
HAL Id: hal-00269303
https://hal.science/hal-00269303

Submitted on 10 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive nonparametric estimation in heteroscedastic
regression models. Part 2: Asymptotic efficiency.

Leonid Galtchouk, Serguey Pergamenshchikov

To cite this version:
Leonid Galtchouk, Serguey Pergamenshchikov. Adaptive nonparametric estimation in heteroscedastic
regression models. Part 2: Asymptotic efficiency.. Journal of the Korean Statistical Society, 2009, 35
p. �10.1016/j.jkss.2008.12.001�. �hal-00269303�

https://hal.science/hal-00269303
https://hal.archives-ouvertes.fr


ha
l-

00
26

93
03

, v
er

si
on

 2
 -

 1
0 

A
pr

 2
00

8

Adaptive nonparametric estimation in

heteroscedastic regression models.

Part 2: Asymptotic efficiency.

By Leonid Galtchouk and Sergey Pergamenshchikov ∗

Louis Pasteur University of Strasbourg and University of Rouen

Abstract

In the paper we study asymptotic properties of the adaptive pro-

cedure proposed in the paper Galtchouk, Pergamenshchikov, 2007,

for nonparametric estimation of unknown regression. We prove that

this procedure is asymptotically efficient for some quadratic risk, i.e.

we show that the asymptotic quadratic risk for this procedure coin-

cides with the Pinsker constant which gives a sharp lower bound for

quadratic risk over all possible estimates. 1 2
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1 Introduction

The paper deals with the estimation problem in the heteroscedastic non-

parametic regression model

yj = S(xj) + σj(S) ξj , (1.1)

where the design points xj = j/n, S(·) is an unknown function to be esti-

mated, (ξj)1≤j≤n is a sequence of centered i.i.d. random variables with unit

variance and Eξ4
1 = ξ∗ < ∞, (σj(S))1≤j≤n are unknown scale functionals

depending on unknown regression function S and the design points.

Typically, the notion of asymptotic optimality is associated with the

optimal convergence rate of the minimax risk (see for example, Ibragimov,

Hasminskii,1981; Stone,1982). An important question in optimality results

is to study the exact asymptotic behaviour of the minimax risk. Such results

have been obtained only in a limited number of investigations. As to the

nonparametric estimation problem for heteroscedastic regression models we

should mention the papers Efromovich, 2007, Efromovich, Pinsker, 1996,

and Galtchouk, Pergamenshchikov, 2005, concerning the exact asymptotic

behaviour of the L2-risk and paper by Brua, 2007, devoted to the efficient

pointwise estimation for heteroscedastic regressions.

We remind that an example of heteroscedastic regression models is given

by econometrics (see, for example, Goldfeld, Quandt, 1972, p. 83), where

for consumer budget problems one uses some parametric version of model

(1.1) with the scale coefficients defined as

σ2
j (S) = c0 + c1xj + c2S

2(xj) , (1.2)
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where c0, c1 and c2 are some positive unknown constants.

The purpose of the article is to study asymptotic properties of the adap-

tive estimation procedure proposed in Galtchouk, Pergamenshchikov, 2007,

for which a non-asymptotic oracle inequality was proved for quadratic risks.

We will prove that this oracle inequality is asymptotically sharp, i.e. the

asymptotic quadratic risk is minimal. It means the adaptive estimation

procedure is efficient under some conditions on the scales (σj(S))1≤j≤n

which are satisfied in the case (1.2). Note that in Efromovich, 2007, Efro-

movich, Pinsker, 1996, an efficient adaptive procedure is constructed for

heteroscedastic regression when the scale coefficient is independent of S, i.e.

σj(S) = σj. In Galtchouk, Pergamenshchikov, 2005, for the model (1.1)

the asymptotic efficiency was proved under strong conditions on the scales

which are not satisfied in the case (1.2). Moreover in the cited papers the

efficiency was proved for the gaussian random variables (ξj)1≤j≤n that is

very restrictive for applications of proposed methods to practical problems.

In the paper we modify the risk by introducing into a additional supre-

mum with respect to a classe of unknown noise distributions like to Galtchouk,

Pergamenshchikov, 2006. This modification allow us to eliminate from the

risk dependence on the noise distribution. Moreover for this risk a efficient

procedure is robust with respect to changing of noise distributions.

It is well known to prove the asymptotic efficiency one has to show

that the asymptotic quadratic risk coincides with the lower bound which

is equal to the Pinsker constant. In the paper two problems are resolved:

in the first one an upper bound for the risk is obtained by making use of

the non-asymptotic oracle inequality from Galtchouk, Pergamenshchikov,
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2007, in the second one we prove that this upper bound coincides with

the Pinsker constant. Let us remind that the adaptive procedure proposed

in Galtchouk, Pergamenshchikov, 2007, is based on weighted mean-squares

estimates, where the weights are corresponding modifications of the Pinsker

weights for the homogene case (when σ1(S) = . . . = σn(S) = 1) relative to a

certain smoothness of the function S and this procedure chooses an estimator

best for the quadratic risk among these estimates. To obtain the Pinsker

constant for the model (1.1) one has to prove a sharp asymptotic lower

bound for the quadratic risk in the case when the noise variance depends on

the unknown regression function. This lower bound is obtained by making

use of an inequality of kind of the van Trees inequality (see, Gill, Levit,

1995). First we prove the inequality for a parametric regression with the

noise variance depending on the unknown regression (see Section 6) and

further we apply the inequality to the nonparametric regression by standard

reducing to a parametric case.

The paper is organized as follows. In Section 2 we construct a adaptive

estimation procedure. In Section 3 we formulate principal conditions. The

main result is given in Section 4. The upper bound for the quadratic risk is

given in Section 5. In Section 6 we find the lower bound for a parametric

model. In Section 7 we study the parametric family. In Section 8 we obtain

the lower bound for model (1.1). An appendix contains some technical

results.
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2 Adaptive procedure

In this section we describe the adaptive procedure proposed in [6]. We make

use of the standard trigonometric basis (φj)j≥1 in L2[0, 1], i.e.

φ1(x) = 1 , φj(x) =
√

2 Trj(2π[j/2]x) , j ≥ 2 , (2.1)

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for

odd j; [x] denotes the integer part of x. We remind that if n is odd then

the functions (φj)1≤j≤n are orthonormal with respect to the empirical inner

product generated by the sieve (xj)1≤j≤n in (1.1), i.e. for any 1 ≤ i, j ≤ n,

(φi , φj)n =
1

n

n
∑

l=1

φi(xl)φj(xl) = Krij ,

where Krij is Kronecker’s symbol. Thanks to this basis we pass to the

discrete Fourier transformation of model (1.1), i.e.

ϑ̂j,n = ϑj,n + (1/
√

n)ξj,n , (2.2)

where θ̂j,n = (Y, φj)n, θj,n = (S, φj)n and

ξj,n =
1√
n

n
∑

l=1

σl(S)ξlφj(xl) .

Here Y = (y1, . . . , yn)′ and S = (S(x1), . . . , S(xn))′. The prime denotes the

transposition.

We estimate the function S by the weighted least squares estimator

Ŝλ =

n
∑

j=1

λ(j)ϑ̂j,nφj , (2.3)
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where the weight vector λ = (λ(1), . . . , λ(n))′ belongs to some finite set Λ

from [0, 1]n with n ≥ 3. Here we make use of the weight family Λ introduced

in [6], i.e.

Λ = {λα , α ∈ Aε} , Aε = {1, . . . , k∗} × {t1, . . . , tm} , (2.4)

where k∗ = [1/
√

ε], ti = iε, m = [1/ε2] and ε = 1/ ln n.

For any α = (β, t) ∈ Aε we define the weight vector λα = (λα(1), . . . , λα(n))′

as

λα(j) = 1{1≤j≤j0}
+
(

1 − (j/ω(α))β
)

1{j0<j≤ω(α)} , (2.5)

where j0 = j0(α) = [ω(α)/ ln n], ω(α) = (Aβ t)1/(2β+1)n1/(2β+1) and

Aβ = (β + 1)(2β + 1)/(π2ββ) .

