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1 Introduction

Suppose we are given observations (yj)1≤j≤n which obey the heteroscedastic
regression equation

yj = S(xj) + σj(S)ξj , (1.1)

where design points xj = j/n, S(·) is an unknown function to be estimated,
(ξj)1≤j≤n is a sequence of i.i.d. random variables, (σj(S))1≤j≤n are unknown
volatility coefficients depending on unknown regression function S.

The models of type (1.1) with σj(S) = σj(xj) were introduced in Akri-
tas, Van Keilegom (2001) as a generalisation of the nonparametric ANCOVA
model of Young and Bowman (1995). It should be noted that heteroscedastic
regressions with this type of volatility coefficients have been encountered in
econometric studies, namely, in consumer budget studies utilizing observa-
tions on individuals with diverse incomes and in analyses of the investment
behavior of firms of different sizes (see Goldfeld, Quandt, 1972). For example,
for consumer budget problems one uses there (see p. 83) some parametric
version of model (1.1) with the volatility coefficient defined as

σ2
j (S) = c0 + c1xj + c2S

2(xj) , (1.2)

where c0, c1 and c2 are some positive unknown constants.
Moreover, this regression model appears in the drift estimation problem

for stochastic differential equations when one passes from continuous time
to discrete time model by making use of sequential kernel estimators having
asymptotically minimal variances (see Galtchouk, Pergamenshchikov, 2004;
2006; 2007a; 2007b).

The volatility coefficient estimation in heteroscedastic regression was con-
sidered in a few papers (see, for example, Cai,Wang, 2008 and the references
therein). By making use of the squared first-order differences of the observa-
tions the initial problem in that paper was reduced to the regression function
estimation in the model of type (1.1).

In this paper we develop the approach proposed in Galtchouk, Perga-
menshchikov (2005). The first goal of the research is to construct an adap-
tive procedure based on observations (yj)1≤j≤n for estimating the function
S and to obtain a sharp non-asymptotic upper bound (oracle inequality) for
a quadratic risk in the case when the smoothness of S is unknown. The
second goal is to prove that the constructed procedure is efficient also in the
asymptotic setup.
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Problems of constructing a nonparametric estimator and proving a non-
asymptotic upper bound for a risk in homoscedastic model, that is when
σj(S) ≡ σ, were studied in few papers. A non-asymptotic upper bound
for a quadratic risk over thresholding estimators is given in Kalifa, Mallat
(2003). In papers by Barron, Birgé, Massart (1999), Massart (2004) an
adaptive model selection procedure has been constructed. It is based on least
squares estimators and a non-asymptotic upper bound has been obtained for
a quadratic risk which is best in the principal term for the given class of
estimators when the noise vector (ξ1 . . . , ξn) is gaussian. This type of upper
bounds is called the oracle inequality. In Fourdrinier, Pergamenshchikov
(2007) the oracle inequality has been obtained for a model selection procedure
based on any estimators in the case when the noise vector (ξ1, . . . , ξn) has a
spherically symmetric distribution. Moreover, some sharp oracle inequalities
have been obtained also for homoscedastic regression with gaussian noises,
see, for example, Kneip (1994). Here the adjective ”sharp” means that the
coefficient of the principal term may be chosen as close to unity as desired.

In the paper for heteroscedastic regression an adaptive procedure is con-
structed for which the sharp non-asymptotic oracle inequality is proved. It
should be noted that the methods used in former papers to obtain the sharp
oracle inequality in regression models are limited by the homoscedastic case
since they are based on the fact that an orthogonal transformation of a noise
gaussian vector (ξ1, . . . , ξn) gives a gaussian vector. In heteroscedastic regres-
sion models under consideration these methods are not valid since the noise
vector is not gaussian. To obtain sharp non-asymptotic oracle inequalities in
the heteroscedastic case the authors develop a new mathematical tools based
on ”penalty” methods and Pinsker’s type weights.

Moreover, in Galtchouk, Pergamenshchikov (2007c) we show that the
given adaptive estimator is efficient in the asymptotic sense, that is, the sharp
asymptotic lower bound is proved for a quadratic risk and it is attained over
this estimator.

