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Asymptotic efficiency is proved for the constructed in part 1 procedure, i.e. Pinsker's constant is found in the asymptotic lower bound for the minimax quadratic risk. It is shown that the asymptotic minimax quadratic risk of the constructed procedure coincides with this constant.

Introduction

The paper is a continuation of the investigation carried in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF] and it deals with asymptotic nonparametric estimation of the drift coefficient S in observed diffusion process (y t ) t≥0 governed by the stochastic differential equation dy t = S(y t ) dt + dw t , 0 ≤ t ≤ T , y 0 = y , (

where (w t ) t≥0 is a scalar standard Wiener process, y 0 = y is a initial condition.

In the paper [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF] we have constructed a non-asymptotic adaptive procedure for which a sharp non-asymptotic oracle inequality is obtained. This oracle inequality gives a upper bound for a quadratic risk. In this paper we analyze asymptotic properties (as T → ∞) of the above adaptive procedure and state that it is asymptotically efficient. This means that the procedure provides the optimal convergence rate and the best constant (the Pinsker constant).

The problem of asymptotic (as T → ∞) minimax nonparametric estimation of the drift coefficient S in the model (1.1) has been studied in a number of papers, see for example, [START_REF] Dalalyan | Sharp adaptive estimation of the drift function for ergodic diffusion[END_REF]- [START_REF] Galtchouk | Asymptotic efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes[END_REF]. So the papers [START_REF] Galtchouk | Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes[END_REF], [START_REF] Galtchouk | Nonparametric sequential minimax estimation of the drift in diffusion processes[END_REF] and [START_REF] Galtchouk | Asymptotic efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes[END_REF] deal with the estimation problem at a fixed point. In [START_REF] Galtchouk | Nonparametric sequential minimax estimation of the drift in diffusion processes[END_REF] and [START_REF] Galtchouk | Asymptotic efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes[END_REF] in the case of known smoothness of the function S, efficient procedures were constructed which possess the optimal convergence rate and which provide the sharp minimax constant in asymptotic risks. Further in [START_REF] Galtchouk | Nonparametric sequential minimax estimation of the drift in diffusion processes[END_REF], a adaptive estimation procedure was given when the smoothness of the function S is unknown, the procedure provides the optimal convergence rate. Moreover, for estimation in L 2 -norme, in [START_REF] Galtchouk | Nonparametric sequential estimation of the drift in diffusion via model selection[END_REF] a adaptive sequential estimation procedure was constructed. The procedure possesses the optimal convergence rate and it is based on the model selection (see, [START_REF] Baron | Risk bounds for model selection via penalisation[END_REF] and [START_REF] Fourdrinier | Improved selection model method for the regression with dependent noise[END_REF]).

The sharp asymptotic bounds and efficient estimators for the drift S in model (1.1) with the known Sobolev smoothness was given in [START_REF] Dalalyan | Asymptotically efficient trend coefficient estimation for ergodic diffusion[END_REF] and with unknown one in [START_REF] Dalalyan | Sharp adaptive estimation of the drift function for ergodic diffusion[END_REF] for local weighted L 2 -losses, where the weight function is equal to the squared unknown ergodic density. Note that the weighted L 2 -risk considered in the papers [START_REF] Dalalyan | Sharp adaptive estimation of the drift function for ergodic diffusion[END_REF]- [START_REF] Dalalyan | Asymptotically efficient trend coefficient estimation for ergodic diffusion[END_REF] is restrictive for the following reasons. The ergodic density being exponentially decreasing, the feasible estimation is possible on an finite interval which depends on unknown function S. Moreover, the weighted L 2 -risk in these papers is local and the centres of vicinities in the local risk should be smoother than the function to be estimated. Since in the local risk the vicinity radius tends to zero, it means really that the proposed procedure estimates the centre of the vicinity which can be estimated with a better convergence rate. So the approach proposed in [START_REF] Dalalyan | Sharp adaptive estimation of the drift function for ergodic diffusion[END_REF]- [START_REF] Dalalyan | Asymptotically efficient trend coefficient estimation for ergodic diffusion[END_REF] permets to calculate the sharp asymptotic constant by lossing the optimal convergence rate.

In this paper we consider the global L 2 -risk and we show how to obtain the optimal convergence rate and to reach the Pinsker constant. We prove that the constructed in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF] procedure provides the both above properties.

The paper is organized as follows. In the next Section we formulate the problem and give the definitions of the functional classes and the global quadratic risk. In Section 3 the sequential adaptive procedure is constructed.

The sharp upper bound for the global minimax quadratic risk over all estimates is given in Section 4 (Th. 4.1). In Section 5 we prove that the lower bound of the global risk for the sequential kernel estimate coincides with the sharp lower bound, i.e. this estimate is asymptotically efficient. The Appendix contains the proofs of auxiliairy results.

2 Main results.

Let (Ω, F , (F t ) t≥0 , P) be a filtered probability space satisfying the usual conditions and (w t , F t ) t≥0 be a standard Wiener process.

Suppose that the observed process (y t ) t≥0 is governed by the stochastic differential equation (1.1), where the unknown function S(•) satisfies the Lipschitz condition, S ∈ Lip L (R), with

Lip L (R) = f ∈ C(R) : sup x,y∈R |f (x) -f (y)| |x -y| ≤ L .
In this case the equation (1.1) admits a strong solution. We denote by (F y t ) t≥0 the natural filtration of the process (y t ) t≥0 and by E S the expectation with respect to the distribution law P S of the process (y t ) t≥0 given the drift S. The problem is to estimate the function S in L 2 [a, b]-risk, for some a < b, b-a ≥ 1, i.e. for any estimate ŜT of S based on (y t ) 0≤t≤T , we consider the following quadratic risk :

R( ŜT , S) = E S ŜT -S 2 , S 2 = b a S 2 (x) dx . (2.1)
To obtain a good estimate for the function S it is necessary to impose some conditions on the function S which are similar to the periodicity of the deterministic signal in the white noise model. One of conditions which is sufficient for this purpose is the assumption that the process (y t ) in (1.1) returns to any vicinity of each point x ∈ [a, b] infinite times. The ergodicity of (y t ) provides this property.