To find the optimal weights we choose the cost function equals to the pe-

nalized mean integrated squared error in which unknown parameters are

replaced by some estimators. The cost function is as follows

Jn(λ) =

n
∑

j=1

λ2(j)ϑ̂2
j,n − 2

n
∑

j=1

λ(j) ϑ̃j,n + ρP̂n(λ) , (2.6)

where

ϑ̃j,n = ϑ̂2
j,n − 1

n
ς̂n with ς̂n =

n
∑

j=ln+1

ϑ̂2
j,n (2.7)

and ln = [n1/3 + 1]. The penalty term we define as

P̂n(λ) =
|λ|2ς̂n

n
, |λ|2 =

n
∑

j=1

λ2(j) and ρ =
1

3 + lnγ n
.

for some γ > 0. Finally, we set

λ̂ = argminλ∈Λ Jn(λ) and Ŝ∗ = Ŝλ̂ . (2.8)
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The goal of this paper is to study asymptotic (n → ∞) properties of this

estimation procedure.

3 Conditions

First we impose some conditions on unknown function S in model (1.1).

Let Ck
per,1(R) be the set of 1-periodic k times differentiable R → R func-

tions. We assume that S belongs to the following set

W k
r = {f ∈ Ck

per,1(R) :

k
∑

j=0

‖f (j)‖2 ≤ r} , (3.1)

where ‖ · ‖ denotes the norm in L2[0, 1], i.e.

‖f‖2 =

∫ 1

0

f2(t)dt . (3.2)

Moreover, we suppose that r > 0 and k ≥ 1 are unknown parameters.

Note that, we can represent the set W k
r as an ellipse in L2[0, 1], i.e.

W k
r = {f ∈ L2[0, 1] :

∞
∑

j=1

ajϑ
2
j ≤ r} , (3.3)

where

ϑj = (f, φj) =

∫ 1

0

f(t)φj(t)dt (3.4)

and

aj =

k
∑

l=0

‖φ(l)
j ‖2 =

k
∑

i=0

(2π[j/2])2i . (3.5)

Here (φj)j≥1 is the trigonometric basis defined in (2.1).

Now we decribe the conditions on the scale coefficients (σj(S))j≥1.
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H1) σj(S) = g(xj , S) for some unknown function g : [0, 1]×L1[0, 1] → R+,

which is square integrable with respect to x such that

lim
n→∞

sup
S∈W k

r

∣

∣

∣

∣

∣

∣

n−1
n
∑

j=1

g2(xj, S) − ς(S)

∣

∣

∣

∣

∣

∣

= 0 , (3.6)

where ς(S) :=
∫ 1
0 g2(x, S)dx. Moreover,

g∗ = inf
0≤x≤1

inf
S∈W k

r

g2(x, S) > 0 (3.7)

and

sup
S∈W k

r

ς(S) < ∞ . (3.8)

H2) For any x ∈ [0, 1] the operator g2(x, ·) : C[0, 1] → R is differentiable

in the Fréchet sense for any fixed function f0 from C[0, 1] , i.e. for

any f from some vicinity of f0 in C[0, 1]

g2(x, f) = g2(x, f0) + Lx,f0
(f − f0) + Υ(x, f0, f) ,

where the Fréchet derivative Lx,f0
: C[0, 1] → R is a bounded linear

operator and the residual term Υ(x, f0, f) for each x ∈ [0, 1] satisfies

the following property

lim
|f−f0|∗→0

|Υ(x, f0, f)|
|f − f0|∗

= 0 ,

where |f |∗ = sup0≤t≤1 |f(t)|.

H3) There exists some positive constant C∗ such that for any function S

from C[0, 1] the operator Lx,S defined in condition H2) satisfies the

following inequality for any function f from C[0, 1]

|Lx,S(f)| ≤ C∗ (|S(x)f(x)| + |f |1 + ‖S‖ ‖f‖) , (3.9)

where |f |1 =
∫ 1

0
|f(t)|dt.
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H4) The function g2
0(·) = g2(·, S0) corresponding to S0 ≡ 0 is continuous

on the interval [0, 1]. Moreover,

lim
δ→0

sup
0≤x≤1

sup
|S|

∗
≤δ

|g2(x, S) − g2(x, S0)| = 0 .

Now we give some examples of functions satisfying conditions H1)-H4).

We fix some c0 > 0. Let G : [0, 1] × R → [c0 , +∞) be a function such

that

lim
δ→0

max
|u−v|≤δ

sup
y∈R

|G(u, y) − G(v, y)| = 0 . (3.10)

and

G′
∗ = sup

0≤x≤1
sup
y∈R

|Gy(x, y)|/|y| < ∞ . (3.11)

Moreover, let V : R → R+ be a continuously differentiable function such

that

v′∗ = sup
y∈R

|V̇ (y)|/(1 + |y|) < ∞ .

We set

g2(x, S) = G(x, S(x)) +

∫ 1

0

V (S(t))dt . (3.12)

In this case

ς(S) =

∫ 1

0

G(t, S(t))dt +

∫ 1

0

V (S(t))dt

and for any S ∈ W k
r

∣

∣

∣

∣

∣

∣

n−1
n
∑

j=1

g2(xj, S) − ς(S)

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

∫ xj

xj−1

∣

∣G(xj , S(xj)) − G(t, S(t))
∣

∣ dt

≤ ∆n +
G′

∗

n

∫ 1

0

|S(t)| |Ṡ(t)|dt ≤ ∆n +
G′

∗

n
r ,

where

∆n = max
|u−v|≤1/n

sup
y∈R

|G(u, y) − G(v, y)| .
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Therefore by condition (3.10) we obtain H1).

Moreover, the Fréchet derivative in this case is given by

Lx,S(f) = Gy(x, S(x))f(x) +

∫ 1

0

V̇ (S(t))f(t)dt .

It is easy to see that this operator satisfies the inequality (3.9) with

C∗ = G′
∗ + v′∗ .

For example, we can take in (3.12)

G(x, y) = c0 + c1x + c2y
2 and V (x) = c3x

2 (3.13)

with some coefficients c0 > 0, ci ≥ 0, i = 1, 2, 3. Therefore, we obtain the

function (1.2) if we put in (3.12)-(3.13) c3 = 0, i.e. V ≡ 0.

4 Main results

Denote by P∗ the family of unknown noise density. Remind that the noise

random variables (ξj)1≤j≤n are centered with unit variance and Eξ4
1 ≤ ξ∗,

where ξ∗ ≥ 3. For any estimate Ŝ we define the following quadratic risk

Rn(Ŝ, S) = sup
p∈P

∗

ES,p‖Ŝ − S‖2
n , (4.1)

where ES,p is the expectation with respect to the distribution PS,p of the

observations (y1, . . . , yn) with the fixed function S and the fixed density p

of random variables (ξj)1≤j≤n in model (1.1), ‖S‖2
n = (S, S)n.

In Galtchouk, Pergamenshchikov, 2007, we shown the following non-

asymptotic Oracle inequality for procedure (2.8).
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Theorem 4.1. Assume that in model (1.1) the function S belongs to W 1
r .

Then, for any odd n ≥ 3, any 0 < ρ < 1/3 and r > 0, the estimate Ŝ∗

satisfies the following oracle inequality

Rn(Ŝ∗, S) ≤ (1 + κ(ρ))min
λ∈Λ

Rn(Ŝλ, S) + n−1Bn(ρ) , (4.2)

where

κ(ρ) = (6ρ − 2ρ2)/(1 − 3ρ)

and the function Bn(ρ) is such that, for any δ > 0,

lim
n→∞

Bn(ρ)/nδ = 0 . (4.3)

Now we formulate the main asymptotic results. To this end for any

function S ∈ W k
r we set

γk(S) = Γ∗
k r1/(2k+1) (ς(S))2k/(2k+1) , (4.4)

where

Γ∗
k = (2k + 1)1/(2k+1) (k/(π (k + 1)))2k/(2k+1) .