The paper is organized as follows. In Section 2 we construct an adaptive
estimation procedure based on weighted least squares estimators and we ob-
tain a non-asymptotic upper bound for the quadratic risk. In Section 3 we
propose an estimator for the summarized noise variance and give the oracle
inequality in the case of Sobolev space, S ∈ W k

r
. The proofs are given in

Section 4. The Appendix contains some technical results.
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2 Oracle inequality

In this paper we study the non-asymptotic estimation problem of the function
S in the model (1.1) by observations (yj)1≤j≤n with odd sample number n.
We assume that in (1.1) the sequence (ξj)1≤j≤n is i.i.d. with

Eξ1 = 0 , E ξ2
1 = 1 and Eξ4

1 = ξ∗ < ∞ . (2.1)

In the sequel we denote by ξ =
√

ξ∗ − 1.
Moreover, we assume that (σl(S))1≤l≤n is a sequence of positive random

variables independent of (ξi)1≤i≤n and bounded away from +∞, i.e. there
exists some nonrandom unknown constant σ∗ ≥ 1 such that

max
1≤l≤n

σ2
l
(S) ≤ σ∗ . (2.2)

For any estimate Ŝn of S based on observations (yj)1≤j≤n, the estimation
accuracy is measured by the mean integrated squared error (MISE)

ES ‖Ŝn − S‖2
n , (2.3)

where

‖Ŝn − S‖2
n = (Ŝn − S, Ŝn − S)n =

1

n

n∑

l=1

(Ŝn(xl) − S(xl))
2 .

We make use of the trigonometric basis (φj)j≥1 in L2[0, 1] with

φ1 = 1 , φj(x) =
√

2 Trj(2π[j/2]x) , j ≥ 2 , (2.4)

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd
j; [x] denotes the integer part of x. Note that if n is odd, then this basis is
orthonormal for the empirical inner product generated by the sieve (xj)1≤j≤n,
that is for any 1 ≤ i, j ≤ n,

(φi , φj)n =
1

n

n∑

l=1

φi(xl)φj(xl) = Krij , (2.5)

where Krij is Kronecker’s symbol.
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By making use of this basis we define the discrete Fourier transformation
in (1.1) and obtain the Fourier coefficients

θ̂j,n = (Y, φj)n and θj,n = (S, φj)n . (2.6)

Here Y = (y1, . . . , yn)
′ and S = (S(x1), . . . , S(xn))

′. The prime denotes the
transposition.

¿From (1.1) it follows directly that these Fourier coefficients satisfy the
following equation

θ̂j,n = θj,n +
1√
n

ξj,n (2.7)

with

ξj,n =
1√
n

n∑

l=1

σl(S)ξlφj(xl) .

We estimate the function S by the weighted least squares estimator

Ŝλ(x) =
n∑

j=1

λ(j)θ̂j,nφj(x) , (2.8)

where x ∈ [0, 1], the weight vector λ = (λ(1), . . . , λ(n))′ belongs to some
finite set Λ from [0, 1]n. We denote by ν the cardinal number of the set Λ.
Moreover, we set

̺n = max
λ∈Λ

n∑

j=1

λ(j) and ̺
i,n

= max
λ∈Λ

sup
0≤x≤1

|
n∑

j=1

λi(j)φj(x)| , (2.9)

where φj = φ2
j − 1 and i = 1, 2.

Now we need to write a cost function to choose a weight λ ∈ Λ. Of course,
it is obvious, that the best way is to minimize the cost function which is equal
to the empirical squared error

Errn(λ) = ‖Ŝλ − S‖2
n
,

which in our case is equal to

Errn(λ) =
n∑

j=1

λ2(j)θ̂2
j,n

− 2
n∑

j=1

λ(j)θ̂j,n θj,n +
n∑

j=1

θ2
j,n

. (2.10)
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Since coefficients θj,n are unknown, we need to replace the term θ̂j,n θj,n by
some estimator which we choose as