Let L ≥ 1. We define the following functional class :

Σ L = {S ∈ Lip L (R) : sup |z|≤L |S(z)| ≤ L ; ∀|x| ≥ L , ∃ Ṡ(x) ∈ C such that -L ≤ Ṡ(x) ≤ -1/L} . (2.2)
It is easy to see that

ν * = sup x∈[a,b] sup S∈Σ L S 2 (x) < ∞ . (2.3)
Moreover, if S ∈ Σ L , then there exists the ergodic density

q(x) = q S (x) = exp{2 x 0 S(z)dz} +∞ -∞ exp{2 y 0 S(z)dz}dy (2.4) 
(see,e.g., Gihman and Skorohod (1972), Ch.4, 18, Th2). It easy to see that this density satisfies the following inequalities

0 < q * := inf |x|≤b * inf S∈Σ L q S (x) ≤ sup x∈R sup S∈Σ L q S (x) := q * < ∞ , (2.5) 
where b * = 1 + |a| + |b|. Let S 0 be a known k times differentiable function from Σ L . We define the following functional class

W k r = {S : S -S 0 ∈ Σ L ∩ C k per ([a, b]) , k j=0 S (j) -S (j) 0 2 ≤ r} , (2.6) 
where r > 0 , k ≥ 1 are some parameters,

C k per ([a, b]) is a set of k times differentiable functions f : [a, b] → R such that f (i) (a) = f (i) (b) for all 0 ≤ i ≤ k.
Note that, we can represent the functional class W k r as the ellipse in

L 2 [a, b], i.e. W k r = {S : S -S 0 ∈ Σ L ∩ C k per ([a, b]) , ∞ j=1 ̟ j θ 2 j ≤ r} , (2.7) 
where

̟ j = k i=0 2π[j/2] b -a 2i and θ j = b a (S(x) -S 0 (x))φ j (x)dx .
Here (φ j ) j≥1 is the standard trigonometric basis in L 2 [a, b] (see the definition (4.6) in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF]) and [a] is the integer part of a number a.

Remark 2.1. Note that the functional class W k r is an ellipse with the centre at S 0 . Usually in such kind problems one takes an ellipse with the centre S 0 ≡ 0. In the model (1.1) we cannot take S 0 ≡ 0 as the centre since this function does not belong to the space Σ L , i.e. the process (1.1) is not ergodic for this function.

In [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF] we constructed an adaptive sequential estimator Ŝ * for which the oracle inequality (Theorem 4.2) holds. In this paper we prove that this inequality is sharp in the asymptotic sense, i.e. we show that the minimax quadratic risk for Ŝ * asymptotically equals to the Pinsker constant.

To formulate our asymptotic results we define the following normalizing coefficient

γ(S) = ((1 + 2k)r) 1/(2k+1) J(S)k π(k + 1) 2k/(2k+1) (2.8) 
with

J(S) = b a 1 q S (u)
du .

(2.9)

It is well known that for any S ∈ W k r the optimal rate is T 2k/(2k+1) (see, for example, [START_REF] Galtchouk | Nonparametric sequential estimation of the drift in diffusion via model selection[END_REF]). In this paper we show that the adaptive estimator Ŝ * , defined by (4.17) in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF], is asymptotically efficient. (2.10)

Moreover, the following result claims that this upper bound is sharp.

Theorem 2.2. For any estimator ŜT of S measurable with respect to F y T , lim inf

T →∞ inf ŜT T 2k/(2k+1) sup S∈W k r R( ŜT , S) γ(S) ≥ 1 . (2.11)
Our approach is based on the truncated sequential procedure proposed in [START_REF] Galtchouk | Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes[END_REF], [START_REF] Galtchouk | Nonparametric sequential estimation of the drift in diffusion via model selection[END_REF] and [START_REF] Galtchouk | Asymptotic efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes[END_REF] for the diffusion model (1.1). Through this procedure we pass to discrete regression model in which we make use of the adaptive procedure Ŝ * proposed in [START_REF] Galtchouk | Efficient adaptive nonparametric estimation in heteroscedastic regression models[END_REF] for the family ( Ŝα , α ∈ A), where Ŝα is a weighted least squares estimator with the Pinsker weights. In the next section we describe the discrete regression model.

Adaptive procedure

We remind of that in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF] we pass by the sequential method to discrete scheme at the points

x l = a + l n (b -a) , 1 ≤ l ≤ n , (3.1) 
with n = 2[(T -1)/2] + 1. At each x l we use the sequential kernel estimator

       S * l = 1 H l τ l t 0 Q ys-x l h dy s , τ l = inf{t ≥ t 0 : t t 0 Q ys-x l h ds ≥ H l } , (3.2) 
where h = (ba)/(2n), Q(z) = 1 {|z|≤1} and

H l = (T -t 0 )(2q T (x l ) -ǫ 2 T )h with qT (x l ) = max{q(x l ) , ǫ T } and q(x l ) = 1 2t 0 h t 0 0 Q y s -x l h ds .
Note that τ l < ∞ a.s., for any S ∈ Σ L and for all 1 ≤ l ≤ n (see, [START_REF] Galtchouk | Nonparametric sequential minimax estimation of the drift in diffusion processes[END_REF]).