It is well known (see, for example, Nussbaum, 1985) that for any function

S ∈ W k
r the optimal convergence rate is n2k/(2k+1).

Theorem 4.2. Assume that in model (1.1) the sequence (σj(S)) fulfils the

condition H1). Then the estimator Ŝ∗ from (2.8) satisfies the inequality

lim sup
n→∞

n2k/(2k+1) sup
S∈W k

r

Rn(Ŝ∗, S)/γk(S) ≤ 1 . (4.5)

The following result gives the sharp lower bound for risk (4.1) and show

that γk(S) is the Pinsker constant.
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Theorem 4.3. Assume that in model (1.1) the sequence (σj(S)) satisfies

the conditions H2)– H4). Then, for any estimate Ŝn, the risk Rn(Ŝn, S)

admits the following asymptotic lower bound

lim inf
n→∞

n2k/(2k+1) inf
Ŝn

sup
S∈W k

r

Rn(Ŝn, S)/γk(S) ≥ 1 . (4.6)

Remark 4.1. Note that in Galtchouk, Pergamenshchikov, 2005 an asymp-

totically efficient estimate was constructed and results similar to Theorems

4.2 and 4.3 were claimed for the model (1.1). In fact the upper bound is true

there under some additional condition on the smoothness of the function S,

i.e. on the parameter k. In the cited paper this additional condition is not

formulated since erroneous inequality (A.6). To avoid the use of this in-

equality we modify the estimating procedure by introducing the penalty term

ρ P̂n(λ) in the cost function (2.6). By this way we remove all additional

conditions on the smoothness parameter k.

5 Upper bound

In this section we prove Theorem 4.2. To this end we will make use of oracle

inequality (4.2). We have to find an estimator from the family (2.3)-(2.4) for

which we can show the upper bound (4.5). We start with the construction

of such an estimator. First we put

l̃n = inf{i ≥ 1 : iε ≥ r(S)} ∧ m and r(S) = r/ς(S) . (5.1)

Then we choose an index from the set Aε as

α̃ = (k, t̃n) ,
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where k is the parameter of the set W k
r and t̃n = l̃nε. Finally, we set

S̃ = Ŝλ̃ and λ̃ = λα̃ . (5.2)

Now we show the upper bound (4.5) for this estimator.

Theorem 5.1. Assume that condition H1) hold. Then

lim sup
n→∞

n2k/(2k+1) sup
S∈W k

r

Rn(S̃, S)/γk(S) ≤ 1 . (5.3)

Remark 5.1. Note that the estimator S̃ belongs to estimate family (2.3)-

(2.4), but we can’t use directly this estimator because the parameters k, r

and r(S) are unknown. We can use this upper bound only through the oracle

inequality (4.2) proved for procedure (2.8).

Proof. To prove the theorem we will adapt to the heteroscedastic case the

corresponding proof from Nussbaum, 1985.

First, from (2.3) we obtain that, for any p ∈ P∗,

ES,p ‖S̃ − S‖2
n =

n
∑

j=1

(1 − λ̃j)
2ϑ2

j,n +
1

n

n
∑

j=1

λ̃2
j ςj,n , (5.4)

where

ςj,n =
1

n

n
∑

l=1

σ2
l (S)φ2

j (xl) .

Setting now ω̃ = ω(α̃), j̃0 = [ω̃/ ln n], j̃1 = [ω̃ ln n] and

ςn =
1

n

n
∑

l=1

σ2
l (S) ,

we rewrite (5.4) as follows

ES,p ‖S̃−S‖2
n =

j̃1−1
∑

j=j̃0+1

(1 − λ̃j)
2ϑ2

j,n + ςn n−1
n
∑

j=1

λ̃2
j +∆1(n)+∆2(n) (5.5)

13



with

∆1(n) =

n
∑

j=j̃1

ϑ2
j,n and ∆2(n) = n−1

n
∑

j=1

λ̃2
j

(

ςj,n − ςn
)

.

Note that we have decomposed the first term in the right-hand of (5.4) into

the sum
j̃1−1
∑

j=j̃0+1

(1 − λ̃j)
2ϑ2

j,n + ∆1(n) .

This decomposition allows us to show that ∆1(n) is negligible and further

to approximate the first term by a similar term in which the coefficients ϑj,n

will be replaced by the Fourier coefficients ϑj of the function S.

Taking into account the definition of ω(α) in (2.5) we can bound ω̃ as

ω̃ ≥ (Ak)
1/(2k+1) n1/(2k+1) (ln n)−1/(2k+1) .

Therefore, by Lemma A.1 we obtain

lim
n→∞

sup
S∈W k

r

n2k/(2k+1) ∆1(n) = 0 .

Let us consider now the next term ∆2(n). We have

|∆2(n)| =

∣

∣

∣

∣

∣

∣

1

n2

n
∑

d=1

σ2
d

n
∑

j=1

λ̃2
j φj(xd)

∣

∣

∣

∣

∣

∣

≤ σ∗

n
sup

0≤x≤1

∣

∣

∣

∣

∣

∣

n
∑

j=1

λ̃2
j φj(x)

∣

∣

∣

∣

∣

∣

,

where φj(x) = φ2
j (x)−1. Now by Lemma A.2 and definition (2.5) we obtain

directly the same property for ∆2(n), i.e.

lim
n→∞

sup
S∈W k

r

n2k/(2k+1) |∆2(n)| = 0 .

Setting

γ̂k,n(S) = n2k/(2k+1)
j̃1−1
∑

j=j̃0

(1 − λ̃j)
2ϑ2

j + ςnn−1/(2k+1)
n
∑

j=1

λ̃2
j

14



and applying the well-known inequality

(a + b)2 ≤ (1 + δ)a2 + (1 + 1/δ)b2

to the first term in the right-hand side of inequality (5.5) we obtain that,

for any δ > 0 and for any p ∈ P∗,

ES,p ‖S̃ − S‖2
n ≤ (1 + δ) γ̂k,n(S)n−2k/(2k+1)

+ ∆1(n) + ∆2(n) + (1 + 1/δ)∆3(n) , (5.6)

where

∆3(n) =

j̃1−1
∑

j=j̃0+1

(ϑj,n − ϑj)
2 .

Taking into account that k ≥ 1 and that

j̃1 ≤ (Ak)
1/(2k+1) n1/(2k+1)(ln n)(2k+2)/(2k+1) ,

we can show through Lemma A.3 that

lim
n→∞

sup
S∈W k

r

n2k/(2k+1) ∆3(n) = 0 .

Therefore inequality (5.6) yields

lim sup
n→∞

n2k/(2k+1) sup
S∈W k

r

Rn(S̃, S)/γk(S) ≤ lim sup
n→∞

sup
S∈W k

r

γ̂k,n(S)/γk(S)

and to prove (5.3) it suffices to show that

lim sup
n→∞

sup
S∈W k

r

γ̂k,n(S)/γk(S) ≤ 1 . (5.7)

First it should be noted that definition (5.1) and inequalities (3.7)-(3.8)

imply directly

lim
n→∞

sup
S∈W k

r

∣

∣t̃n/r(S) − 1
∣

∣ = 0 .
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Moreover, by the definition of (λ̃j)1≤j≤n for sufficiently large n for which

t̃n ≥ r(S) we can calculate the following supremum

sup
j≥1

n2k/(2k+1)(1 − λ̃j)
2/(πj)2k = π−2k(Ak t̃n)−2k/(2k+1)

≤ π−2k(Akr(S))−2k/(2k+1) .

Therefore, taking into account the definition of the coefficients (aj)j≥1 in

(3.5) we obtain that

lim sup
n→∞

n2k/(2k+1) sup
S∈W k

r

sup
j≥j̃0

π2k(Akr(S))2k/(2k+1)(1 − λ̃j)
2/aj ≤ 1 .