θ̃j,n = θ̂2
j,n

− 1

n
ς̂n ,

where ς̂n is some estimator of the summarized noise variance

ςn = n−1
n∑

l=1

σ2
l
(S) . (2.11)

Such type of estimators is given in (3.5).
Moreover, for this substitution to the empirical squared error one needs

to pay a penalty. Finally, we define the cost function by the following way

Jn(λ) =

n∑

j=1

λ2(j)θ̂2
j,n

− 2

n∑

j=1

λ(j) θ̃j,n + ρP̂n(λ) , (2.12)

where ρ is some positive coefficient which will be chosen later. The penalty
term we define as

P̂n(λ) =
|λ|2ς̂n

n
with |λ|2 =

n∑

j=1

λ2(j) . (2.13)

Note that in the case when the sequence (σl(S))1≤l≤n is known, i.e. ς̂n = ςn,
we obtain

Pn(λ) =
|λ|2ςn

n
. (2.14)

We set
λ̂ = argmin

λ∈Λ
Jn(λ) (2.15)

and define an estimator of S as

Ŝ∗ = Ŝλ̂ . (2.16)

We recall that the set Λ is finite so λ̂ exists. In the case when λ̂ is not unique
we take one of them.

To formulate the oracle inequality we introduce, for 0 < ρ < 1/3, the
following function

Ψn(ρ) =
ρ(1 − ρ)Υ∗

n
(ρ) + 2ν + 2ρ2(1 − ρ)̺

2,n

ρ(1 − 3ρ)
σ∗ (2.17)
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with

Υ∗
n
(ρ) =

16ν

ρ
+ 4̺

1,n

(
1 + ν

ξ√
n

)
+ 4ν̺n

ξ√
n

.

Theorem 2.1. Let Λ be any finite set in [0, 1]n. For any n ≥ 3 and

0 < ρ < 1/3, the estimator Ŝ∗ satisfies the oracle inequality

ES‖Ŝ∗ − S‖2
n
≤ (1 + κ(ρ)) min

λ∈Λ
ES‖Ŝλ − S‖2

n
+

1

n
Bn(ρ) , (2.18)

where Bn(ρ) = Ψn(ρ) + κ∗(ρ)̺n ES|ς̂n − ςn| with

κ(ρ) =
6ρ − 2ρ2

1 − 3ρ
and κ∗(ρ) = 4

1 − ρ2

1 − 3ρ
.

If in model (1.1) the volatility coefficients (σl(S))1≤l≤n are known, then
ς̂n = ςn and inequality (2.18) has the following form

ES‖Ŝ∗ − S‖2
n
≤ (1 + κ(ρ)) min

λ∈Λ
ES‖Ŝλ − S‖2

n
+

1

n
Ψn(ρ) . (2.19)

Remark 2.1. Note that the principal term in the right-hand side of (2.18)-

(2.19) is best in the class of estimators (Ŝλ , λ ∈ Λ). Inequalities of such type
are called the sharp non-asymptotic oracle inequalities. The inequality is
sharp in the sense that the coefficient of the principal term may be chosen as
close to 1 as desired. Similar inequalities for homoscedastic models (1.1) with
σl(S) = σ were given, for example, in [13]. The methods used there cannot
be extended to the heteroscedastic case since, after the Fourier transforma-
tion, the random variables (ξi,n) in model (2.7) are dependent contrary to the
homoscedastic case, where these random variables are independent (see, for
example, Rohde, 2004).

Remark 2.2. If one would like to obtain the asymptotically minimal MISE
of the estimator Ŝ∗, then the secondary term Bn(ρ) in (2.18) should be slowly
varing. Indeed, since usually the optimal rate is of order n2k/(2k+1) for some
k ≥ 1, then after multiplying the inequality (2.18) by this rate the principal
term gives the optimal constant and the secondary one should be of type that
for any δ > 0

Bn(ρ)

nδ
→ 0 as n → ∞ .
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Due to the definitions Ψn(ρ) and Bn(ρ), it should be, for any δ > 0,

ρnδ → +∞ ,
̺nES|ς̂n − ςn|

nδ
→ 0 as n → ∞ .

