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In the paper we study asymptotic properties of the adaptive procedure proposed in the paper Galtchouk, Pergamenshchikov, 2007, for nonparametric estimation of unknown regression. We prove that this procedure is asymptotically efficient for some quadratic risk, i.e.

we show that the asymptotic quadratic risk for this procedure coincides with the Pinsker constant which gives a sharp lower bound for quadratic risk over all possible estimates. 1 2

Introduction

The paper deals with the estimation problem in the heteroscedastic nonparametic regression model

y j = S(x j ) + σ j (S) ξ j , (1.1) 
where the design points x j = j/n, S(•) is an unknown function to be estimated, (ξ j ) 1≤j≤n is a sequence of centered i.i.d. random variables with unit variance and Eξ 4 1 = ξ * < ∞, (σ j (S)) 1≤j≤n are unknown scale functionals depending on unknown regression function S and the design points.

Typically, the notion of asymptotic optimality is associated with the optimal convergence rate of the minimax risk (see for example, Ibragimov, Hasminskii,1981;Stone,1982). An important question in optimality results is to study the exact asymptotic behaviour of the minimax risk. Such results have been obtained only in a limited number of investigations. As to the nonparametric estimation problem for heteroscedastic regression models we should mention the papers [START_REF] Efromovich | Sequential design and estimation in heteroscedastic nonparametric regression[END_REF][START_REF] Efromovich | Sharp -optimal and adaptive estimation for heteroscedastic nonparametric regression[END_REF][START_REF] Galtchouk | Efficient adaptive nonparametric estimation in heteroscedastic regression models[END_REF], concerning the exact asymptotic behaviour of the L 2 -risk and paper by [START_REF] Brua | Asymptotic efficient estimators for non-parametric heteroscedastic model[END_REF], devoted to the efficient pointwise estimation for heteroscedastic regressions. We remind that an example of heteroscedastic regression models is given by econometrics (see, for example, Goldfeld, Quandt, 1972, p. 83), where

for consumer budget problems one uses some parametric version of model (1.1) with the scale coefficients defined as

σ 2 j (S) = c 0 + c 1 x j + c 2 S 2 (x j ) , (1.2) 
where c 0 , c 1 and c 2 are some positive unknown constants.

The purpose of the article is to study asymptotic properties of the adaptive estimation procedure proposed in [START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models. Part 1. Sharp non-asymptotic oracle inequalities[END_REF] for which a non-asymptotic oracle inequality was proved for quadratic risks.

We will prove that this oracle inequality is asymptotically sharp, i.e. the asymptotic quadratic risk is minimal. It means the adaptive estimation procedure is efficient under some conditions on the scales (σ j (S)) 1≤j≤n

which are satisfied in the case (1.2). Note that in Efromovich, 2007, Efromovich, Pinsker, 1996, an efficient adaptive procedure is constructed for heteroscedastic regression when the scale coefficient is independent of S, i.e.

σ j (S) = σ j . In [START_REF] Galtchouk | Efficient adaptive nonparametric estimation in heteroscedastic regression models[END_REF], for the model (1.1) the asymptotic efficiency was proved under strong conditions on the scales which are not satisfied in the case (1.2). Moreover in the cited papers the efficiency was proved for the gaussian random variables (ξ j ) 1≤j≤n that is very restrictive for applications of proposed methods to practical problems.

In the paper we modify the risk by introducing into a additional supremum with respect to a classe of unknown noise distributions like to [START_REF] Galtchouk | Asymptotically efficient estimates for nonparametric regression models[END_REF]. This modification allow us to eliminate from the risk dependence on the noise distribution. Moreover for this risk a efficient procedure is robust with respect to changing of noise distributions.

It is well known to prove the asymptotic efficiency one has to show that the asymptotic quadratic risk coincides with the lower bound which is equal to the Pinsker constant. In the paper two problems are resolved:

in the first one an upper bound for the risk is obtained by making use of The paper is organized as follows. In Section 2 we construct a adaptive estimation procedure. In Section 3 we formulate principal conditions. The main result is given in Section 4. The upper bound for the quadratic risk is given in Section 5. In Section 6 we find the lower bound for a parametric model. In Section 7 we study the parametric family. In Section 8 we obtain the lower bound for model (1.1). An appendix contains some technical results.

Adaptive procedure

In this section we describe the adaptive procedure proposed in [START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models. Part 1. Sharp non-asymptotic oracle inequalities[END_REF]. We make use of the standard trigonometric basis (φ j ) j≥1 in L 2 [0, 1], i.e.

φ 1 (x) = 1 , φ j (x) = √ 2 T r j (2π[j/2]x) , j ≥ 2 , (2.1) 
where the function T r j (x) = cos(x) for even j and T r j (x) = sin(x) for odd j; [x] denotes the integer part of x. We remind that if n is odd then the functions (φ j ) 1≤j≤n are orthonormal with respect to the empirical inner product generated by the sieve (x j ) 1≤j≤n in (1.1), i.e. for any 1 ≤ i, j ≤ n,

(φ i , φ j ) n = 1 n n l=1 φ i (x l )φ j (x l ) = Kr ij ,
where Kr ij is Kronecker's symbol. Thanks to this basis we pass to the discrete Fourier transformation of model (1.1), i.e.

θj,n = ϑ j,n + (1/ √ n)ξ j,n , (2.2) 
where θj,n = (Y, φ j ) n , θ j,n = (S, φ j ) n and

ξ j,n = 1 √ n n l=1 σ l (S)ξ l φ j (x l ) .
Here Y = (y 1 , . . . , y n ) ′ and S = (S(x 1 ), . . . , S(x n )) ′ . The prime denotes the transposition.

We estimate the function S by the weighted least squares estimator

Ŝλ = n j=1 λ(j) θj,n φ j , (2.3) 
where the weight vector λ = (λ(1), . . . , λ(n)) ′ belongs to some finite set Λ from [0, 1] n with n ≥ 3. Here we make use of the weight family Λ introduced in [START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models. Part 1. Sharp non-asymptotic oracle inequalities[END_REF], i.e.

Λ = {λ α , α ∈ A ε } , A ε = {1, . . . , k * } × {t 1 , . . . , t m } , (2.4) 
where

k * = [1/ √ ε], t i = iε, m = [1/ε 2 ] and ε = 1/ ln n.
For any α = (β, t) ∈ A ε we define the weight vector

λ α = (λ α (1), . . . , λ α (n)) ′ as λ α (j) = 1 {1≤j≤j 0 } + 1 -(j/ω(α)) β 1 {j 0 <j≤ω(α)} , (2.5) 
where 2β+1) and

j 0 = j 0 (α) = [ω(α)/ ln n], ω(α) = (A β t) 1/(2β+1) n 1/(
A β = (β + 1)(2β + 1)/(π 2β β) .
To find the optimal weights we choose the cost function equals to the penalized mean integrated squared error in which unknown parameters are replaced by some estimators. The cost function is as follows

J n (λ) = n j=1 λ 2 (j) θ2 j,n -2 n j=1 λ(j) θj,n + ρ Pn (λ) , (2.6) 
where θj,n = θ2 j,n -

1 n ςn with ςn = n j=l n +1 θ2 j,n (2.7) 
and

l n = [n 1/3 + 1].
The penalty term we define as

Pn (λ) = |λ| 2 ςn n , |λ| 2 = n j=1
λ 2 (j) and ρ = 1 3 + ln γ n .

for some γ > 0. Finally, we set λ = argmin λ∈Λ J n (λ) and Ŝ * = Ŝλ .