Moreover, by definition (2.5) we get that

lim
n→∞

sup
S∈W k

r

∣

∣

∣

∣

∣

∣

n−1/(2k+1)
n
∑

j=1

λ̃2
j − (Akr(S))1/(2k+1)

∫ 1

0

(1 − zk)2dz

∣

∣

∣

∣

∣

∣

= 0 .

Taking into account definition of W k
r in (3.3) and condition (3.6) we obtain

inequality (5.7). Hence Theorem 5.1.

Now Theorem 4.1 and Theorem 5.1 imply Theorem 4.2.

6 Lower bound for parametric heteroscedastic re-

gression models

Let (Rn,B(Rn),Pϑ, ϑ ∈ Θ ⊆ R
l) be a statistical model relative to the ob-

servations (yj)1≤j≤n governed by the regression equation

yj = Sϑ(xj) + σj(ϑ) ξj , (6.1)

where ξ1, . . . , ξn are i.i.d. N (0, 1) random variables, ϑ = (ϑ1, . . . , ϑl)
′ is a

unknown parameter vector, Sϑ(x) is a unknown (or known) function and
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σj(ϑ) = g(xj , Sϑ), with the function g(x, S) defined in condition H1). As-

sume that a prior distribution µϑ of the parameter ϑ in R
l is defined by the

density Φ(ϑ) of the following form

Φ(ϑ) = Φ(ϑ1, . . . , ϑl) =

l
∏

i=1

ϕi(ϑi) ,

where ϕi is a continuously differentiable bounded density on R with

Ii =

∫

R

(ϕ̇i(z))2

ϕi(z)
dz < ∞ .

Let λ(·) be a continuously differentiable R
l → R function such that, for any

1 ≤ i ≤ l,

lim
|θi|→∞

λ(ϑ)ϕi(ϑi) = 0 and

∫

Rl

∣

∣λ′
i(ϑ)

∣

∣ Φ(ϑ)dϑ < ∞ , (6.2)

where

λ′
i(ϑ) = (∂/∂ϑi)λ(ϑ) .

Let λ̂n be an estimator of λ(ϑ) based on observations (yj)1≤j≤n. For any

B(Rn × R
l) - mesurable integrable function G(x, ϑ), x ∈ R

n, ϑ ∈ R
l, we set

ẼG(Y, ϑ) =

∫

Rl

Eϑ G(Y, ϑ)Φ(ϑ) dϑ ,

where Eϑ is the expectation with respect to the distribution Pϑ of the vector

Y = (y1, . . . , yn). Note that in this case

Eϑ G(Y, ϑ) =

∫

R
n

G(v, ϑ) f(v, ϑ) dv ,

where

f(v, ϑ) =
n
∏

j=1

1√
2πσj(ϑ)

exp

{

− (vj − Sϑ(xj))
2

2σ2
j (ϑ)

}

. (6.3)

We prove the following result.
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Theorem 6.1. Assume that conditions H1)−H2) hold. Moreover, assume

that the function Sϑ(·) is uniformly over 0 ≤ x ≤ 1 differentiable in C[0, 1]

with respect to ϑi, 1 ≤ i ≤ l, i.e. for any 1 ≤ i ≤ l there exists a function

S′
ϑ,i ∈ C[0, 1] such that

lim
h→0

max
0≤x≤1

∣

∣

∣

(

Sϑ+hei
(x) − Sϑ(x) − S′

ϑ,i(x)h
)

/h
∣

∣

∣
= 0 , (6.4)

where ei = (0, ...., 1, ..., 0)′ , all coordinates are 0, except the ith equals to 1 .

Then for any square integrable estimator λ̂n of λ(ϑ) and any 1 ≤ i ≤ l,

Ẽ(λ̂n − λ)2 ≥ Λ2
i /(Fi + Bi + Ii) , (6.5)

where Λi =
∫

Rl λ′
i(ϑ)Φ(ϑ)dϑ, Fi =

∑n
j=1

∫

R
l (S′

ϑ,i(xj)/σj(ϑ))2 Φ(ϑ)dϑ and

Bi =
1

2

n
∑

j=1

∫

R
l

L̃2
i (xj, Sϑ)

σ4
j (Sϑ)

Φ(ϑ)dϑ ,

L̃i(x, ϑ) = Lx,Sϑ
(S′

ϑ,i), the operator Lx,S is defined in the condition H2).

Proof. We put

̺i(v, ϑ) =
1

f(v, ϑ)Φ(ϑ)

∂

∂ϑi
(f(v, ϑ)Φ(ϑ)) .

Note that due to condition (3.7) the density (6.3) is bounded, i.e.

f(v, ϑ) ≤ (2πg∗)
−n/2 .

So through (6.2) we obtain that

lim
|ϑi|→∞

λ(ϑ) f(v, ϑ)ϕi(ϑi) = 0 .

Therefore, integrating by parts yields

Ẽ(λ̂n − λ)̺i =

∫

R
n+l

(λ̂n(v) − λ(ϑ))
∂

∂ϑi
(f(v, ϑ)Φ(ϑ)) dϑdv

=

∫

R
l

(

∂

∂ϑi
λ(ϑ)

)

Φ(ϑ)

(∫

R
n

f(v, ϑ)dv

)

dϑ = Λi .
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Now the Bouniakovskii-Cauchy-Schwarz inequality gives the following lower

bound

Ẽ(λ̂n − λ)2 ≥ Λ2
i /Ẽ̺2

i .

To estimate the denominator in the last ratio, note that

̺i(v, ϑ) =
1

f(v, ϑ)

∂

∂ϑi
f(v, ϑ) +

ϕ̇i(ϑi)

ϕi(ϑi)

= f̃i(v, ϑ) +
ϕ̇i(ϑi)

ϕi(ϑi)
,

where

f̃i(v, ϑ) = (∂/∂ϑi) ln f(v, ϑ) .

From (6.1) it follows that

f̃i(v, ϑ) =

n
∑

j=1

(ξ2
j − 1)

1

2σ2
j (ϑ)

∂

∂ϑi
σ2

j (ϑ) +

n
∑

j=1

ξj

S′
i(xj)

σj(ϑ)
.

Moreover, conditions H2) and (6.4) imply

(∂/∂ϑi)σ2
j (ϑ) = ∂/∂ϑi) g2(xj, Sϑ) = L̃i(xj, ϑ)

from which it follows

Ẽ
(

f̃i(Y, ϑ)
)2

= Fi + Bi .

This implies inequality (6.5). Hence Theorem 6.1.

7 Parametric kernel function family

In this section we define and study some special parametric kernel functions

family which will be used to prove the sharp lower bound (4.6).
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Let us begin by kernel functions. We fix η > 0 and we set

Iη(x) = η−1

∫

R

1(|u|≤1−η) V

(

u − x

η

)

du , (7.1)

where 1A is the indicator of a set A, the kernel V ∈ C∞(R) is such that

V (u) = 0 for |u| ≥ 1 and

∫ 1

−1
V (u) du = 1 .

It is easy to see that the function Iη(x) possesses the properties :

0 ≤ Iη ≤ 1 , Iη(x) = 1 for |x| ≤ 1 − 2η and

Iη(x) = 0 for |x| ≥ 1 .

Moreover, for any c > 0 and m ≥ 1

lim
η→0

sup
f : |f |

∗
≤c

∣

∣

∣

∣

∫

R

f(x)Im
η (x)dx −

∫ 1

−1
f(x)dx

∣

∣

∣

∣

= 0 , (7.2)

where |f |∗ = sup−1≤x≤1 |f(x)|.

We divide the interval [0, 1] into M equal parts of length 2h and on each

of them we construct a kernel-type function that was used in Ibragimov,

Hasminskii, 1981, to obtain the lower bound for estimation at a fixed point.

A such constructed on each interval function equals to zero at the extrem-

ities together with all derivatives. It means that Fourier partial sums with

respect to the trigonometric basis in L2[−1, 1] give a natural parametric

approximation to the function on each interval.