Moreover, we assume that the parameters t 0 = t 0 (T ) and ǫ T satisfy the following conditions

H 1 ) For any T ≥ 32, 16 ≤ t 0 ≤ T /2 and √ 2/t 1/8 0 ≤ ǫ T ≤ 1 .
H 2 ) For any δ > 0 and ν > 0, lim

T →∞ T ν e -δ √ t 0 = 0 . H 3 ) lim T →∞ t 0 (T ) = ∞ , lim T →∞ ǫ T = 0 , lim T →∞ T ǫ T /t 0 (T ) = ∞ .
¿From (1.1) ,(3.1)-(3.2) we obtain the discrete regression model

S * l = S(x l ) + ζ l .
The error term ζ l is represented as the following sum of the approximated term B l and the stochastic term

ζ l = B l + 1 H l ξ l ,
where

B l = 1 H l τ l t 0 Q y s -x l h (S(y s ) -S(x l ))ds , ξ l = 1 √ H l τ l t 0 Q y s -x l h dw s .
Moreover, note that for any function

S ∈ W k r |B l | ≤ 2L h = L (b -a)/n . (3.3)
It is easy to see that the random variables (ξ l ) 1≤l≤n are i.i.d. normal N (0, 1).

Therefore, by putting

Γ = Γ T = { max 1≤l≤n τ l ≤ T } and Y l = S * l 1 Γ ,
we obtain on the set Γ the following regression model

Y l = S(x l ) + ζ l , ζ l = B l + σ l ξ l , (3.4) 
where

σ 2 l = n (T -t 0 )(q T (x l ) -ǫ 2 T /2)(b -a) ≤ 4 ǫ T (b -a) := σ * .
In Appendix A.1 we prove the following result:

Proposition 3.1. Suppose that the parameters t 0 and ǫ T satisfy the condi-

tions H 1 )-H 3 ). Then, for any L ≥ 1, lim T →∞ sup S∈Σ L sup 1≤l≤n E S |σ l | = 0 ,
where

σ l = σ 2 l - 1 q S (x l )(b -a)
.

Now we suppose that the parameters k and r of the space W k r in (2.7) are unknown. We describe the adaptive procedure from [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF]. First we fixe ε > 0 and we define the sieve A ε in the space N × R + :

A ε = {1, . . . , k * } × {t 1 , . . . , t m } , (3.5) 
where

k * = [1/ √ ε], t i = iε, m = [1/ε 2 ]
and we take ε = 1/ ln n. We remind

of that n = 2[(T -1)/2] + 1 ≥ 30, due to condition H 1 ).
For any α = (β, t) ∈ A ε we define the weight vector

λ α = (λ α (1), . . . , λ α (n)) ′ with λ α (j) =      1 , for 1 ≤ j ≤ j 0 , 1 -(j/ω α ) β + , for j 0 < j ≤ n , (3.6) 
where

j 0 = j 0 (α) = [ω α / ln(n + 2)] + 1, ω α = (A β t n) 1/(2β+1) and A β = (b -a) 2β+1 (β + 1)(2β + 1) π 2β β .
For any α ∈ A ε , through the weight λ α = (λ α (1), . . . , λ α (n)) ′ we construct the weighted least squares estimator

       Ŝα = S 0 + n j=1 λ α (j) θj,n φ j 1 Γ , θj,n = ((b -a)/n) n l=1 (Y l -S 0 (x l )) φ j (x l ) . (3.7) 
We remind of (see Section 4 in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF]) that to construct an adaptive procedure one has to minimize the empiric squared error of estimator (3.7) over the weight family {λ α , α ∈ A ε }. A difficulty appears since the empiric squared error contains a term which depends on unknown function S. We estimate this term as follows

θj,n = θ2 j,n - (b -a) 2 n s j,n with s j,n = 1 n n l=1 σ 2 l φ 2 j (x l ) .
For any λ ∈ {λ α , α ∈ A ε } we define the empiric cost function J n (λ) by the following way

J n (λ) = n j=1 λ 2 (j) θ2 j,n -2 n j=1 λ(j) θj,n + 1 ln T P n (λ)
with the penalty term defined as

P n (λ) = |λ| 2 (b -a) 2 s n n ,
where |λ| 2 = n j=1 λ 2 (j) and

s n = n -1 n l=1 σ 2 l . We set α = agrmin α∈A ε J n (λ α ) and Ŝ * = Ŝα . (3.8)
In [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF] we proved the following non-asymptotic oracle inequality.

Theorem 3.2. Assume that S ∈ Σ L and Ŝα is defined in (3.7). Then, for any T ≥ 32, the adaptive estimator (3.8) satisfies the following inequality

R( Ŝ * , S) ≤ (1 + D(ρ)) min α∈A ε R( Ŝα , S) + B T (ρ) n , (3.9) 
where

ρ = 1/(6 + ln n) and n = 2[(T -1)/2] + 1 .
Moreover, the functions D(ρ) and B T (ρ) defined in Theorem 4.2 from [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF] are such that lim ρ→0 D(ρ) = 0 and, for any δ > 0 ,

lim T →∞ B T (ρ) T δ = 0 . (3.10)
Our principal goal in this paper is to show that the inequality (3.9) is sharp in asymptotic sense, i.e. it yields inequalities (2.10) and (2.11).

4 Upper bound

Known smoothness

We start with the estimation problem (1.1) under the condition that S ∈ W k r with known parameters k, r and J(S) defined in (2.8). In this case we use the estimator from family (3.7) S = Ŝα with α = (k, tn ) , tn = ln ε , (

where

ln = inf{i ≥ 1 : iε ≥ r(S)} , r(S) = r/J(S)
and ε = ε n = 1/ ln n. Note that for sufficiently large T , therefore large

m = [1/ε 2 ] = [ln 2 n],
the parameter α belongs to the set (3.5). In this section we obtain the upper bound for the empiric squared error of the estimator (4.1). We define the empiric squared error of the estimator S as

S -S 2 n = b -a n n l=1 ( S(x l ) -S(x l )) 2 ,
where the points (x l ) 1≤l≤n are defined in (3.1).