(2.8)

The goal of this paper is to study asymptotic (n → ∞) properties of this estimation procedure.

Conditions

First we impose some conditions on unknown function S in model (1.1).

Let C k per,1 (R) be the set of 1-periodic k times differentiable R → R functions. We assume that S belongs to the following set

W k r = {f ∈ C k per,1 (R) : k j=0 f (j) 2 ≤ r} , (3.1) 
where • denotes the norm in L 2 [0, 1], i.e.

f 2 = 1 0 f 2 (t)dt . (3.2) 
Moreover, we suppose that r > 0 and k ≥ 1 are unknown parameters.

Note that, we can represent the set W k r as an ellipse in L 2 [0, 1], i.e.

W k r = {f ∈ L 2 [0, 1] : ∞ j=1 a j ϑ 2 j ≤ r} , (3.3) 
where

ϑ j = (f, φ j ) = 1 0 f (t)φ j (t)dt (3.4) 
and

a j = k l=0 φ (l) j 2 = k i=0 (2π[j/2]) 2i . (3.5) 
Here (φ j ) j≥1 is the trigonometric basis defined in (2.1).

Now we decribe the conditions on the scale coefficients (σ j (S)) j≥1 .

H 1 ) σ j (S) = g(x j , S) for some unknown function g :

[0, 1] × L 1 [0, 1] → R + ,
which is square integrable with respect to x such that

lim n→∞ sup S∈W k r n -1 n j=1 g 2 (x j , S) -ς(S) = 0 , (3.6) 
where ς(S) := 1 0 g 2 (x, S)dx. Moreover,

g * = inf 0≤x≤1 inf S∈W k r g 2 (x, S) > 0 (3.7)
and

sup S∈W k r ς(S) < ∞ . (3.8) H 2 ) For any x ∈ [0, 1] the operator g 2 (x, •) : C[0, 1] → R is differentiable
in the Fréchet sense for any fixed function f 0 from C[0, 1] , i.e. for any f from some vicinity of f 0 in C[0, 1]

g 2 (x, f ) = g 2 (x, f 0 ) + L x,f 0 (f -f 0 ) + Υ(x, f 0 , f ) ,
where the Fréchet derivative L x,f 0 : C[0, 1] → R is a bounded linear operator and the residual term Υ(x, f 0 , f ) for each x ∈ [0, 1] satisfies the following property

lim |f -f 0 | * →0 |Υ(x, f 0 , f )| |f -f 0 | * = 0 , where |f | * = sup 0≤t≤1 |f (t)|.
H 3 ) There exists some positive constant C * such that for any function S from C[0, 1] the operator L x,S defined in condition H 2 ) satisfies the following inequality for any function

f from C[0, 1] |L x,S (f )| ≤ C * (|S(x)f (x)| + |f | 1 + S f ) , (3.9 
) Moreover, let V : R → R + be a continuously differentiable function such that

where |f | 1 = 1 0 |f (t)|dt.
v ′ * = sup y∈R | V (y)|/(1 + |y|) < ∞ .
We set

g 2 (x, S) = G(x, S(x)) + 1 0 V (S(t))dt . (3.12)
In this case

ς(S) = 1 0 G(t, S(t))dt + 1 0 V (S(t))dt and for any S ∈ W k r n -1 n j=1 g 2 (x j , S) -ς(S) ≤ n j=1 x j x j-1 G(x j , S(x j )) -G(t, S(t)) dt ≤ ∆ n + G ′ * n 1 0 |S(t)| | Ṡ(t)|dt ≤ ∆ n + G ′ * n r ,
where

∆ n = max |u-v|≤1/n sup y∈R |G(u, y) -G(v, y)| .
Therefore by condition (3.10) we obtain H 1 ).

Moreover, the Fréchet derivative in this case is given by

L x,S (f ) = G y (x, S(x))f (x) + 1 0 V (S(t))f (t)dt .
It is easy to see that this operator satisfies the inequality (3.9) with

C * = G ′ * + v ′ * .
For example, we can take in (3.12)

G(x, y) = c 0 + c 1 x + c 2 y 2 and V (x) = c 3 x 2 (3.13)
with some coefficients c 0 > 0, c i ≥ 0, i = 1, 2, 3. Therefore, we obtain the function (1.2) if we put in (3.12)-(3.13) c 3 = 0, i.e. V ≡ 0.

Main results

Denote by P * the family of unknown noise density. Remind that the noise random variables (ξ j ) 1≤j≤n are centered with unit variance and Eξ 4 1 ≤ ξ * , where ξ * ≥ 3. For any estimate Ŝ we define the following quadratic risk

R n ( Ŝ, S) = sup p∈P * E S,p Ŝ -S 2 n , (4.1) 
where E S,p is the expectation with respect to the distribution P S,p of the observations (y 1 , . . . , y n ) with the fixed function S and the fixed density p of random variables (ξ j ) 1≤j≤n in model (1.1), S 2 n = (S, S) n . In Galtchouk, Pergamenshchikov, 2007, we shown the following nonasymptotic Oracle inequality for procedure (2.8).

Theorem 4.1. Assume that in model (1.1) the function S belongs to W 1 r . Then, for any odd n ≥ 3, any 0 < ρ < 1/3 and r > 0, the estimate Ŝ * satisfies the following oracle inequality

R n ( Ŝ * , S) ≤ (1 + κ(ρ)) min λ∈Λ R n ( Ŝλ , S) + n -1 B n (ρ) , (4.2) 
where

κ(ρ) = (6ρ -2ρ 2 )/(1 -3ρ)
and the function B n (ρ) is such that, for any δ > 0,

lim n→∞ B n (ρ)/n δ = 0 . (4.3)
Now we formulate the main asymptotic results. To this end for any

function S ∈ W k r we set γ k (S) = Γ * k r 1/(2k+1) (ς(S)) 2k/(2k+1) , (4.4) 
where

Γ * k = (2k + 1) 1/(2k+1) (k/(π (k + 1))) 2k/(2k+1) .
It is well known (see, for example, [START_REF] Nussbaum | Spline smothing in regression models and asymptotic efficiency in L 2[END_REF] that for any function S ∈ W k r the optimal convergence rate is n 2k/(2k+1) .