Let (ej)j≥1 be the trigonometric basis in L2[−1, 1], i.e.

e1 = 1/
√

2 , ej(x) = Trj (π[j/2]x) , j ≥ 2 , (7.3)

where Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd j.
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Now, for any array z = {(zm,j)1≤m≤Mn , 1≤j≤Nn
} we define the following

function

Sz,n(x) =

Mn
∑

m=1

Nn
∑

j=1

zm,j Dm,j(x) , (7.4)

where Dm,j(x) = ej (vm(x)) Iη (vm(x)),

vm(x) = (x − x̃m)/hn , x̃m = 2mhn and Mn = [1/(2hn)] − 1 .

We assume that the sequences (Nn)n≥1 and (hn)n≥1, satisfy the following

conditions.

A1) The sequence Nn → ∞ as n → ∞ and for any p > 0

lim
n→∞

Np
n/n = 0 .

Moreover, there exist 0 < δ1 < 1 and δ2 > 0 such that

hn = O(n−δ1) and h−1
n = O(nδ2) as n → ∞ .

To define a prior distribution on the family of arrays, we choose the following

random array ϑ = {(ϑm,j)1≤m≤Mn , 1≤j≤Nn
} with

ϑm,j = tm,j ζm,j , (7.5)

where (ζm,j) are i.i.d. N (0, 1) random variables and (tm,j)1≤m≤Mn , 1≤j≤Nn

are some nonrandom positive coefficients. We make use of gaussian variables

since they possess the minimal Fisher information and therefore maximize

the lower bound (6.5). We set

t∗n = max
1≤m≤Mn

Nn
∑

j=1

tm,j . (7.6)
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We assume that the coefficients (tm,j)1≤m≤Mn , 1≤j≤Nn
satisfy the following

conditions.

A2) There exists a sequence of positive numbers (dn)n≥1 such that

lim
n→∞

dn

h2k−1
n

Mn
∑

m=1

Nn
∑

j=1

t2m,j j2(k−1) = 0 , lim
n→∞

√

dn t∗n = 0 , (7.7)

moreover, for any p > 0,

lim
n→∞

np exp{−dn/2} = 0 .

A3) For some 0 < ε < 1

lim sup
n→∞

1

h2k−1
n

Mn
∑

m=1

Nn
∑

j=1

t2m,j j2k ≤ (1 − ε)r

(

2

π

)2k

.

A4) There exists ǫ0 > 0 such that

lim
n→∞

1

h
4k−2+ǫ0
n

Mn
∑

m=1

Nn
∑

j=1

t4m,j j4k = 0 .

Proposition 7.1. Let conditions A1)–A2). Then, for any p > 0 and for

any δ > 0,

lim
n→∞

np max
0≤l≤k−1

P
(

‖S(l)
ϑ,n‖ > δ

)

= 0 .

Proof. First note that for 0 ≤ x ≤ 1 we can represent the lth derivative as

S
(l)
ϑ,n(x) =

1

hl

Mn
∑

m=1

l
∑

i=0

(

l
i

)

I(l−i)
η (vm(x))Qi,m(vm(x)) , (7.8)
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where

Qi,m(v) =

Nn
∑

j=1

ϑm,je
(i)
j (v) .

Therefore

‖S(l)
ϑ,n‖2 =

1

h2l−1
n

Mn
∑

m=1

∫ 1

−1

(

l
∑

i=0

(

l
i

)

I(l−i)
η (v)Qi,m(v)

)2

dv

and by the Bounyakovskii-Cauchy-Schwarz inequality we obtain that

‖S(l)
ϑ,n‖2 ≤ C∗(l, η)

h2l−1
n

l
∑

i=0

Qi,m (7.9)

with C∗(l, η) = max−1≤v≤1

∑l
i=0

(

(

l
i

)

I(l−i)
η (v)

)2
and

Qi,m =
Mn
∑

m=1

∫ 1

−1

Q2
i,m(v) dv .

Now we show that for any 0 ≤ i ≤ k − 1 and δ > 0

lim
n→∞

np P
(

Qi,m > δh2k−1
n

)

= 0 . (7.10)

To that end we introduce the following set

Ξn = { max
1≤m≤Mn

max
1≤j≤N

ζ2
m,j ≤ dn} , (7.11)

where the sequence (dn)n≥1 is given in condition A2). Therefore, taking into

account that

∫ 1

−1

Q2
i,m(v) dv =

Nn
∑

j=1

ϑ2
m,j

∫ 1

−1

(e
(i)
j (v))2 dv

≤
(π

2

)2i
Nn
∑

j=1

t2m,j j2iζ2
m,j ,
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the function Qi,m can be estimated on the set Ξn as

Qi,m ≤
(π

2

)2i
dn

Mn
∑

m=1

Nn
∑

j=1

t2m,j j2i

and by (7.7) we get, for any δ > 0 and sufficiently large n,

P
(

Qi,m > δh2k−1
n

)

≤ P
(

Ξc
n

)

.

Moreover, for sufficiently large n

P
(

Ξc
n

)

≤ Mn Nn e−dn/2 .

Therefore, conditions A1) and (7.7) imply

lim sup
n→∞

np P
(

Ξc
n

)

= 0 , (7.12)

for any p > 0. Hence Proposition 7.1.

Proposition 7.2. Let conditions A1)–A4). Then, for any p > 0,

lim
n→∞

np P(Sϑ,n /∈ W k
r ) = 0 .

Proof. First of all we prove that for ε from condition A3)

lim
n→∞

np P
(

‖S(k)
ϑ,n‖ >

√

(1 − ε/4)r
)

= 0 . (7.13)

Indeed, putting in (7.8) l = k we can represent the kth derivative of Sϑ,n as

follows

S
(k)
ϑ,n(x) = Ŝk(x) + Sk(x) (7.14)

with

Ŝk(x) =
1

hk

Mn
∑

m=1

k−1
∑

i=0

(

k
i

)

I(k−i)
η (vm(x))Qi,m(vm(x))
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and

Sk(x) =
1

hk

Mn
∑

m=1

Iη(vm(x))Qk,m(vm(x)) .

First, note that, we can estimate the norm of Ŝk(x) by the same way as in

inequality (7.9), i.e.

‖Ŝk‖2 ≤ C∗(k, η)

h2k−1
n

k−1
∑

i=0

Qi,m .

By making use of (7.10) we obtain that, for any p > 0 and for any δ > 0,

lim
n→∞

np P
(

‖Ŝk‖ > δ
)

= 0 . (7.15)

Let us consider now the last term in (7.14). Taking into account that

0 ≤ Iη(v) ≤ 1 we get

‖Sk‖2 =
1

h2k−1
n

Mn
∑

m=1

∫ 1

−1

I2
η (v)Q2

k,m(v)dv

≤
(π

2

)2k 1

h2k−1
n

Mn
∑

m=1

Nn
∑

j=1

t2m,j j2k ζ2
m,j .

Therefore from condition A3) we get for sufficiently large n

‖Sk‖2 ≤ (1 − ε/2)r +
(π

2

)2k
Mn
∑

m=1

ζm := (1 − ε/2)r +
(π

2

)2k
Yn

with

ζm =
1

h2k−1
n

Nn
∑

j=1

t2m,j j2k ζ̃m,j and ζ̃m,j = ζ2
m,j − 1 .

We show that for any p > 0 and for any δ > 0

lim
n→∞

np P (|Yn| > δ) = 0 . (7.16)

Indeed, by the Chebyshev inequality for any ι > 0

P (|Yn| > δ) ≤ E (Yn)2ι /δ2ι . (7.17)
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Note now that according to the Burkholder-Davis-Gundy inequality for any

ι > 1 there exists a constant B∗(ι) > 0 such that

E (Yn)2ι ≤ B∗(ι)E





Mn
∑

m=1

ζ
2

m





ι

.

Moreover, by putting

ζ̃∗ = max
1≤m≤Mn

max
1≤j≤Nn

ζ̃2
m,j

we obtain that

ζ
2

m ≤ Nn

h4k−2
n

Nn
∑

j=1

t4m,j j4k ζ̃∗ .