Theorem 4.1. The estimator S satisfies the following asymptotic upper bound lim sup

T →∞ T 2k/(2k+1) sup S∈W k r 1 γ(S) E S S -S 2 n 1 Γ ≤ 1 . (4.2)
Proof. We denote λ = λ α and ω = ω α. Now we remind of that the sieve Fourier coefficients ( θj,n ) defined in (3.7) satisfy on the set Γ the following relation (see [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF])

θj,n = θ j,n + ζ j,n (4.3) 
with

θ j,n = b -a n n l=1 (S(x l ) -S 0 (x l )) φ j (x l )
and

ζ j,n = (ζ, φ j ) n = b -a √ n ξ j,n + δ j,n ,
where

ξ j,n = 1 √ n n l=1 σ l ξ l φ j (x l ) and δ j,n = b -a n n l=1 B l φ j (x l ) . (4.4) 
The inequality (3.3) implies that

|δ j,n | ≤ L (b -a) 3/2 /n . (4.5)
On the set Γ we can represent the empiric squared error as follows

S -S 2 n = n j=1 (1 -λ(j)) 2 θ 2 j,n + 2(b -a)M n + 2 n j=1 (1 -λ(j)) λ(j) θ j,n δ j,n + n j=1 λ2 (j) ζ 2 j,n , (4.6) 
where

M n = 1 √ n n j=1
(1 -λ(j)) λ(j) θ j,n ξ j,n .

Note that, for any ρ > 0,

2 n j=1 (1 -λ(j)) λ(j) θ j,n δ j,n ≤ ρ n j=1 (1 -λ(j)) 2 θ 2 j,n + ρ -1 n j=1 λ2 (j) δ 2 j,n .
Therefore by (4.4)-(4.5) we obtain that

S -S 2 n ≤ (1 + ρ) n j=1 (1 -λ(j)) 2 θ 2 j,n + 2(b -a)M n + L 2 (b -a) 3 ρn + n j=1 λ2 (j) ζ 2 j,n .
By the same way we estimate the last term in the right-hand part as

n j=1 λ2 (j) ζ 2 j,n ≤ (1 + ρ)(b -a) 2 n n j=1 λ2 (j) ξ 2 j,n + (1 + ρ -1 ) L 2 (b -a) 3 n .
Therefore on the set Γ we find that

Sn -S 2 n ≤ (1 + ρ)γ n (S) + 2(b -a)M n + (1 + ρ)∆ n + L 2 (b -a) 3 (ρ + 2) ρn , (4.7) 
where

γn (S) = n j=1 (1 -λ(j)) 2 θ 2 j,n + J(S) (b -a)n n j=1 λ2 (j) , ∆ n = 1 n n j=1 λ2 (j) (b -a) 2 ξ 2 j,n - J(S) b -a .
Let us estimate the first term in the right-hand part of (4.7). Note that the bounds (2.5) imply the corresponding bounds for the function J(S), i.e.

0 < b -a q * ≤ inf S∈Σ L J(S) ≤ sup S∈Σ L J(S) ≤ b -a q * < ∞ . (4.8) 
This implies directly that 

E S M 2 n ≤ σ * (b -a)n n j=1 θ 2 j,n = σ * (b -a)n S 2 n ≤ σ * ν * (b -a)n ,
where the constants σ * and ν * are defined in (3.4) and (2.3), respectively.

Taking into account that E S M n = 0 and making use of Proposition 3.1

from [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF] we obtain that

|E S M n 1 Γ | = |E S M n 1 Γ c | ≤ σ * Π T L √ n . Therefore lim T →∞ T 2k/(2k+1) sup S∈W k r |E S M n 1 Γ | = 0 . (4.12)
Now we show that lim

T →∞ T 2k/(2k+1) sup S∈W k r |E S ∆ n | = 0 . (4.13)
First of all, note that, for j ≥ 2,

(b -a) 2 E S ξ 2 j,n = (b -a) 2 n E S n l=1 σ 2 l φ 2 j (x l ) = (b -a)E S s n + (b -a)E S ς j,n , (4.14) 
where

ς j,n = 1 n n l=1 σ 2 l φ j (x l ) with φ j (z) = (b -a)φ 2 j (z) -1 . Moreover, sup S∈W k r (b -a)E S s n - J(S) b -a ≤ b -a n n l=1 sup S∈W k r E S |σ l | + sup S∈W k r 1 b -a b a q -1 S (x) dx - 1 n n l=1 q -1 S (x l ) ≤ (b -a) sup S∈W k r max 1≤l≤n E S |σ l | + q ′ * (b -a) q * n , where q ′ * = max a≤x≤b sup S∈Σ L |q ′ S (x)|. Therefore Proposition 3.1 implies that lim n→∞ T 2k/(2k+1) sup S∈W k r (b -a)E S s n - J(S) b -a = 0.
To estimate the second term in (4.14) we make use of Lemma 6.2 from [START_REF] Galtchouk | Efficient adaptive nonparametric estimation in heteroscedastic regression models[END_REF].