One can take, for example, the parameter ρ tending to zero as n → ∞ like

ρ = O

(
1

lnγ n

)
(2.20)

for some γ > 0. The choice of ̺n and of the estimator ς̂n is proposed below.

Consider now the order of the termes ̺n, ̺1,n
, ̺

2,n
and the function Ψn(ρ)

in the case when the finite set Λ is formed by a special version of Pinsker’s
weights (see, for example, [15]). To this end, we define the sieve

Aε = {1, . . . , k∗} × {t1, . . . , tm} ,

where ti = iε and m = [1/ε2]. We suppose that the parameters k∗ ≥ 1 and
0 < ε ≤ 1 are functions of n such that,





limn→∞ k∗ = +∞ , limn→∞
k
∗

lnn
= 0 ,

limn→∞ ε = 0 and limn→∞ nδε = +∞ ,
(2.21)

for any δ > 0. For example, one can take ε = 1/ lnn and k∗ =
√

ln n for
n ≥ 3.

For any α = (β, t) ∈ Aε we define the weight vector λα = (λα(1), . . . , λα(n))′

as
λα(j) = 1{1≤j≤j

0
} +

(
1 − (j/ωα)β

)
1{j

0
<j≤ωα}

, (2.22)

where j0 = j0(α) = [ωα/ ln n],

ωα = (Aβ t n)1/(2β+1) and Aβ =
(β + 1)(2β + 1)

π2ββ
.

Hence,
Λ = {λα , α ∈ Aε} (2.23)

and ν = k∗m. Note that in this case in view of (2.21) for any δ > 0

lim
n→∞

ν

nδ
= 0 .
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Moreover, by (2.22)

n∑

j=1

λα(j) = 1{j
0
≥1} j0 + 1{ω

α
≥1}

[ω
α
]∑

j=j
0
+1

(
1 − (j/ωα)β

)
≤ ωα .

Therefore, taking into account that Aβ ≤ A1 < 1 for β ≥ 1 we find that

̺n ≤ (n/ε)1/3 ,

i.e. for any δ > 0

lim
n→∞

̺n

n1/3+δ
= 0 .

Moreover, note that for any x ∈ [0, 1], we get

n∑

j=1

λα(j)φ
j
(x) = 1{j

0
≥1}

j
0∑

j=1

φ
j
(x)

+ 1{ω
α
≥1}

[ω
α
]∑

j=j
0
+1

(
1 − (j/ωα)β

)
φ

j
(x) .

Thus Lemma A.2 implies that

̺
1,n

≤ 1 + 2β+1 ≤ 1 + 2k
∗
+1 .

Due to the condition for k∗ in (2.21) this function is slowly varying, i.e. for
any δ > 0,

lim
n→∞

̺
1,n

nδ
= 0 .

By the same way we obtain that

̺
2,n

≤ 1 + 2k
∗
+2 + 22k

∗
+1

and, therefore, for any δ > 0

lim
n→∞

̺
2,n

nδ
= 0 .

Thus, if we choose the parameter ρ = ρn as in (2.20) we obtain that in this
case, for any δ > 0,

lim
n→∞

Ψn(ρ)

nδ
= 0 . (2.24)
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3 Oracle inequality for S ∈ W k
r

Assume that S : R → R is a k times differentiable 1-periodic function such
that

k∑

j=0

‖S(j)‖2 ≤ r , (3.1)

where

‖f‖2 =

∫ 1

0

f 2(t)dt . (3.2)

We denote by W k
r

the set of all such functions. Moreover, we suppose that
r > 0 and k ≥ 1 are unknown parameters.

Note that, the space W k
r

can be represented as an ellipses in the Hilbert
space, i.e.

W k
r

= {S ∈ L2[0, 1] : S =
∞∑

j=1

θjφj such that
∞∑

j=1

ajθ
2
j
≤ r} , (3.3)

where the basis functions (φj)j≥1 are defined in (2.4); (θj)j≥1 are the Fourier
coefficients, i.e.

θj = (S, φj) =

∫ 1

0

S(t)φj(t)dt . (3.4)

The coefficients (aj)j≥1 are defined as

aj =

k∑

l=0

‖φ(l)
j
‖2 =

k∑

l=0

(2π[j/2])2l .