Therefore, by condition A4) for sufficiently large n

E (Yn)2ι ≤ B∗(ι)N ι
n hιǫ0

n E ζ̃ι
∗

≤ B∗(ι)E (ζ2 − 1)2ι MnN ι+1
n hιǫ0

n ,

where ζ ∼ N (0, 1). Taking into account here condition A1) we obtain for

sufficiently large n

E (Yn)2ι ≤ n−δ1 (ιǫ0−2) .

Thus, choosing in (7.17)

ι > p/(ǫ0δ1) + 2/ǫ0

we obtain limiting equality (7.16) which together with (7.14)-(7.15) implies

(7.13). Now it is easy to deduce that Proposition 7.1 yields Proposition 7.2.

Proposition 7.3. Let conditions A1)–A4). Then, for any p > 0,

lim
n→∞

np E ‖Sϑ,n‖2
(

1{Sϑ,n /∈W k
r
} + 1Ξc

n

)

= 0 .
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Proof. First of all, we remind that due to condition A2)

lim
n→∞

Mn
∑

m=1

Nn
∑

j=1

t2m,j ≤ lim
n→∞

dn

h2k−1
n

Mn
∑

m=1

Nn
∑

j=1

t2m,j j2(k−1) = 0 .

Therefore, taking into account that

‖Sϑ,n‖2 ≤ hn

Mn
∑

m=1

Nn
∑

j=1

t2m,jζ
2
m,j (7.18)

we obtain, for sufficiently large n,

E ‖Sϑ,n‖2
(

1{Sϑ,n /∈W k
r
} + 1Ξc

n

)

≤ max
m,j

E ζ2
m,j

(

1{Sϑ,n /∈W k
r
} + 1Ξc

n

)

.

Moreover, for any 1 ≤ m ≤ Mn and 1 ≤ j ≤ Nn, we estimate the last term

as

E ζ2
m,j

(

1{Sϑ,n /∈W k
r
} + 1Ξc

n

)

≤ nP(Sϑ,n /∈ W k
r )

+ nP(Ξc
n) + 2E ζ2 1{ζ2≥n} ,

where ζ ∼ N (0, 1). By applying now Proposition 7.2 and limit (7.12) we

obtain Proposition 7.3.

Proposition 7.4. Let conditions A1)–A4). Then for any function g satis-

fying conditions (3.7) and H4)

lim
n→∞

sup
0≤x≤1

E
∣

∣ g−2(x, Sϑ,n) − g−2
0 (x)

∣

∣ = 0 .

Proof. First, note that on the set Ξ the random function Sϑ,n is uniformly

bounded, i.e.

|Sϑ,n|∗ = sup
0≤x≤1

|Sϑ,n(x)| ≤
√

dn t∗n , (7.19)
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where the coefficient t∗n is defined in (7.6). Therefore by condition H1) we

obtain

E
∣

∣g−2(x, Sϑ,n) − g−2
0 (x)

∣

∣ ≤ max
|S|

∗
≤
√

dn t∗
n

|g−2(x, S)−g−2
0 (x)|+(2/g∗)P

(

Ξc
n

)

.

Conditions A2) and H4) together with the limit relation (7.12) imply Propo-

sition 7.4.

8 Lower bound

In this section we prove Theorem 4.3. To that end we establish the following

auxiliary result.

Lemma 8.1. For any 0 < δ < 1 and any estimate Ŝn of S ∈ W k
r ,

‖Ŝn − S‖2
n ≥ (1 − δ)‖Tn(Ŝ) − S‖2 − (δ−1 − 1) r/n2 ,

where Tn(Ŝ)(x) =
∑n

k=1 Ŝn(xk)1(xk−1,xk](x).

Proof of this Lemma is given in Appendix A.2.

This Lemma implies that to prove (4.6), it suffices to show the same

asymptotic inequality for the integral risk, i.e.

lim inf
n→∞

inf
Ŝn

n2k/(2k+1) R0(Ŝn) ≥ 1 , (8.1)

where

R0(Ŝn) = sup
S∈W k

r

ES,q ‖Ŝn − S‖2/γk(S) ,

q is the gaussian (0, 1) density of the noise (ξj) and ‖S‖2 =
∫ 1

0
S2(x)dx.
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To show (8.1) we will make use of the sequence of random functions

(Sϑ,n)n≥1 defined in (7.4)-(7.5) with the coefficients (tm,j) satisfying condi-

tions A1)–A4) which will be chosen later.

For any estimator Ŝn, we denote by Ŝ0
n its projection onto W k

r , i.e.

Ŝ0
n = PrW k

r
(Ŝn). Since W k

r is a convex set, we get that

‖Ŝn − S‖2 ≥ ‖Ŝ0
n − S‖2 .

Therefore, we can write that

R0(Ŝn) ≥
∫

{z:Sz,n∈W k
r
}∩Ξn

ESz,n,q‖Ŝ0
n − Sz,n‖2

γk(Sz,n)
µϑ(dz) .

Here µϑ denotes the distribution of ϑ in R
l with l = MnNn. We recall also

that the set Ξn is defined in (7.11). Moreover, taking into account here

inequality (7.19) we estimate the risk R0(Ŝn) from below as

R0(Ŝn) ≥ 1

γ∗
n

∫

{z:Sz,n∈W k
r
}∩Ξn

ESz,n,q‖Ŝ0
n − Sz,n‖2 µϑ(dz)

with

γ∗
n = sup

|S|
∗
≤
√

dnt∗
n

γk(S) . (8.2)

Let us introduce now the corresponding Bayes risk

R̃0(Ŝ
0
n) =

∫

R
l

ESz,n,q‖Ŝ0
n − Sz,n‖2 µϑ(dz) . (8.3)

Now through this risk we rewrite the lower bound for R0(Ŝn) as

R0(Ŝ
0
n) ≥ R̃0(Ŝ

0
n)/γ∗

n − 2̟n/γ∗
n (8.4)

with

̟n = E(1{Sϑ,n /∈W k
r
} + 1Ξc

n
)(r + ‖Sϑ,n‖2) .
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First of all, we reduce the nonparametric problem to parametric one. For

this we replace the functions Ŝ0
n and S by their Fourier series with respect

to the basis

ẽm,i(x) = (1/
√

h) ei (vm(x)) 1(|vm(x)|≤1) .

By making use of this basis we can estimate the norm ‖Ŝ0
n − Sz,n‖2 from

below as

‖Ŝ0
n − Sz,n‖2 ≥

Mn
∑

m=1

Nn
∑

j=1

(λ̂m,j − λm,j(z))2 ,

where

λ̂m,j =

∫ 1

0
Ŝ0

n(x)ẽm,j(x)dx and λm,j(z) =

∫ 1

0
Sz,n(x)ẽm,j(x) dx .

Moreover, from definition (7.4) one gets

λm,j(z) =
√

h

Nn
∑

i=1

zm,i

∫ 1

−1
ei(u)ej(u)Iη(u) du .

It is easy to see that the functions λm,j(·) satisfy condition (6.2) for gaussian

prior densities. In this case (see the definition in (6.5)) we have

Λm,j = (∂/∂zm,j)λm,j(z) =
√

hej(Iη) ,

where

ej(f) =

∫ 1

−1
e2
j (v) f(v) dv . (8.5)

Now to obtain a lower bound for the Bayes risk R̃0(Ŝ
0
n) we make use of

Theorem 6.1 which implies that

R̃0(Ŝ
0
n) ≥

Mn
∑

m=1

Nn
∑

j=1

he2
j(Iη)

Fm,j + Bm,j + t−2
m,j

, (8.6)
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where Fm,j =
∑n

i=1 D2
m,j(xi)E g−2(xi, Sϑ,n) and

Bm,j =
1

2

n
∑

i=1

E

(

L̃m,j(xi, Sϑ,n)

g2(xi, Sϑ,n)

)2

with L̃m,j(x, S) = Lx,S

(

Dm,j

)

. In the appendix we show that

lim
n→∞

sup
1≤m≤Mn

sup
1≤j≤Nn

∣

∣Fm,j/(nh) − ej(I
2
η ) g−2

0 (x̃m)
∣

∣ = 0 (8.7)

and

lim
n→∞

sup
1≤m≤Mn

sup
1≤j≤Nn

∣

∣Bm,j/(nh)
∣

∣ = 0 . (8.8)

This means that, for any ν > 0 and for sufficiently large n,

sup
1≤m≤Mn

sup
1≤j≤Nn

Fm,j + Bm,j + t−2
m,j

nhej(I2
η )g−2

0 (x̃m) + t−2
m,j

≤ 1 + ν .