Theorem 4.2. Assume that in model (1.1) the sequence (σ j (S)) fulfils the condition H 1 ). Then the estimator Ŝ * from (2.8) satisfies the inequality

lim sup n→∞ n 2k/(2k+1) sup S∈W k r R n ( Ŝ * , S)/γ k (S) ≤ 1 . (4.5)
The following result gives the sharp lower bound for risk (4.1) and show that γ k (S) is the Pinsker constant. i.e. on the parameter k. In the cited paper this additional condition is not formulated since erroneous inequality (A.6). To avoid the use of this inequality we modify the estimating procedure by introducing the penalty term ρ Pn (λ) in the cost function (2.6). By this way we remove all additional conditions on the smoothness parameter k.

Upper bound

In this section we prove Theorem 4.2. To this end we will make use of oracle inequality (4.2). We have to find an estimator from the family (2.3)-(2.4) for which we can show the upper bound (4.5). We start with the construction of such an estimator. First we put ln = inf{i ≥ 1 : iε ≥ r(S)} ∧ m and r(S) = r/ς(S) .

(5.1)

Then we choose an index from the set

A ε as α = (k, tn ) ,
where k is the parameter of the set W k r and tn = ln ε. Finally, we set S = Ŝλ and λ = λ α .

(5.2)

Now we show the upper bound (4.5) for this estimator.

Theorem 5.1. Assume that condition H 1 ) hold. Then Proof. To prove the theorem we will adapt to the heteroscedastic case the corresponding proof from Nussbaum, 1985.

lim sup n→∞ n 2k/(2k+1) sup S∈W k r R n ( S, S)/γ k (S) ≤ 1 . ( 5 
First, from (2.3) we obtain that, for any p ∈ P * ,

E S,p S -S 2 n = n j=1 (1 -λj ) 2 ϑ 2 j,n + 1 n n j=1 λ2 j ς j,n , (5.4) 
where

ς j,n = 1 n n l=1 σ 2 l (S)φ 2 j (x l ) .
Setting now ω = ω(α), j0 = [ω/ ln n], j1 = [ω ln n] and

ς n = 1 n n l=1 σ 2 l (S) ,
we rewrite (5.4) as follows

E S,p S -S 2 n = j1 -1 j= j0 +1 (1 -λj ) 2 ϑ 2 j,n + ς n n -1 n j=1 λ2 j + ∆ 1 (n) + ∆ 2 (n) (5.5) with ∆ 1 (n) = n j= j1 ϑ 2 j,n and ∆ 2 (n) = n -1 n j=1 λ2 j ς j,n -ς n .
Note that we have decomposed the first term in the right-hand of (5.4) into the sum

j1 -1 j= j0 +1 (1 -λj ) 2 ϑ 2 j,n + ∆ 1 (n) .
This decomposition allows us to show that ∆ 1 (n) is negligible and further to approximate the first term by a similar term in which the coefficients ϑ j,n will be replaced by the Fourier coefficients ϑ j of the function S.

Taking into account the definition of ω(α) in (2.5) we can bound ω as

ω ≥ (A k ) 1/(2k+1) n 1/(2k+1) (ln n) -1/(2k+1) .
Therefore, by Lemma A.1 we obtain

lim n→∞ sup S∈W k r n 2k/(2k+1) ∆ 1 (n) = 0 .
Let us consider now the next term ∆ 2 (n). We have

|∆ 2 (n)| = 1 n 2 n d=1 σ 2 d n j=1 λ2 j φ j (x d ) ≤ σ * n sup 0≤x≤1 n j=1 λ2 j φ j (x) ,
where φ j (x) = φ 2 j (x) -1. Now by Lemma A.2 and definition (2.5) we obtain directly the same property for ∆ 2 (n), i.e.

lim n→∞ sup S∈W k r n 2k/(2k+1) |∆ 2 (n)| = 0 . Setting γk,n (S) = n 2k/(2k+1) j1 -1 j= j0 (1 -λj ) 2 ϑ 2 j + ς n n -1/(2k+1) n j=1 λ2 j
and applying the well-known inequality

(a + b) 2 ≤ (1 + δ)a 2 + (1 + 1/δ)b 2
to the first term in the right-hand side of inequality (5.5) we obtain that, for any δ > 0 and for any p ∈ P * ,

E S,p S -S 2 n ≤ (1 + δ) γk,n (S) n -2k/(2k+1) + ∆ 1 (n) + ∆ 2 (n) + (1 + 1/δ) ∆ 3 (n) , (5.6) 
where

∆ 3 (n) = j1 -1 j= j0 +1 (ϑ j,n -ϑ j ) 2 .
Taking into account that k ≥ 1 and that

j1 ≤ (A k ) 1/(2k+1) n 1/(2k+1) (ln n) (2k+2)/(2k+1) ,
we can show through Lemma A. Moreover, by the definition of ( λj ) 1≤j≤n for sufficiently large n for which tn ≥ r(S) we can calculate the following supremum

sup j≥1 n 2k/(2k+1) (1 -λj ) 2 /(πj) 2k = π -2k (A k tn ) -2k/(2k+1) ≤ π -2k (A k r(S)) -2k/(2k+1) .
Therefore, taking into account the definition of the coefficients (a j ) j≥1 in (3.5) we obtain that lim sup

n→∞ n 2k/(2k+1) sup S∈W k r sup j≥ j0 π 2k (A k r(S)) 2k/(2k+1) (1 -λj ) 2 /a j ≤ 1 .
Moreover, by definition (2.5) we get that

lim n→∞ sup S∈W k r n -1/(2k+1) n j=1 λ2 j -(A k r(S)) 1/(2k+1) 1 0 (1 -z k ) 2 dz = 0 .
Taking into account definition of W k r in (3. 6 Lower bound for parametric heteroscedastic regression models

Let (R n , B(R n ), P ϑ , ϑ ∈ Θ ⊆ R l
) be a statistical model relative to the observations (y j ) 1≤j≤n governed by the regression equation

y j = S ϑ (x j ) + σ j (ϑ) ξ j , (6.1) 
where ξ 1 , . . . , ξ n are i.i.d. N (0, 1) random variables, ϑ = (ϑ 1 , . . . , ϑ l ) ′ is a unknown parameter vector, S ϑ (x) is a unknown (or known) function and σ j (ϑ) = g(x j , S ϑ ), with the function g(x, S) defined in condition H 1 ). Assume that a prior distribution µ ϑ of the parameter ϑ in R l is defined by the density Φ(ϑ) of the following form

Φ(ϑ) = Φ(ϑ 1 , . . . , ϑ l ) = l i=1 ϕ i (ϑ i ) ,
where ϕ i is a continuously differentiable bounded density on R with

I i = R ( φi (z)) 2 ϕ i (z) dz < ∞ .
Let λ(•) be a continuously differentiable R l → R function such that, for any

1 ≤ i ≤ l, lim |θ i |→∞ λ(ϑ) ϕ i (ϑ i ) = 0 and R l λ ′ i (ϑ) Φ(ϑ)dϑ < ∞ , (6.2) 
where

λ ′ i (ϑ) = (∂/∂ϑ i ) λ(ϑ) .
Let λn be an estimator of λ(ϑ) based on observations (y j ) 1≤j≤n . For any

B(R n × R l ) -mesurable integrable function G(x, ϑ), x ∈ R n , ϑ ∈ R l , we set Ẽ G(Y, ϑ) = R l E ϑ G(Y, ϑ) Φ(ϑ) dϑ ,
where E ϑ is the expectation with respect to the distribution P ϑ of the vector Y = (y 1 , . . . , y n ). Note that in this case

E ϑ G(Y, ϑ) = R n G(v, ϑ) f (v, ϑ) dv , where 
f (v, ϑ) = n j=1 1 √ 2πσ j (ϑ) exp - (v j -S ϑ (x j )) 2 2σ 2 j (ϑ) . (6.3)
We prove the following result.

