Poisson
coefficient ;1 = 0.35) correspond to polyethylene. The cor-
otational method allows us to use a realistic mass (15g) with
a time step of 3ms.

7.3 Performance

The snap-in demos use a stochastic proximity detection

algorithm. We can fix the number of the shortest distances

given at each time step (close to what is presented in [10]).
Fig. 17 illustrates the small variations of the computation

time when solving thirty contacts without friction between
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Fig. 16. Snapshots of the interactive snap-in and snap-out task on
deformable pipes. At the top, the pushing phase of the snap-in task. At
the bottom, the user withdraws the clip. This creates deformations of the
pipes, especially if the friction coefficient is very large.
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Computation steps
Fig. 17. CPU time for treatment of 30 instantaneous frictionless
contacts.

a pair of objects. The mean computing time is about 3ms.
Contact computations allow this very constrained case to be
solved with truthful behavior.

When friction is added to the simulation, the perfor-
mance of course decreases. This is shown in Fig. 18. We
obtain a CPU time of 4ms with 20 instantaneous proximity
spots. However, virtual coupling allows us to still have
stable haptic feedback with a relatively low refresh
frequency (up to 250Hz).

8 CoNcLUSION AND FUTURE WORK

When flexible virtual objects are interactively manipulated,
stable and truthful computer haptics requires physical
modeling of contact and friction in addition to real-time
force and deformation computations. The originality of this
work is in formulating an implicit solution that solves
Signorini’s and Coulomb’s laws in a very fast manner,
thanks to a Gauss-Seidel-like algorithm. The proposed
solution can be combined with most existing fast deform-
able simulations, as we disassociate the contact treatments
from the deformation behavior. We also show the interest of
using a global corotational approach in a real-time simula-
tion context. Our solutions have been implemented and
tested; a force feedback virtual snap-in simulation is
described and its performance evaluated.

5000
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1 214 427 640 853 1066 1279 1492 1705 1918 2131 2344 2557 2770 2983
Computation steps
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4]
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(b)

Fig. 18. CPU time for the treatment of 20 instantaneous contacts with (a)
1 =0.2and (b) p=0.38.

Our future work will focus on performance optimization
of the computation process and the investigation of other
dry friction models. We also plan to apply these techniques
in a medical simulation context.
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