We have

n j=1 λ2 (j) ς j,n = 1 n n l=1 σ 2 l n j=1 λ2 (j) φ j (x l ) ≤ 1 n n l=1 σ 2 l n j=1 λ2 (j) φ j (x l ) ≤ σ * (2 2k+1 + 2 k+2 + 1) ≤ 5σ * 2 2k a.s..
Thus from (4.10) we obtain (4.13). Moreover, we can calculate that

E S ξ 4 j,n ≤ 3σ 2 * (b -a) 2 .
Due to Proposition 3.1 from [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF], we obtain that

E S |∆ n |1 Γ c ≤ (b -a) 2 n n j=1 E S ξ 2 j,n 1 Γ c + J(S)Π T ≤ √ 3σ * b -a Π T + 1 q * Π T .
This means that lim n→∞ T 2k/(2k+1) sup

S∈W k r E S |∆ n |1 Γ c = 0 .
Therefore by (4.13) we get that

lim n→∞ T 2k/(2k+1) sup S∈W k r |E S 1 Γ ∆ n | = 0 .
Hence Theorem 4.1.

Unknown smoothness

In this subsection we prove Theorem 2.1. First of all notice that inequalities Therefore Theorem 4.1, upper bound (2.3) and Proposition 3.1 from [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF] imply that lim sup

T →∞ T 2k/(2k+1) sup S∈W k r 1 γ(S) E S S -S 2 n ≤ 1 . (4.15)
Let us remind of of that we define the estimator S from the sieve (3.1) onto all interval [a, b] by the standard method as

S(x) = S(x 1 )1 {a≤x≤x 1 } + n l=2 S(x l )1 {x l-1 <x≤x l } , (4.16) 
where 1 A is the indicator of a set A. Putting ̺(x) = S(x) -S(x) we find that

̺ 2 = ̺ 2 n + 2 n l=1 x l x l-1 ̺(x l )(S(x l ) -S(x))dx + n l=1 x l x l-1 (S(x l ) -S(x)) 2 dx .
For any 0 < ǫ < 1, we estimate the norm ̺ 2 as

̺ 2 ≤ (1 + ǫ) ̺ 2 n + (1 + ǫ -1 ) n l=1 x l-1 x l-1 (S(x l ) -S(x)) 2 dx .
This means that, for any

S ∈ Σ L , R( S, S) ≤ (1 + ǫ)E S ̺ 2 n + (1 + ǫ -1 ) L 2 (b -a) 3 n 2 . ( 4.17) 
We recall that S = Ŝα with α ∈ A ε . Therefore, Theorem 3.2 with inequalities (4.15)-(4.17) imply Theorem 2.1

Lower bound

In this section we prove Theorem 2.2. We folow the proof of Theorem 4.2 from [START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models[END_REF]. Similarly, we start with the approximation for an indicator function, i.e. for any for η > 0, we set

I η (x) = η -1 R 1 (|u|≤1-η) G u -x η du , (5.1) 
where the kernel V ∈ C ∞ (R) is a probability density on [-1, 1]. It is easy to see that I η ∈ C ∞ and for any m ≥ 1 and any integrable function f (x)

lim η→0 R f (x)I m η (x) dx = 1 -1 f (x) dx .
Further, we will make use of the following trigonometric basis {e j , j ≥ 1} in

L 2 [-1, 1] with e 1 (x) = 1/ √ 2 , e j (x) = T r j (π[j/2]x) , j ≥ 2 . (5.2) 
Here T r l (x) = cos(x) for even l and T r l (x) = sin(x) for odd l.

Moreover, we denote J 0 = J(S 0 ) , q 0 = q S 0 , γ 0 = γ(S 0 ) , where the function S 0 is defined in (2.6).

Let us now fixe some arbitrary 0 < ε < 1 and according to [START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models[END_REF] we put

h = (υ * ε ) 1 2k+1 N T T -1 2k+1 (5.3) with υ * ε = kπ 2k J 0 (1 -ε)r2 2k+1 (k + 1)(2k + 1)
and N T = ln 4 T .

To construct a parametric family we divide the interval 

θ m,j = t m,j ζ m,j , (5.5) 
where ζ m,j are i.i.d. gaussian N (0, 1) random variables and the coefficients

t m,j = y * j T hq 0 (x m ) .
We chose the sequence (y * j ) 1≤j≤N by thre samle way as in (8.11) in [START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models[END_REF], i.e.

y * j = Ω T j -k -1 with Ω T = R * T + N j 2k N j k ,
where

R * T = J 0 k Ĵ0 (k + 1)(2k + 1) N 2k+1 , and 
Ĵ0 = 2h M m=1 1 q 0 (x m ) . (5.6)
In the sequel we make use of the following set

Ξ T = { max 1≤m≤M max 1≤j≤N |ζ m,j | ≤ ln T } . (5.7)
Obviously, that for any p > 0 lim

T →∞ T p P(Ξ c T ) = 0 . (5.8)
Note that on the set Ξ T the uniform norm

|S θ,T -S 0 | * = sup a≤x≤b |S θ,T (x) -S 0 (x)| is bounded |S θ,T -S 0 | * ≤ ln T q * T h N j=1 y * j := ǫ T .
(5.9)

Taking into account here that lim T →∞ Ĵ0 = J 0 (5.10)

it is easy to deduce that ǫ T → 0 as T → ∞.

For any estimator ŜT , we denote by Ŝ0 T its projection on

W k r , i.e. Ŝ0 T = Pr W k r ( ŜT ). Since W k r is a convex set, we get that ŜT -S 2 ≥ Ŝ0 T -S 2 .
Therefore, denoting by µ θ the distribution of θ in R d with d = MN and taking into account (5.9) we can write that sup

S∈W k r R( ŜT , S) γ(S) ≥ 1 γ * T {z∈R d : S z,n ∈W k r }∩Ξ T E S z,T Ŝ0 T -S z,T 2 µ ϑ (dz) with γ * T = sup S∈U T γ(S) ,
where

U T = {S : |S -S 0 | * ≤ ǫ T , S(x) = S 0 (x) for x / ∈ [a, b]} .
Since function (2.4) is continuous with respect to S, then lim

T →∞ γ * T = γ 0 . (5.11)
Making use of the distribution µ θ we introduce the following Bayes risk

R( ŜT ) = R d R( ŜT , S z,T )µ θ (dz)
Now noting that Ŝ0

T 2 ≤ r through this risk we can write that sup

S∈W k r R( ŜT , S) γ(S) ≥ 1 γ * T R( Ŝ0 T ) - 2 γ * T ̟ T , (5.12) 
with

̟ T = E(1 {S θ,T / ∈W k r } + 1 Ξ c T )(r + S θ,T 2 
) .