To estimate ςn, we make use of the following estimator:

ς̂n =

n∑

j=m
n
+1

θ̂2
j,n

, (3.5)

where the parameter 1 ≤ mn ≤ n will be chosen later.
In Section 4 we show the following result.

Lemma 3.1. For any n ≥ 2 and r > 0,

sup
S∈W 1

r

ES |ς̂n − ςn| ≤
σ + ς∗

n
(r)√

n
, (3.6)
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where σ = 2
(
ξ +

√
2
)
σ∗ and

ς∗
n
(r) =

4r
√

n

m2
n

+ 4
√

rσ∗
1

mn

+
(2 + mn)σ∗√

n
.

If we choose the parameter mn in (3.5) such that

lim
n→∞

mn√
n

= 0 and lim
n→∞

m2
n√
n

= ∞ , (3.7)

we obtain that
lim

n→∞
ς∗
n
(r) = 0 .

Theorem 2.1 and inequality (3.6) imply immediately the following result.

Theorem 3.2. Let Λ be any finite set in [0, 1]n. Assume that in the model
(1.1) the function S belongs to W 1

r
. Then, for any n ≥ 3 and 0 < ρ < 1/3,

the procedure Ŝ∗ from (2.16) with ς̂n defined by (3.5) and (3.7) satisfies the
following oracle inequality

ES‖Ŝ∗ − S‖2
n ≤ (1 + κ(ρ)) min

λ∈Λ
ES‖Ŝλ − S‖2

n +
1

n
Dn(ρ, r) , (3.8)

where
Dn(ρ, r) = Ψn(ρ) + κ∗(ρ)

(
σ + ς∗

n
(r)
) ̺n

n
.

If the set Λ is from (2.23), then for any δ > 0 and any 0 < ρ < 1/3

lim
n→∞

Dn(ρ, r)

nδ
= 0 .

4 Proofs

4.1 Proof of Theorem 2.1

First of all, note that we can represent the empirical squared error Errn(λ)
by the following way

Errn(λ) = Jn(λ) + 2

n∑

j=1

λ(j)θ′
j,n

+ ‖S‖2
n
− ρ P̂n(λ) (4.1)
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with θ′
j,n

= θ̃j,n − θj,nθ̂j,n. By setting

ςj,n = ES ξ2
j,n

=
1

n

n∑

l=1

σ2
l
(S)φ2

j
(xl) , (4.2)

we find that

θ′
j,n

=
1√
n

θj,nξj,n +
1

n
ξ̃j,n +

1

n
δ̃j,n ,

where
ξ̃j,n = ξ2

j,n
− ςj,n and δ̃j,n = ςj,n − ς̂n . (4.3)

Note now that, we can represent ξ̃j,n as

ξ̃j,n =
1

n

n∑

l=1

σ2
l
(S)φ2

j
(xl)ξ̃l + 2

n∑

l=2

τj,lξl = ξ̃′
j,n

+ 2ξ̃′′
j,n

, (4.4)

where ξ̃l = ξ2
l
− 1 and

τj,l =
1

n
σl(S)φj(xl)

l−1∑

d=1

σd(S)φj(xd)ξd .

Now we set

N1(λ) =

n∑

j=1

λ(j) ξ̃′
j,n

and N2(λ) =
1

√
nςn

n∑

j=1

λ(j) ξ̃′′
j,n

1{ς
n
>0} , (4.5)

where λ(j) = λ(j)/|λ|. In the Appendix we show that

sup
λ∈Λ

ES |N1(λ)| ≤ ξσ∗(̺n + ̺
1,n

)
1√
n

(4.6)

and
sup
λ∈R

n

ES(N2(λ))2 ≤ 2σ∗/n . (4.7)

Now, for any λ ∈ Λ, we rewrite (4.1) as

Errn(λ) = Jn(λ) +
2

n
N1(λ) + 4

√
Pn(λ)N2(λ)