Theorem 6.1. Assume that conditions H 1 ) -H 2 ) hold. Moreover, assume that the function S ϑ (•) is uniformly over

0 ≤ x ≤ 1 differentiable in C[0, 1]
with respect to ϑ i , 1 ≤ i ≤ l, i.e. for any 1 ≤ i ≤ l there exists a function

S ′ ϑ,i ∈ C[0, 1] such that lim h→0 max 0≤x≤1 S ϑ+he i (x) -S ϑ (x) -S ′ ϑ,i (x)h /h = 0 , (6.4) 
where e i = (0, ...., 1, ..., 0) ′ , all coordinates are 0, except the ith equals to 1 .

Then for any square integrable estimator λn of λ(ϑ) and any

1 ≤ i ≤ l, Ẽ( λn -λ) 2 ≥ Λ 2 i /(F i + B i + I i ) , (6.5) 
where

Λ i = R l λ ′ i (ϑ) Φ(ϑ)dϑ, F i = n j=1 R l (S ′ ϑ,i (x j )/σ j (ϑ)) 2 Φ(ϑ)dϑ and B i = 1 2 n j=1 R l L2 i (x j , S ϑ ) σ 4 j (S ϑ ) Φ(ϑ)dϑ , Li (x, ϑ) = L x,S ϑ (S ′ ϑ,i ), the operator L x,S is defined in the condition H 2 ).
Proof. We put

̺ i (v, ϑ) = 1 f (v, ϑ)Φ(ϑ) ∂ ∂ϑ i (f (v, ϑ)Φ(ϑ)) .
Note that due to condition (3.7) the density (6.3) is bounded, i.e.

f (v, ϑ) ≤ (2πg * ) -n/2 .
So through (6.2) we obtain that lim

|ϑ i |→∞ λ(ϑ) f (v, ϑ)ϕ i (ϑ i ) = 0 .
Therefore, integrating by parts yields

Ẽ( λn -λ)̺ i = R n+l ( λn (v) -λ(ϑ)) ∂ ∂ϑ i (f (v, ϑ)Φ(ϑ)) dϑdv = R l ∂ ∂ϑ i λ(ϑ) Φ(ϑ) R n f (v, ϑ)dv dϑ = Λ i .
Now the Bouniakovskii-Cauchy-Schwarz inequality gives the following lower bound

Ẽ( λn -λ) 2 ≥ Λ 2 i / Ẽ̺ 2 i .
To estimate the denominator in the last ratio, note that

̺ i (v, ϑ) = 1 f (v, ϑ) ∂ ∂ϑ i f (v, ϑ) + φi (ϑ i ) ϕ i (ϑ i ) = fi (v, ϑ) + φi (ϑ i ) ϕ i (ϑ i ) , where fi (v, ϑ) = (∂/∂ϑ i ) ln f (v, ϑ) . From (6.1) it follows that fi (v, ϑ) = n j=1 (ξ 2 j -1) 1 2σ 2 j (ϑ) ∂ ∂ϑ i σ 2 j (ϑ) + n j=1 ξ j S ′ i (x j ) σ j (ϑ) .
Moreover, conditions H 2 ) and (6.4) imply

(∂/∂ϑ i ) σ 2 j (ϑ) = ∂/∂ϑ i ) g 2 (x j , S ϑ ) = Li (x j , ϑ) from which it follows Ẽ fi (Y, ϑ) 2 = F i + B i .
This implies inequality (6.5). Hence Theorem 6.1.

Parametric kernel function family

In this section we define and study some special parametric kernel functions family which will be used to prove the sharp lower bound (4.6).

Let us begin by kernel functions. We fix η > 0 and we set

I η (x) = η -1 R 1 (|u|≤1-η) V u -x η du , (7.1) 
where 1 A is the indicator of a set A, the kernel V ∈ C ∞ (R) is such that

V (u) = 0 for |u| ≥ 1 and 1 -1 V (u) du = 1 .
It is easy to see that the function I η (x) possesses the properties :

0 ≤ I η ≤ 1 , I η (x) = 1 for |x| ≤ 1 -2η and I η (x) = 0 for |x| ≥ 1 .
Moreover, for any c > 0 and m ≥ 1

lim η→0 sup f : |f | * ≤c R f (x)I m η (x)dx - 1 -1 f (x)dx = 0 , (7.2) 
where |f | * = sup -1≤x≤1 |f (x)|.

We divide the interval [0, 1] into M equal parts of length 2h and on each of them we construct a kernel-type function that was used in Ibragimov, Hasminskii, 1981, to obtain the lower bound for estimation at a fixed point.

A such constructed on each interval function equals to zero at the extremities together with all derivatives. It means that Fourier partial sums with respect to the trigonometric basis in L 2 [-1, 1] give a natural parametric approximation to the function on each interval.

Let (e j ) j≥1 be the trigonometric basis in L 2 [-1, 1], i.e.

e 1 = 1/ √ 2 , e j (x) = T r j (π[j/2]x) , j ≥ 2 , (7.3) 
where T r j (x) = cos(x) for even j and T r j (x) = sin(x) for odd j.

Now, for any array z = {(z m,j ) 1≤m≤M n , 1≤j≤N n } we define the following function

S z,n (x) = M n m=1 N n j=1 z m,j D m,j (x) , (7.4) 
where D m,j (x) = e j (v m (x))

I η (v m (x)), v m (x) = (x -xm )/h n , xm = 2mh n and M n = [1/(2h n )] -1 .
We assume that the sequences (N n ) n≥1 and (h n ) n≥1 , satisfy the following conditions.

A 1 ) The sequence N n → ∞ as n → ∞ and for any p > 0

lim n→∞ N p n /n = 0 .
Moreover, there exist 0 < δ 1 < 1 and δ 2 > 0 such that

h n = O(n -δ 1 ) and h -1 n = O(n δ 2 ) as n → ∞ .
To define a prior distribution on the family of arrays, we choose the following random array ϑ = {(ϑ m,j ) 1≤m≤M n , 1≤j≤N n } with

ϑ m,j = t m,j ζ m,j , (7.5) 
where (ζ m,j ) are i.i.d. N (0, 1) random variables and (t m,j ) 1≤m≤M n , 1≤j≤N n are some nonrandom positive coefficients. We make use of gaussian variables since they possess the minimal Fisher information and therefore maximize the lower bound (6.5). We set

t * n = max 1≤m≤M n N n j=1 t m,j . (7.6)
We assume that the coefficients (t m,j ) 1≤m≤M n , 1≤j≤N n satisfy the following conditions.