Propostions 7.2-7.3 from [START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models[END_REF] imply that for any p > 0 lim

T →∞ T p ̟ T = 0 .
Let us consider the first term in the right-hand side of (5.12). To obtain a lower bound for this term we use the L 2 [a, b]-orthonormal function family (ẽ m,j ) 1≤m≤M,1≤j≤N which is defined as

ẽm,j (x) = 1 √ h e j (v m (x)) 1 (|vm(x)|≤1) .
We denote by λm,j and λ m,j (z) the Fourier coefficients for the functions Ŝ0

T and S z , respectively, i.e.

λm,j = b a Ŝ0 T (x)ẽ m,j (x)dx and λ m,j (z) = b a S z (x)ẽ m,j (x)dx . Now it is easy to see that Ŝ0 T -S z 2 ≥ M m=1 N j=1 ( λm,j -λ m,j (z)) 2 .
Let us introduce the folowing

L 1 → R functional e j (f ) = 1 -1 e 2 j (v) f (v) dv
Therefore from definition (5.4) we obtain that

∂ ∂z m,j λ m,j (z) = √ h e j (I η ) . Now Lemma A.2 implies that R( Ŝ0 T ) ≥ h M m=1 N j=1 e 2 j (I η ) (1 + ς m,j (T ))e j (I 2 η ) q 0 (x m )T h + t -2 m,j , (5.13) 
where

ς m,j (T ) = E E S θ,T T 0 D 2 m,j (y t ) dt T he j (I 2 η ) q 0 (x m ) -1 .
In Appendix we show that lim

T →∞ max 1≤m≤M max 1≤j≤N ς m,j (T ) = 0 . (5.14) 
Therefore taking this into account in inequality (5.13) we obtain that for sufficiently large T and for arbitrary ν > 0

R( Ŝ0 T ) ≥ Ĵ0 2T h(1 + ν) N j=1 τ j (η, y * j ) ,
where

τ j (η, y) = e 2 j (I η )y e j (I 2 η )y + 1
.

By making use of limit equality (8.9) from [START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models[END_REF] we obtain that for sufficiently small η and sufficientlly large T

R( Ŝ0 T ) ≥ 1 (1 + ν) 2 Ĵ0 2T h N j=1 y * j y * j + 1
, where Ĵ0 is defined in (5.7). Thus making use of (5.10) this implies that lim inf

T →∞ inf ŜT T 2k 2k+1 R( ŜT ) ≥ (1 -ε) 1 2k+1 γ 0 .
Taking into account this inequelity in (5.12) and limit equality (5.11) we obtain that for any 0 < ε < 1 lim inf

T →∞ inf ŜT T 2k 2k+1 sup S∈W k r R( ŜT , S) γ(S) ≥ (1 -ε) 1 2k+1
.

Taking here limit as ε → 0 implies Theorem 2.2.

A Appendix

A.1 Proof of Proposition 3.1

We use all notations from [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes. Part 1. Sharp non-asymptotic oracle inequalities[END_REF]. For any function ψ : R → R such that

sup y∈R |ψ(y)| < ∞ and +∞ -∞ |ψ(y)| dy ≤ c * < ∞ (A.1)
we set

M S (ψ) = +∞ -∞ ψ(y) q S (y) dy and ∆ T (ψ) = 1 √ T T 0 (ψ(y t )-M S (ψ)) dt .
In [START_REF] Galtchouk | Uniform concentration inequality for ergodic diffusion processes[END_REF] (see Theorem 3.2) we show that, for any ν > 0 and for any ψ satisfying (A.1), there exists γ = γ(c * , L) > 0 such that the following inequality holds sup

S∈Σ L P S (|∆ T (ψ)| ≥ ν) ≤ 8 e -γν 2 . (A.2)
We shall apply this inequality to the function

ψ h,k (y) = 1 h Q y -x k h , for which ∞ -∞ ψ h,k (y)dy = 2. Note now that 2q(x k ) -M S (ψ h,k ) = 1 √ t 0 ∆ t 0 (ψ h,k ) . (A.3) Moreover, M S (ψ h,k ) = 1 -1 q S (x k + hz)dz ≥ 2q * ,
where q * is defined in (2.5). Therefore we get that

P S (q(x k ) < ǫ T ) = P S 1 t 0 t 0 0 ψ h,k (y t ) dt < 2ǫ T = P S ∆ t 0 (ψ h,k ) < (2ǫ T -M S (ψ h,k )) √ t 0 ≤ P S ∆ t 0 (ψ h,k ) < 2 (ǫ T -q * ) √ t 0 .
Note that for ǫ T ≤ q * /2 the inequality (A.2) implies the following exponentielle upper bound

P S (q(x k ) < ǫ T ) ≤ 8 e -γq 2 * t 0 . (A.4)
Now we show that lim

T →∞ sup 1≤l≤n sup S∈Σ L 1 ǫ T E S |q T (x l ) -q S (x l )| = 0 . (A.5)
To end this we have to prove that lim

T →∞ sup 1≤l≤n sup S∈Σ L 1 ǫ T E S q(x l ) -M S (ψ h,l )/2 = 0 . (A.6)
Indeed, from (A.2)-(A.3) we find