Therefore, if we denote in (8.6)

κ2
m,j = nh g−2

0 (x̃m) t2m,j and τj(η, y) = e2
j (Iη) y/(e2

j (I
2
η )y + 1)

we obtain that, for sufficiently large n,

n2k/(2k+1)R̃0(Ŝ
0
n) ≥ 1

1 + ν
n−1/(2k+1)

Mn
∑

m=1

g2
0(x̃m)

Nn
∑

j=1

τj(η, κ2
m,j) .

In the appendix we show that

lim
η→0

sup
N≥1

sup
(y1,...,yN )∈R

N
+

∣

∣

∣

∣

∣

∣

N
∑

j=1

τj(η, yj)/
N
∑

j=1

τ(yj) − 1

∣

∣

∣

∣

∣

∣

= 0 , (8.9)

where

τ(y) = y/(y + 1) .

Therefore we can write that, for sufficiently large n,

n
2k

2k+1 R̃0(Ŝ
0
n) ≥ 1 − ν

1 + ν
n− 1

2k+1

Mn
∑

m=1

g2
0(x̃m)JNn

(κ2
m,1, . . . , κ

2
m,Nn

) , (8.10)
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where

JN (y1, . . . , yN ) =

N
∑

j=1

τ(yj) .

Obviously, to obtain a ”good” lower bound for the risk R̃0(Ŝ
0
n) one needs

to maximize the right-hand side of inequality (8.10). Hence we choose the

coefficients (κ2
m,j) by maximization of the function JN , i.e.

max
y1,...,yN

JN (y1, . . . , yN ) subject to

N
∑

j=1

yjj
2k ≤ R .

The parameter R > 0 will be chosen later to satisfy condition A3). By

the Lagrange multipliers method it is easy to find that the solution of this

problem is

y∗j (R) = (R +

N
∑

j=1

j2k) j−k/

N
∑

j=1

jk − 1 for 1 ≤ j ≤ N . (8.11)

To obtain a positive solution in (8.11) we need to impose the following

condition

R ≥ Nk
N
∑

j=1

jk −
N
∑

j=1

j2k . (8.12)

Moreover, from condition A3) we obtain that

R ≤ 22k+1(1 − ε)r n h2k+1
n /(π2k ĝ0) := R∗

n , (8.13)

where

ĝ0 = 2hn

Mn
∑

m=1

g2
0(x̃m) .

Note that by condition H4) the function g0(·) = g(·, S0) is continuous on

the interval [0, 1], therefore

lim
n→∞

ĝ0 =

∫ 1

0

g2(x, S0)dx = ς(S0) (8.14)
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with S0 ≡ 0.

Now we have to choose the sequence (hn). Note that if we put in (7.5)

tm,j = (g0(x̃m)/
√

nhn)
√

y∗j (R) i.e. κm,j = y∗j (R) , (8.15)

we can rewrite inequality (8.10) as

n
2k

2k+1 R̃0(Ŝ
0
n) ≥ (1 − ν)

(1 + ν)

ĝ0J
∗
Nn

(R)

2hnn
1

2k+1

, (8.16)

where

J∗
N (R) = N −





N
∑

j=1

jk





2

/(R +
N
∑

j=1

j2k) .

It is clear that

k2/(k + 1)2 ≤ lim inf
N→∞

inf
R>0

J∗
N (R)/N ≤ lim sup

N→∞
sup
R>0

J∗
N (R)/N ≤ 1 .

Therefore to obtain a positive finite asymptotic lower bound in (8.16) we

have to take the parameter hn as

hn = h∗n
−1/(2k+1)Nn (8.17)

with some positive coefficient h∗. Moreover, conditions (8.12)-(8.13) imply

that

(1 − ε)r
22k+1

π2k

1

ĝ0

h2k+1
∗ ≥ 1

Nk+1
n

Nn
∑

j=1

jk − 1

N2k+1
n

Nn
∑

j=1

j2k .

Taking here limit as n → ∞ thanks to asymptotic equality (8.14), we obtain

the following condition on h∗

h∗ ≥ (υ∗
ε)

1/(2k+1) , (8.18)

where

υ∗
ε =

k

c∗ε(k + 1)(2k + 1)
and c∗ε =

22k+1(1 − ε)r

π2kς(S0)
.
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To maximize the function J∗
Nn

(R) at the right-hand side of inequality (8.16)

we take R = R∗
n defined in (8.13). Therefore we obtain that

lim inf
n→∞

inf
Ŝ0

n

n2k/(2k+1)R̃0(Ŝ
0
n) ≥ (ς(S0)/2)F (h∗) , (8.19)

where

F (x) =
1

x
− 2k + 1

(k + 1)2(c∗ε(2k + 1)x2k+2 + x)
.

Taking into account that

F ′(x) = − (c∗ε(2k + 1)(k + 1)x2k+1 − k)2

(k + 1)2(c∗ε(2k + 1)x2k+2 + x)2
≤ 0

we find that

max
h
∗
≥(υ∗

ε
)1/(2k+1)

F (h∗) = F ((υ∗
ε )1/(2k+1)) = (k/(k + 1))(υ∗

ε )−1/(2k+1) .

This means that to obtain in (8.19) the maximal lower bound we have to

take in (8.17)

h∗ = (υ∗
ε)

1/(2k+1) . (8.20)

Therefore, inequality (8.19) implies

lim inf
n→∞

inf
Ŝ0

n

n2k/(2k+1)R̃0(Ŝ
0
n) ≥ (1 − ε)1/(2k+1) γk(S0) , (8.21)

where the function γk(S0) is defined in (4.4) for S0 ≡ 0.

Now to end the definition of the sequence of the random functions (Sϑ,n)

defined by (7.4) and (7.5) we have to define the sequence (Nn). We remind

that we make use of the sequence (Sϑ,n) with the coefficients (tm,j) con-

structed in (8.15) for R = R∗
n given in (8.13) and for the sequence hn given

by (8.17) and (8.20) for some fixed arbitrary 0 < ε < 1.
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We will choose the sequence (Nn) to satisfy conditions A1)–A4). We can

take, for example Nn = [ln4 n]+1. Then condition A1) is trivial. Moreover,

taking into account that in this case

R∗
n =

22k+1(1 − ε)r

π2kĝ0

υ∗
εN

2k+1
n =

ς(S0)

ĝ0

k

(k + 1)(2k + 1)
N2k+1

n

we find thanks to convergence (8.14)

lim
n→∞

(R∗
n +

Nn
∑

j=1

j2k)/(Nk
n

Nn
∑

j=1

jk) = 1 .

Therefore, solution (8.11) for sufficiently large n satifies the following in-

equality

max
1≤j≤Nn

y∗j (R
∗
n) jk ≤ 2Nk

n .

Now it is easy to check conditions A2) with dn =
√

Nn and A4) for arbitrary

0 < ǫ0 < 1. As to condition A3), note that by definition of tm,j in (8.15) we

have

1

h2k−1
n

Mn
∑

m=1

Nn
∑

j=1

t2m,j j2k =
1

2nh2k+1
n

ĝ0

Nn
∑

j=1

y∗j (R
∗
n) j2k

=
R∗

nĝ0

N2k+1
n 2υ∗

ε

= (1 − ε)r

(

2

π

)2k

.