A 2 ) There exists a sequence of positive numbers (d n ) n≥1 such that

lim n→∞ d n h 2k-1 n M n m=1 N n j=1 t 2 m,j j 2(k-1) = 0 , lim n→∞ d n t * n = 0 , (7.7) 
moreover, for any p > 0, Proof. First note that for 0 ≤ x ≤ 1 we can represent the lth derivative as

lim n→∞ n p exp{-d n /2} = 0 . A 3 ) For some 0 < ε < 1 lim sup n→∞ 1 h 2k-1 n M n m=1 N n j=1 t 2 m,j j 2k ≤ (1 -ε)r
S (l) ϑ,n (x) = 1 h l M n m=1 l i=0 l i I (l-i) η (v m (x)) Q i,m (v m (x)) , (7.8) 
where

Q i,m (v) = N n j=1 ϑ m,j e (i) j (v) . Therefore S (l) ϑ,n 2 = 1 h 2l-1 n Mn m=1 1 -1 l i=0 l i I (l-i) η (v) Q i,m (v) 2 dv
and by the Bounyakovskii-Cauchy-Schwarz inequality we obtain that

S (l) ϑ,n 2 ≤ C * (l, η) h 2l-1 n l i=0 Q i,m (7.9) with C * (l, η) = max -1≤v≤1 l i=0 l i I (l-i) η (v) 2 and Q i,m = Mn m=1 1 -1 Q 2 i,m (v) dv .
Now we show that for any 0 ≤ i ≤ k -1 and δ > 0

lim n→∞ n p P Q i,m > δh 2k-1 n = 0 . (7.10)
To that end we introduce the following set

Ξ n = { max 1≤m≤Mn max 1≤j≤N ζ 2 m,j ≤ d n } , (7.11) 
where the sequence (d n ) n≥1 is given in condition A 2 ). Therefore, taking into account that

1 -1 Q 2 i,m (v) dv = N n j=1 ϑ 2 m,j 1 -1 (e (i) j (v)) 2 dv ≤ π 2 2i N n j=1 t 2 m,j j 2i ζ 2 m,j ,
the function Q i,m can be estimated on the set Ξ n as

Q i,m ≤ π 2 2i d n Mn m=1 N n j=1 t 2 m,j j 2i
and by (7.7) we get, for any δ > 0 and sufficiently large n,

P Q i,m > δh 2k-1 n ≤ P Ξ c n .
Moreover, for sufficiently large n

P Ξ c n ≤ M n N n e -d n /2 .
Therefore, conditions A 1 ) and (7.7) imply lim sup

n→∞ n p P Ξ c n = 0 , (7.12) 
for any p > 0. Hence Proposition 7.1.

Proposition 7.2. Let conditions A 1 )-A 4 ). Then, for any p > 0,

lim n→∞ n p P(S ϑ,n / ∈ W k r ) = 0 .
Proof. First of all we prove that for ε from condition A 3 )

lim n→∞ n p P S (k) ϑ,n > (1 -ε/4)r = 0 . (7.13)
Indeed, putting in (7.8) l = k we can represent the kth derivative of S ϑ,n as follows

S (k) ϑ,n (x) = Ŝk (x) + S k (x) (7.14) with Ŝk (x) = 1 h k M n m=1 k-1 i=0 k i I (k-i) η (v m (x)) Q i,m (v m (x))
and

S k (x) = 1 h k M n m=1 I η (v m (x)) Q k,m (v m (x)) .
First, note that, we can estimate the norm of Ŝk (x) by the same way as in inequality (7.9), i.e.

Ŝk 2 ≤ C * (k, η) h 2k-1 n k-1 i=0 Q i,m .
By making use of (7.10) we obtain that, for any p > 0 and for any δ > 0,

lim n→∞ n p P Ŝk > δ = 0 . (7.15)
Let us consider now the last term in (7.14). Taking into account that

0 ≤ I η (v) ≤ 1 we get S k 2 = 1 h 2k-1 n M n m=1 1 -1 I 2 η (v)Q 2 k,m (v)dv ≤ π 2 2k 1 h 2k-1 n M n m=1 N n j=1 t 2 m,j j 2k ζ 2 m,j .
Therefore from condition A 3 ) we get for sufficiently large n

S k 2 ≤ (1 -ε/2)r + π 2 2k M n m=1 ζ m := (1 -ε/2)r + π 2 2k Y n with ζ m = 1 h 2k-1 n N n j=1 t 2 m,j j 2k
ζm,j and ζm,j = ζ 2 m,j -1 .

We show that for any p > 0 and for any δ > 0

lim n→∞ n p P (|Y n | > δ) = 0 . (7.16)
Indeed, by the Chebyshev inequality for any ι > 0

P (|Y n | > δ) ≤ E (Y n ) 2ι /δ 2ι . (7.17) 
Note now that according to the Burkholder-Davis-Gundy inequality for any ι > 1 there exists a constant B * (ι) > 0 such that

E (Y n ) 2ι ≤ B * (ι) E   M n m=1 ζ 2 m   ι .
Moreover, by putting

ζ * = max 1≤m≤M n max 1≤j≤N n ζ2 m,j
we obtain that

ζ 2 m ≤ N n h 4k-2 n N n j=1 t 4 m,j j 4k ζ * .
Therefore, by condition A 4 ) for sufficiently large n

E (Y n ) 2ι ≤ B * (ι) N ι n h ιǫ 0 n E ζι * ≤ B * (ι) E (ζ 2 -1) 2ι M n N ι+1 n h ιǫ 0 n ,
where ζ ∼ N (0, 1). Taking into account here condition A 1 ) we obtain for sufficiently large n

E (Y n ) 2ι ≤ n -δ 1 (ιǫ 0 -2) .
Thus, choosing in (7.17) ι > p/(ǫ 0 δ 1 ) + 2/ǫ 0 we obtain limiting equality (7.16) which together with (7.14)-(7.15) implies (7.13). Now it is easy to deduce that Proposition 7.1 yields Proposition 7.2.