E S q(x l ) -M S (ψ h,l )/2 = 1 √ t 0 E S |∆ t 0 (ψ h,k )| = 1 √ t 0 ∞ 0 P S (|∆ t 0 (ψ h,k )| ≥ z) dz ≤ 8 √ t 0 ∞ 0 e -γz 2 dz .
The condition H 1 ) implies that ǫ T √ t 0 → ∞ as T → ∞. Therefore this inequality implies (A.6). Moreover, taking into account that h/ǫ T → 0 as T → ∞ we obtain, for sufficiently large T , the following bound

|M S (ψ h,l )/2 -q S (x l )| ≤ 1 -1 |q S (x l + vh) -q S (x l )| dv ≤ q ′′ * h 2 ≤ ǫ 2 T ,
where q ′′ * = sup |x|≤R sup S∈Σ L |q ′′ S (x)|. ¿From this inequality, taking into account inequality (A.6) and the condition H 3 ), we obtain (A.5).

Since T -2 ≤ n ≤ T , we find that, for sufficiently large T providing

ǫ T ≤ 1, E S σ 2 l - 1 q S (x l )(b -a) = 1 b -a E S 2n (T -t 0 )(2q(x l ) -ǫ 2 T ) - 1 q S (x l ) ≤ 2 E S |q(x l ) -q S (x l )| ǫ T q * (b -a) + ǫ T q * (b -a) + 4 (T -t 0 )ǫ T (b -a) + 2t 0 (T -t 0 )ǫ T (b -a)
.

The condition H 3 ) and (A.5) imply directly Proposition 3.1.

A.2 Proof of the limiting inequality (4.11)

We set ι0 = j 0 ( α) and ι1 = [ω ln(n + 1)]. Then we can represent γn (S) by the following way γn (S) =

ι1 j=ι 0 (1 -λ(j)) 2 θ 2 j,n + J(S) (b -a)n n j=1 λ2 (j) + ∆ 1,n with ∆ 1,n = n j=ι 1 θ 2 j,n . Note now that, for any 0 < δ < 1, γn (S) ≤ (1 + δ) ι1 -1 j=ι 0 (1 -λ(j)) 2 θ 2 j + J(S) (b -a)n n j=1 λ(j) 2 + ∆ 1,n + (1 + 1/δ)∆ 2,n , (A.7)
where ∆ 2,n = ι1 -1 j=ι 0 (θ j,nθ j ) 2 .

Due to the uniform convergence (4.9), Lemmas 6.1 and 6. 

A.3 Moment bounds

Lemma A.1. Let ξ j,n be defined in (4.4). Then, for any real numbers

v 1 , . . . , v n , E n j=1 v j ξ j,n 2 ≤ σ * b -a V n , E n j=1 v j ξ j,n 4 ≤ 3σ 2 * (b -a) 2 V 2 n ,
where σ * = max 1≤j≤n σ 2 j and V n = n j=1 v 2 j .

The proof of this Lemma is similar to the proof of Lemma 6.4 in [START_REF] Galtchouk | Efficient adaptive nonparametric estimation in heteroscedastic regression models[END_REF].

A. 

|S i (y) -S i (x)| |y -x| ≤ L .
In this case (see, for example, [START_REF] Gal'chuk | Existence and uniqueness of a solution for stochastic equations with respect to semimartingales[END_REF]) stochastic equation (A.9) has the unique strong solution (y t ) 0≤t≤T for any random variable θ with values in R d .

Moreover (see, for example [START_REF] Sh | Statistics of a random process[END_REF]), for any θ ∈ R d the distribution P θ is absalutly continuous with respect to the Wiener measure ν w in C[0, T ] and the corresponding Radon-Nikodym derivative for any function x = (x t ) 0≤t≤T

from C[0, T ] is defined as

dP θ dν w = f (x, θ) = exp T 0 S(x t , θ)dx t - 1 2 T 0 S 2 (x t , θ)dt . (A.11)
Let Φ be a prior density in R d having the following form:

Φ(θ) = Φ(θ 1 , . . . , θ d ) = d j=1 ϕ j (θ j ) ,
where ϕ j is some continuously differentiable density in R. Moreover, let λ(θ) be a continously differentiable

R d → R function such that for each 1 ≤ j ≤ d lim |θ j |→∞ λ(θ) ϕ j (θ j ) = 0 and R d |λ ′ j (θ)| Φ(θ) dθ < ∞ , (A.12)
where

λ ′ j (θ) = ∂λ(θ) ∂θ j . For any B(X )×B(R d )-measurable integrable function ξ = ξ(x, θ) we denote Ẽξ = R d X ξ(x, θ) dP θ Φ(θ)dθ = R d X ξ(x, θ) f (x, θ) Φ(θ)dν w (x) dθ , where X = C[0, T ].
Lemma A.2. For any square integrable function λT measurable with respect to (Y t ) 0≤t≤T and for any 1 ≤ j ≤ d the following inequality holds

Ẽ( λT -λ(θ)) 2 ≥ Λ 2 j Ẽ T 0 S 2 j (Y t ) dt + I j , where Λ j = R d λ ′ j (θ) Φ(θ) dθ and I j = R φ2 j (z) ϕ j (z) dz .
Proof. First of all note that for the function (A.10) and for the Wiener Taking this into account we can calculate now ẼΨ 2 j , i.e. Therefore, with the help of this inequality we obtain that E M S θ,T (ψ m,j ) -M S 0 (ψ m,j ) ≤ Finally it is easy to see that M S 0 (ψ m,j )e j (I 2 η )q 0 (x m ) ≤ i.e. this term goes to zero as h → 0 uniformly over 1 ≤ m ≤ M and 1 ≤ j ≤ N. Hence limit equality (5.14) 
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 1 [a, b] by the intervals [x mh , xm + h] with xm = a + 2hm. The maximal number of such intervals is equal to M = [(ba)/(2h)] -Onto each interval [x m -h , xm +h], we approximate any unknown function by a trigonometric series with N terms, i.e. for any array z = (z m,j ) 1≤m≤M ,1≤j≤N , we set S z,T (x) = S 0 (x) + j D m,j (x) (5.4) with D m,j (x) = e j (v m (x))I η (v m (x)) and v m (x) = (xxm )/h. Now to obtain the bayesian risk we choose a prior distribution on R M N by making use of the random array θ = (θ m,j ) 1≤m≤M ,1≤j≤N defined as