Hence condition A3).

Therefore Propositions 7.2-7.3 and limit (7.12) imply that for any p > 0

lim
n→∞

np ̟n = 0 .

Moreover, by condition H4) the sequence γ∗
n goes to γk(S0) as n → ∞.

Therefore, from this, (8.21) and (8.4) we get for any 0 < ε < 1

lim inf
n→∞

inf
Ŝn

n2k/(2k+1) R0(Ŝn) ≥ (1 − ε)1/(2k+1) .

Limiting here ε → 0 implies inequality (8.1). Hence Theorem 4.3.
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9 Appendix

A.1 Properties of trigonometric basis

Lemma A.1. For any function S ∈ W k
r ,

sup
n≥1

sup
1≤m≤n−1

m2k





n
∑

j=m+1

θ2
j,n



 ≤ 4r

π2(k−1)
. (A.1)

Lemma A.2. For any m ≥ 0,

sup
N≥2

sup
x∈[0,1]

N−m

∣

∣

∣

∣

∣

N
∑

l=2

lmφl(x)

∣

∣

∣

∣

∣

≤ 2m , (A.2)

where φl(x) = φ2
l (x) − 1.

Proofs of Lemma A.1 and Lemma A.2 are given in [6].

Lemma A.3. Let θj,n and θj be the Fourier coefficients defined in (2.2) and

(3.4) respectively. Then, for 1 ≤ j ≤ n and n ≥ 2,

sup
S∈W 1

r

|θj,n − θj| ≤ 2π
√

r j/n . (A.3)

Proof. Indeed, we have

|θj,n − θj| =

∣

∣

∣

∣

∣

n
∑

l=1

∫ xl

xl−1

(S(xl)φj(xl) − S(x)φj(x)) dx

∣

∣

∣

∣

∣

≤ n−1
n
∑

l=1

∫ xl

xl−1

(

|Ṡ(z)φj(z)| + |S(z)φ̇j(z)|
)

dz

= n−1

∫ 1

0

(

|Ṡ(z)| |φj(z)| + |S(z)| |φ̇j(z)|
)

dz .

By making use of the Bounyakovskii-Cauchy-Schwarz inequality we get

|θj,n − θj| ≤ n−1
(

‖Ṡ‖ ‖φ‖ + ‖φ̇‖ ‖S‖
)

≤ n−1
(

‖Ṡ‖ + π j ‖S‖
)

.

The definition of class W 1
r implies (A.3). Hence Lemma A.1.
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A.2 Proof of Lemma 8.1

First notice that, for any S ∈ W k
r , one has

‖Ŝn − S‖2
n = ‖Tn(Ŝ) − S‖2 + Ψn + ∆n ,

where

Ψn = 2

n
∑

j=1

∫ xj

xj−1

(Ŝn(xj) − S(x))(S(x) − S(xj))dx

and

∆n =

n
∑

j=1

∫ xj

xj−1

(S(x) − S(xj))
2dx .

For any 0 < δ < 1, by making use of the elementary inequality

2ab ≤ δa2 + δ−1b2 ,

one gets

Ψn ≤ δ‖Tn(Ŝ) − S‖2 + δ−1∆n .

Moreover, for any S ∈ W k
r with k ≥ 1, by the Bounyakovskii-Cauchy-

Schwarz inequality we obtain that

∆n ≤ 1

n

n
∑

j=1

∫ xj

xj−1

Ṡ2(t) dt =
1

n2
‖Ṡ‖2 ≤ r

n2
.

Hence Lemma 8.1.

A.3 Proof of (8.7)

First of all, note that Proposition 7.4, condition (3.7) and condition H4)

imply that

lim
n→∞

max
1≤m≤Mn

sup
0≤x≤1

1{|vm(x)|≤1} E
∣

∣g−2(x, Sϑ,n) − g−2
0 (x̃m)

∣

∣ = 0 . (A.4)

37



Let us show now that for any continuously differentiable function f on [−1, 1]

lim
n→∞

sup
1≤m≤Mn

∣

∣

∣

∣

∣

1

nh

n
∑

i=1

f(vm(xi))1{|vm(xi)|≤1} −
∫ 1

−1

f(v)dv

∣

∣

∣

∣

∣

= 0 . (A.5)

Indeed, setting

∆n,m =
1

nh

n
∑

i=1

f(vm(xi))1{|vm(xi)|≤1} −
∫ 1

−1

f(v)dv

we obtain that

∣

∣∆n,m

∣

∣ =

∣

∣

∣

∣

∣

∣

1

nh

i∗
∑

i=i
∗

f(vm(xi)) −
∫ 1

−1

f(v)dv

∣

∣

∣

∣

∣

∣

≤
i∗
∑

i=i
∗

∫ vm(xi)

vm(xi−1)

|f(vm(xi)) − f(z)|dz + max
|z|≤1

|f(z)|(2 − v∗ + v∗) .

where i∗ = [nx̃m − nh] + 1, i∗ = [nx̃m + nh],

v∗ = ([nx̃m − nh] + 1 − nx̃m)/(nh) and v∗ = ([nx̃m + nh] − nx̃m)/(nh) .

Therefore, taking into accout that the derivative of the function f is bounded

on the interval [−1, 1] we obtain that

∣

∣∆n,m

∣

∣ ≤ 3max
|z|≤1

|ḟ(z)|/(nhn) + 2max
|z|≤1

|f(z)|/(nhn) .

Taking into account the conditions on the sequence (hn)n≥1 given in A1) we

obtain limiting equality (A.5) which together with (A.4) implies (8.7).

A.4 Proof of (8.8)

Now we study the behaviour of Bm,j . Due to inequality (3.9) we obtain that

|L̃m,j(x, Sϑ,n)| ≤ C∗
(

|Sϑ,n(x)Dm,j(x)| + |Dm,j |1 + ‖Sϑ,n‖ ‖Dm,j‖
)

.
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Note that

E(Sϑ,n(x)Dm,j(x))2 = E





Nn
∑

l=1

ϑm,lel(vm(x))





2

e2
j (vm(x))I4

η (vm(x))

≤
Nn
∑

l=1

t2m,l 1{|vm(x)|≤1} ≤ (t∗n)21{|vm(x)|≤1} .

We remind that the sequence t∗n is defined in (7.6). Therefore, property

(A.5) implies

max
1≤m≤Mn

max
1≤j≤Nn

1

nh

n
∑

i=1

E(Sϑ,n(xi)Dm,j(xi))
2 = O((t∗n)2) .

Moreover, as to the function Dm,j(·) we find that

|Dm,j |1 =

∫ 1

0

|ej(vm(x)) Iη(vm(x))|dx = h

∫ 1

−1

|ej(v) Iη(v)|dv ≤ 2h .

Similarly we obtain ‖Dm,j‖2 ≤ h.

Finally, by (7.18)we obtain that

E‖Sϑ,n)‖2 ≤ h

Mn
∑

m=1

Nn
∑

j=1

t2m,j ≤ (t∗n)2 .

Therefore,

max
1≤m≤Mn

max
1≤j≤Nn

Bm,j/(nh) = O((t∗n)2 + hn)

and condition A1) implies (8.8).

A.5 Proof of (8.9)

Indeed, by the direct calculation it easy to see that for any N ≥ 1 and for

any vector (y1, . . . , yN )′ ∈ R
N
+

∣

∣

∣

∣

∣

∑N
j=1 τj(η, yj)
∑N

j=1 τ(yj)
− 1

∣

∣

∣

∣

∣

≤
maxj≥1

(

|e2
j(Iη) − ej(I

2
η )| + |e2

j(Iη) − 1|
)

minj≥1 ej(I
2
η )

,

39



where the operator ej(f) is defined in in (8.5). Moreover, we remind that
∫ 1

−1
e2
j(v)dv = 1. Therefore, taking into account property (7.2) we obtain

(8.9).
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7, rue Rene Descartes Université de Rouen,
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