Proposition 7.3. Let conditions A 1 )-A 4 ). Then, for any p > 0,

lim n→∞ n p E S ϑ,n 2 1 {S ϑ,n / ∈W k r } + 1 Ξ c n = 0 .
Proof. First of all, we remind that due to condition A 2 )

lim n→∞ M n m=1 N n j=1 t 2 m,j ≤ lim n→∞ d n h 2k-1 n M n m=1 N n j=1 t 2 m,j j 2(k-1) = 0 .
Therefore, taking into account that

S ϑ,n 2 ≤ h n M n m=1 N n j=1 t 2 m,j ζ 2 m,j (7.18) 
we obtain, for sufficiently large n,

E S ϑ,n 2 1 {S ϑ,n / ∈W k r } + 1 Ξ c n ≤ max m,j E ζ 2 m,j 1 {S ϑ,n / ∈W k r } + 1 Ξ c n .
Moreover, for any 1 ≤ m ≤ M n and 1 ≤ j ≤ N n , we estimate the last term as

E ζ 2 m,j 1 {S ϑ,n / ∈W k r } + 1 Ξ c n ≤ n P(S ϑ,n / ∈ W k r ) + n P(Ξ c n ) + 2E ζ 2 1 {ζ 2 ≥n} ,
where ζ ∼ N (0, 1). By applying now Proposition 7.2 and limit (7.12) we obtain Proposition 7.3.

Proposition 7.4. Let conditions A 1 )-A 4 ). Then for any function g satisfying conditions (3.7) and H 4 )

lim n→∞ sup 0≤x≤1 E g -2 (x, S ϑ,n ) -g -2 0 (x) = 0 .
Proof. First, note that on the set Ξ the random function S ϑ,n is uniformly bounded, i.e.

|S ϑ,n | * = sup 0≤x≤1 |S ϑ,n (x)| ≤ d n t * n , (7.19) 
where the coefficient t * n is defined in (7.6). Therefore by condition H 1 ) we obtain

E g -2 (x, S ϑ,n ) -g -2 0 (x) ≤ max |S| * ≤ √ d n t * n |g -2 (x, S)-g -2 0 (x)|+(2/g * ) P Ξ c n .
Conditions A 2 ) and H 4 ) together with the limit relation (7.12) imply Proposition 7.4.

Lower bound

In this section we prove Theorem 4.3. To that end we establish the following auxiliary result.

Lemma 8.1. For any 0 < δ < 1 and any estimate Ŝn of S ∈ W k r ,

Ŝn -S 2 n ≥ (1 -δ) T n ( Ŝ) -S 2 -(δ -1 -1) r/n 2 ,
where

T n ( Ŝ)(x) = n k=1 Ŝn (x k )1 (x k-1 ,x k ] (x).
Proof of this Lemma is given in Appendix A.2.

This Lemma implies that to prove (4.6), it suffices to show the same asymptotic inequality for the integral risk, i.e. lim inf

n→∞ inf Ŝn n 2k/(2k+1) R 0 ( Ŝn ) ≥ 1 , (8.1) 
where

R 0 ( Ŝn ) = sup S∈W k r E S,q Ŝn -S 2 /γ k (S) ,
q is the gaussian (0, 1) density of the noise (ξ j ) and S 2 = 1 0 S 2 (x)dx.

To show (8.1) we will make use of the sequence of random functions (S ϑ,n ) n≥1 defined in (7.4)-(7.5) with the coefficients (t m,j ) satisfying conditions A 1 )-A 4 ) which will be chosen later.

For any estimator Ŝn , we denote by Ŝ0 n its projection onto W k r , i.e. Ŝ0 n = Pr W k r ( Ŝn ). Since W k r is a convex set, we get that

Ŝn -S 2 ≥ Ŝ0 n -S 2 .
Therefore, we can write that

R 0 ( Ŝn ) ≥ {z:S z,n ∈W k r }∩Ξ n E S z,n ,q Ŝ0 n -S z,n 2 γ k (S z,n ) µ ϑ (dz) .
Here µ ϑ denotes the distribution of ϑ in R l with l = M n N n . We recall also that the set Ξ n is defined in (7.11). Moreover, taking into account here inequality (7.19) we estimate the risk R 0 ( Ŝn ) from below as

R 0 ( Ŝn ) ≥ 1 γ * n {z:S z,n ∈W k r }∩Ξ n E S z,n ,q Ŝ0 n -S z,n 2 µ ϑ (dz) with γ * n = sup |S| * ≤ √ d n t * n γ k (S) . (8.2) 
Let us introduce now the corresponding Bayes risk

R0 ( Ŝ0 n ) = R l E S z,n ,q Ŝ0 n -S z,n 2 µ ϑ (dz) . (8.3) 
Now through this risk we rewrite the lower bound for R 0 ( Ŝn ) as

R 0 ( Ŝ0 n ) ≥ R0 ( Ŝ0 n )/γ * n -2 ̟ n /γ * n (8.4)
with

̟ n = E(1 {S ϑ,n / ∈W k r } + 1 Ξ c n )(r + S ϑ,n 2 ) .
First of all, we reduce the nonparametric problem to parametric one. For this we replace the functions Ŝ0 n and S by their Fourier series with respect to the basis

ẽm,i (x) = (1/ √ h) e i (v m (x)) 1 (|vm(x)|≤1) .
By making use of this basis we can estimate the norm Ŝ0 n -S z,n 2 from below as

Ŝ0 n -S z,n 2 ≥ M n m=1 N n j=1 ( λm,j -λ m,j (z)) 2 ,
where λm,j = Moreover, from definition (7.4) one gets

λ m,j (z) = √ h N n i=1 z m,i 1 -1 
e i (u)e j (u)I η (u) du .

It is easy to see that the functions λ m,j (•) satisfy condition (6.2) for gaussian prior densities. In this case (see the definition in (6.5)) we have Λ m,j = (∂/∂z m,j )λ m,j (z) = √ he j (I η ) , where

e j (f ) = 1 -1 e 2 j (v) f (v) dv . (8.5) 
Now to obtain a lower bound for the Bayes risk R0 ( Ŝ0 n ) we make use of Theorem 6.1 which implies that

R0 ( Ŝ0 n ) ≥ M n m=1 N n j=1 he 2 j (I η ) F m,j + B m,j + t -2 m,j , (8.6) 
where F m,j = n i=1 D 2 m,j (x i ) E g -2 (x i , S ϑ,n ) and

B m,j = 1 2 n i=1 E Lm,j (x i , S ϑ,n ) g 2 (x i , S ϑ,n ) 2
with Lm,j (x, S) = L x,S D m,j . In the appendix we show that This means that, for any ν > 0 and for sufficiently large n,

sup 1≤m≤M n sup 1≤j≤N n F m,j + B m,j + t -2 m,j nhe j (I 2 η )g -2 0 (x m ) + t -2 m,j ≤ 1 + ν .
Therefore, if we denote in (8.6) κ 2 m,j = nh g -2 0 (x m ) t 2 m,j and τ j (η, y) = e 2 j (I η ) y/(e 2 j (I 2 η )y + 1)

we obtain that, for sufficiently large n,

n 2k/(2k+1) R0 ( Ŝ0 n ) ≥ 1 1 + ν n -1/(2k+1) M n m=1 g 2 0 (x m ) N n j=1 τ j (η, κ 2 m,j ) .
In the appendix we show that lim

η→0 sup N ≥1 sup (y 1 ,...,y N )∈R N + N j=1 τ j (η, y j )/ N j=1 τ (y j ) -1 = 0 , (8.9) 
where τ (y) = y/(y + 1) .