2 l=1( 1 - 1 (

 211 |∆ l,n | = 0 .Now we setυ n (S) = n 2k/(2k+1) sup j≥ι 0 λ(j)) 2 /̟ j ,with the sequence ̟ j defined in (2.7) andυ * (S) = ba π 2k A k r(S)) 2k/(2k+1) ,where the coefficient A k is defined in(3.6). Moreover, one can calculate to the definition (2.7) and to the fact thatγ(S) = υ * (S)r + J(S) ba (A k r(S)) 1/(2k+1) 2k 2 (k + 1)(2k + 1), the inequality (A.7) and the limits (A.8) and (4.10) imply (4.11).
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 202 process w = (w t ) 0≤t≤T density (A.11) is bounded with respect to θ j ∈ R for any 1 ≤ j ≤ d, i.e. lim sup|θ j |→∞ f (w, θ) < ∞ a.s.Therefore taking into account condition (A.12) by integration by parts one getsẼ ( λTλ(θ))Ψ j = X ×R d ( λT (x)λ(θ)) ∂ ∂θ j (f (x, θ)Φ(θ)) dθν w (dx) = X ×R d-1 R λ ′ j (θ) f (x, θ)Φ(θ)dθ j i =j dθ i ν w (dx) = Λ j .Now by the Bouniakovskii-Cauchy-Schwarz inequality we obtain tha following lower bound for the quiadratic riskẼ( λTλ(θ)) Ψ j (x, θ) = ∂ ∂θ j ln(f (x, θ)Φ(θ)) = ∂ ∂θ j ln f (x, θ) + ∂ ∂θ j ln Φ(θ) .Note that from (A.11) it is easy to deduce that∂ ∂θ j ln f (y, θ) = T 0 S j (y t )dw t .Therefore, due to the boundness of the functions S j we find that for each θ ∈ R d E θ ∂ ∂θ j ln f (y, θ) = 0 and E θ ∂ ∂θ j ln f (y, θ) (y t )dt .
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 212 (y t )dt + I j .Hence Lemma A.2.Then by making use of definitions in (A.1) we can estimate the term ς m,j (T ) as|ς m,j (T )| ≤ E E S θ,T |∆ T (ψ m,j )| e j (I 2 η )q 0 (x m ) √ T + E M S θ,T (ψ m,j ) e j (I 2 η )q 0 (x m ) -Moreover, taking into account that lim η→0 sup j≥1 |e j (I 2 η ) -1| = 0 we chose η > 0 for which inf j≥1 e j (I 2 η ) ≥ 1/Therefore we can write that|ς m,j (T )| ≤ 2 q * √ T E E S θ,T |∆ T (ψ m,j )| + 2 q * E M S θ,T (ψ m,j ) -M S 0 (ψ m,j ) + 2 q * M S 0 (ψ m,j )e j (I 2 η )q 0 (x m ) . (A.13)We remind that on the set (5.7) for sufficiently large T the function S θ,T ∈ Σ L therefore we estimatethe first term in the right side of the last inequality asE E S θ,T |∆ T (ψ m,j )| ≤ 2 h P(Ξ c T ) + sup SΣ L E S |∆ T (ψ m,j )| . θ,T |∆ T (ψ m,j )| < ∞ .To estimate the next term in (A.13) we make use of the fact that on the set Ξ T the function S θ,T satisfies inequality (5.9) and one can check directly that on this set |q S θ,Tq 0 | * ≤ C * (e 2(b-a)ǫ T -1) .
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 112 (v)I 2 η (v) E |q S θ,T (x m + vh)q 0 (x m + vh)|dv ≤ 2P(Ξ c T )q * + 2 C * (e 2(b-a)ǫ T -1) .
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 112 (v)I 2 η (v) |q 0 (x m + vh)q 0 (x m )|dv ≤ 2 sup a≤u,v≤b ,|u-v|≤h |q 0 (u)q 0 (v)| ,

  [START_REF] Fourdrinier | Improved selection model method for the regression with dependent noise[END_REF] Application of the van Trees inequality to diffusion processes. T ], B, (B t ) 0≤t≤T , (P θ , θ ∈ R d ) be a filtered statistical model with cylidric σ-fields B t on C[0, t] and B = ∪ 0≤t≤T B t . As to the distributions P θ we assume that it is distribution in C[0, T ] of the stochastic process (y t ) 0≤t≤T

	Let C[0, governed by the stochastic differential equation
	dy

t = S(y t , θ)dt + dw t , 0 ≤ t ≤ T , (A.9) where θ = (θ 1 , . . . , θ d ) ′ is vector of unknown parameters, w = (w t ) 0≤t≤T is a standart Wiener process. Moreover, we assume also that S is a linear function with respect to θ, i.e.

S(y, θ) =

d i=1 θ i S i (y) , (A.10) where the functions (S i ) 1≤i≤d are bound and satisfy the Lipschitz condition, i.e. for some constant 0 < L < ∞ max 1≤i≤d sup x∈R |S i (x)| ≤ L and max 1≤i≤d sup x,y∈R
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