Therefore we can write that, for sufficiently large n,

n 2k 2k+1 R0 ( Ŝ0 n ) ≥ 1 -ν 1 + ν n -1 2k+1 M n m=1 g 2 0 (x m ) J N n (κ 2 m,1 , . . . , κ 2 m,N n ) , (8.10) 
with S 0 ≡ 0. Now we have to choose the sequence (h n ). Note that if we put in (7.5)

t m,j = (g 0 (x m )/ nh n ) y * j (R) i.e. κ m,j = y * j (R) , (8.15) 
we can rewrite inequality (8.10) as

n 2k 2k+1 R0 ( Ŝ0 n ) ≥ (1 -ν) (1 + ν) ĝ0 J * N n (R) 2h n n 1 2k+1 , (8.16) 
where

J * N (R) = N -   N j=1 j k   2 /(R + N j=1 j 2k ) .
It is clear that

k 2 /(k + 1) 2 ≤ lim inf N →∞ inf R>0 J * N (R)/N ≤ lim sup N →∞ sup R>0 J * N (R)/N ≤ 1 .
Therefore to obtain a positive finite asymptotic lower bound in (8.16) we have to take the parameter h n as

h n = h * n -1/(2k+1) N n (8.17)
with some positive coefficient h * . Moreover, conditions (8.12)-(8.13) imply that

(1 -ε)r 2 2k+1 π 2k 1 ĝ0 h 2k+1 * ≥ 1 N k+1 n N n j=1 j k - 1 N 2k+1 n N n j=1 j 2k .
Taking here limit as n → ∞ thanks to asymptotic equality (8.14), we obtain the following condition on h

* h * ≥ (υ * ε ) 1/(2k+1) , (8.18) 
where

υ * ε = k c * ε (k + 1)(2k + 1) and c * ε = 2 2k+1 (1 -ε)r π 2k ς(S 0 ) .
To maximize the function J * N n (R) at the right-hand side of inequality (8.16) we take R = R * n defined in (8.13). Therefore we obtain that lim inf

n→∞ inf Ŝ0 n n 2k/(2k+1) R0 ( Ŝ0 n ) ≥ (ς(S 0 )/2) F (h * ) , (8.19) 
where

F (x) = 1 x - 2k + 1 (k + 1) 2 (c * ε (2k + 1)x 2k+2 + x)
.

Taking into account that

F ′ (x) = - (c * ε (2k + 1)(k + 1)x 2k+1 -k) 2 (k + 1) 2 (c * ε (2k + 1)x 2k+2 + x) 2 ≤ 0 we find that max h * ≥(υ * ε ) 1/(2k+1) F (h * ) = F ((υ * ε ) 1/(2k+1) ) = (k/(k + 1))(υ * ε ) -1/(2k+1) .
This means that to obtain in (8.19) the maximal lower bound we have to take in (8.17) 

h * = (υ * ε ) 1/(2k+1
inf Ŝ0 n n 2k/(2k+1) R0 ( Ŝ0 n ) ≥ (1 -ε) 1/(2k+1) γ k (S 0 ) , (8.21) 
where the function γ k (S 0 ) is defined in (4.4) for S 0 ≡ 0. Now to end the definition of the sequence of the random functions (S ϑ,n ) defined by (7.4) and (7.5) we have to define the sequence (N n ). We remind that we make use of the sequence (S ϑ,n ) with the coefficients (t m,j ) constructed in (8.15) for R = R * n given in (8.13) and for the sequence h n given by (8.17) and (8.20) for some fixed arbitrary 0 < ε < 1.

We will choose the sequence (N n ) to satisfy conditions A 1 )-A 4 ). We can take, for example N n = [ln 4 n] + 1. Then condition A 1 ) is trivial. Moreover, taking into account that in this case

R * n = 2 2k+1 (1 -ε)r π 2k ĝ0 υ * ε N 2k+1 n = ς(S 0 ) ĝ0 k (k + 1)(2k + 1) N 2k+1
n we find thanks to convergence (8.14)

lim n→∞ (R * n + N n j=1 j 2k )/(N k n N n j=1 j k ) = 1 .
Therefore, solution (8.11) for sufficiently large n satifies the following inequality max

1≤j≤N n y * j (R * n ) j k ≤ 2N k n .
Now it is easy to check conditions A 2 ) with d n = N n and A 4 ) for arbitrary 0 < ǫ 0 < 1. As to condition A 3 ), note that by definition of t m,j in (8.15) we have

1 h 2k-1 n M n m=1 N n j=1 t 2 m,j j 2k = 1 2nh 2k+1 n ĝ0 N n j=1 y * j (R * n ) j 2k = R * n ĝ0 N 2k+1 n 2υ * ε = (1 -ε)r 2 π 2k .
Hence condition A 3 ). Therefore Propositions 7.2-7.3 and limit (7.12) imply that for any p > 0 lim n→∞ n p ̟ n = 0 .

Moreover, by condition H 4 ) the sequence γ * n goes to γ k (S 0 ) as n → ∞. Therefore, from this, (8.21) and (8.4) we get for any 0 < ε < 1 lim inf n→∞ inf Ŝn n 2k/(2k+1) R 0 ( Ŝn ) ≥ (1ε) 1/(2k+1) .

Limiting here ε → 0 implies inequality (8.1). Hence Theorem 4. Taking into account the conditions on the sequence (h n ) n≥1 given in A 1 ) we obtain limiting equality (A.5) which together with (A.4) implies (8.7).

A.4 Proof of (8.8)

Now we study the behaviour of B m,j . Due to inequality (3.9) we obtain that We remind that the sequence t * n is defined in (7.6). Therefore, property (A.5) implies max Similarly we obtain D m,j 2 ≤ h.

Finally, by (7.18) A.5 Proof of (8.9)

Indeed, by the direct calculation it easy to see that for any N ≥ ,

  the non-asymptotic oracle inequality from[START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models. Part 1. Sharp non-asymptotic oracle inequalities[END_REF], in the second one we prove that this upper bound coincides with the Pinsker constant. Let us remind that the adaptive procedure proposed in[START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models. Part 1. Sharp non-asymptotic oracle inequalities[END_REF], is based on weighted mean-squares estimates, where the weights are corresponding modifications of the Pinsker weights for the homogene case (when σ 1 (S) = . . . = σ n (S) = 1) relative to a certain smoothness of the function S and this procedure chooses an estimator best for the quadratic risk among these estimates. To obtain the Pinsker constant for the model (1.1) one has to prove a sharp asymptotic lower bound for the quadratic risk in the case when the noise variance depends on the unknown regression function. This lower bound is obtained by making use of an inequality of kind of the van Trees inequality (see,[START_REF] Gill | Application of the van Trees inequality: a Bayesian Cramér-Rao bound[END_REF]. First we prove the inequality for a parametric regression with the noise variance depending on the unknown regression (see Section 6) and further we apply the inequality to the nonparametric regression by standard reducing to a parametric case.

H 4 )

 4 The function g 2 0 (•) = g 2 (•, S 0 ) corresponding to S 0 ≡ 0 is continuous on the interval [0, 1]. Moreover, lim δ→0 sup 0≤x≤1 sup |S| * ≤δ |g 2 (x, S)g 2 (x, S 0 )| = 0 . Now we give some examples of functions satisfying conditions H 1 )-H 4 ). We fix some c 0 > 0. Let G : [0, 1] × R → [c 0 , +∞) be a function such that lim δ→0 max |u-v|≤δ sup y∈R |G(u, y) -G(v, y)| = 0 . (3.10) and G ′ * = sup 0≤x≤1 sup y∈R |G y (x, y)|/|y| < ∞ . (3.11)
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 43641 Assume that in model (1.1) the sequence (σ j (S)) satisfies the conditions H 2 )-H 4 ). Then, for any estimate Ŝn , the risk R n ( Ŝn , S) admits the following asymptotic lower boundlim inf n→∞ n 2k/(2k+1) inf Ŝn sup S∈W k r R n ( Ŝn , S)/γ k (S) ≥ 1 . (4Remark Note that in Galtchouk, Pergamenshchikov, 2005 an asymptotically efficient estimate was constructed and results similar to Theorems 4.2 and 4.3 were claimed for the model (1.1). In fact the upper bound is true there under some additional condition on the smoothness of the function S,

n

  2k/(2k+1) ∆ 3 (n) = 0 . Therefore inequality (5.6) yields lim sup n→∞ n 2k/(2k+1) sup S∈W k r R n ( S, S)/γ k (S) ≤ lim sup n→∞ sup S∈W k r γk,n (S)/γ k (S) and to prove (5.3) it suffices to show that lim sup n→∞ sup S∈W k r γk,n (S)/γ k (S) ≤ 1 .(5.7)First it should be noted that definition (5.1) and inequalities (3.7)-(3

3 )

 3 and condition (3.6) we obtain inequality (5.7). Hence Theorem 5.1. Now Theorem 4.1 and Theorem 5.1 imply Theorem 4.2.

2 π 2k .A 4 )

 22k4 There exists ǫ 0 > 0 such that lim j 4k = 0 . Proposition 7.1. Let conditions A 1 )-A 2 ). Then, for any p > 0 and for any δ > 0,

1 0 1 0

 11 Ŝ0n (x)ẽ m,j (x)dx and λ m,j (z) = S z,n (x)ẽ m,j (x) dx .

FB

  m,j /(nh)e j (I 2 η ) m,j /(nh) = 0 .(8.8)

3 .A. 2 1 First 1 ( 1 (A. 3 7 )1fff 1 - 1 f

 321113711 Proof of Lemma 8.notice that, for any S ∈ W k r , one hasŜn -S 2 n = T n ( Ŝ) -S 2 + Ψ n + ∆ n , Ŝn (x j ) -S(x))(S(x) -S(x j )S(x) -S(x j )) 2 dx .For any 0 < δ < 1, by making use of the elementary inequality2ab ≤ δa 2 + δ -1 b 2 , one gets Ψ n ≤ δ T n ( Ŝ) -S 2 + δ -1 ∆ n .Moreover, for any S ∈ W k r with k ≥ 1, by the Bounyakovskii-Cauchy-Proof of (8.First of all, note that Proposition 7.4, condition (3.7) and conditionH 4 ) {|vm(x)|≤1} E g -2 (x, S ϑ,n )g -2 0 (x m ) = 0 . (A.4)Let us show now that for any continuously differentiable functionf on [-1(v m (x i ))1 {|vm(x i )|≤1} -(v m (x i ))1 {|vm(x i )|≤1} -(v m (x i )) -(v)dv ≤ i * i=i * vm(x i ) vm(x i-1 ) |f (v m (x i ))f (z)|dz + max |z|≤1 |f (z)|(2v * + v * ) .wherei * = [nx mnh] + 1, i * = [nx m + nh], v * = ([nx mnh] + 1nx m )/(nh) and v * = ([nx m + nh]nx m )/(nh) . Therefore, taking into accout that the derivative of the function f is bounded on the interval [-1, 1] we obtain that ∆ n,m ≤ 3 max |z|≤1 | ḟ (z)|/(nh n ) + 2 max |z|≤1 |f (z)|/(nh n ) .

| 1

 1 Lm,j (x, S ϑ,n )| ≤ C * |S ϑ,n (x)D m,j (x)| + |D m,j | 1 + S ϑ,n D m,j .Note thatE(S ϑ,n (x)D m,j (x)) 2 = E {|v m (x)|≤1} ≤ (t * n ) 2 1 {|v m (x)|≤1} .

1 0 1 - 1

 111 ϑ,n (x i )D m,j (x i )) 2 = O((t * n ) 2 ) .Moreover, as to the function D m,j (•) we find that|D m,j | 1 = |e j (v m (x)) I η (v m (x))|dx = h |e j (v) I η (v)|dv ≤ 2h .

  1 and for any vector (y 1 , . . . , yN ) ′ ∈ R N + N j=1 τ j (η, y j ) N j=1 τ (y j ) -1 ≤ max j≥1 |e 2 j (I η )e j (I 2 η )| + |e 2 j (I η ) -1| min j≥1 e j (I 2 η )

  we obtain thatE S ϑ,n ) 2 ≤ h

		M n	N n
		m=1	j=1	t 2 m,j ≤ (t * n ) 2 .
	Therefore,		
	max 1≤m≤M n	max 1≤j≤N n	

B m,j /(nh) = O((t * n ) 2 + h n )

and condition A 1 ) implies (8.8).
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where J N (y 1 , . . . , y N ) = N j=1 τ (y j ) .

Obviously, to obtain a "good" lower bound for the risk R0 ( Ŝ0 n ) one needs to maximize the right-hand side of inequality (8.10). Hence we choose the coefficients (κ 

The parameter R > 0 will be chosen later to satisfy condition A 3 ). By the Lagrange multipliers method it is easy to find that the solution of this problem is

To obtain a positive solution in (8.11) we need to impose the following condition

Moreover, from condition A 3 ) we obtain that 

where

Proofs of Lemma A.1 and Lemma A.2 are given in [START_REF] Galtchouk | Adaptive nonparametric estimation in heteroscedastic regression models. Part 1. Sharp non-asymptotic oracle inequalities[END_REF].

Lemma A.3. Let θ j,n and θ j be the Fourier coefficients defined in (2.2) and

(3.4) respectively. Then, for 1 ≤ j ≤ n and n ≥ 2, sup

Proof. Indeed, we have

By making use of the Bounyakovskii-Cauchy-Schwarz inequality we get

The definition of class W 1 r implies (A.3). Hence Lemma A.1.

where the operator e j (f ) is defined in in (8.5). Moreover, we remind that 1 -1 e 2 j (v)dv = 1. Therefore, taking into account property (7.2) we obtain (8.9).