+ 2M(λ) +
2

n
∆̃(λ) + ‖S‖2

n
− ρP̂n(λ) ,
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where Pn(λ) is defined in (2.14),

∆̃(λ) =

n∑

j=1

λ(j) δ̃j,n and M(λ) = n−1/2
n∑

j=1

λ(j)θj,nξj,n . (4.8)

We start with ∆̃(λ). Setting

ςj,n = ςj,n − ςn =
1

n

n∑

l=1

σ2
l
(S)φ

j
(xl) , (4.9)

we obtain that

|∆̃(λ)| ≤ |
n∑

j=1

λ(j)ςj,n | + ̺n|ς̂n − ςn|

≤ σ∗̺1,n
+ ̺n|ς̂n − ςn| . (4.10)

Now from (4.1) we obtain that, for some fixed λ0 ∈ Λ,

Errn(λ̂) − Errn(λ0) = J(λ̂) − J(λ0) + 2M(ϑ̂) +
2

n
N1(ϑ̂)

+ 4

√
Pn(λ̂)N2(λ̂) − 4

√
Pn(λ0)N2(λ0)

− ρP̂n(λ̂) + ρP̂n(λ0) +
2

n

(
∆̃(λ̂) − ∆̃(λ0)

)
,

where ϑ̂ = λ̂ − λ0.

By the definition of λ̂ in (2.15) and by (4.10) we get

Errn(λ̂) − Errn(λ0) ≤ 2M(ϑ̂) +
4σ∗̺1,n

+ 4̺n|ς̂n − ςn|
n

+
2

n
N1(ϑ̂) + 4

√
Pn(λ̂)N2(λ̂) − ρP̂n(λ̂)

+ ρP̂n(λ0) − 4
√

Pn(λ0)N2(λ0) .

Moreover, making use of the inequality

2|ab| ≤ εa2 + ε−1b2 (4.11)
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with ε = ρ/4 and taking into account the definition of penalty term in (2.13)
we deduce, for any λ ∈ Λ,

4
√

Pn(λ)|N2(λ)| ≤ ρPn(λ) + 4
N2

2
(λ)

ρ

≤ ρP̂n(λ) + ρ
|λ|2|ς̂n − ςn|

n
+

4N2
2
(λ)

ρ
.

Thus from here it follows that

Errn(λ̂) ≤ Errn(λ0) + 2M(ϑ̂) + Υn + 2ρP̂n(λ0) , (4.12)

where

Υn =
4

n
N∗

1
+

8

ρ
(N∗

2
)2 +

4σ∗̺1,n

n
+

4 + 2ρ

n
̺n|ς̂n − ςn|

with N∗
1

= sup
λ∈Λ

|N1(λ)| and N∗
2

= sup
λ∈Λ

|N2(λ)|. Moreover, note that the
bounds (4.6), (4.7) and (4.10) imply that

ESΥn ≤ Υ∗
n
(ρ)

σ∗

n
+

4 + 2ρ

n
̺nES|ς̂n − ςn| , (4.13)

where the function Υ∗
n
(ρ) is defined in (2.17).

Now we study the second term in (4.8). First, note that for any nonran-
dom vector ϑ = (ϑ(1), . . . , ϑ(n))′ ∈ R

n Lemma A.4 implies

ESM2(ϑ) ≤ σ∗

n

n∑

j=1

ϑ2(j)θ2
j,n

= σ∗
‖Sϑ‖2

n

n
, (4.14)

where

Sϑ =

n∑

j=1

ϑ(j)θj,nφj .

We set now

Z∗ = sup
ϑ∈Λ

1

nM2(ϑ)

‖Sϑ‖2
n

with Λ1 = Λ − λ0 .

We estimate this term with the help of inequality (4.14), i.e.

ES Z∗ ≤
∑

ϑ∈Λ
1

nES M2(ϑ)

‖Sϑ‖2
n

≤ νσ∗ . (4.15)
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Moreover, making use of inequality (4.11) with ε = ρ‖Sϑ‖n, we get

2|M(ϑ)| ≤ ρ‖Sϑ‖2
n

+
Z∗

nρ
. (4.16)

Now we estimate ‖Sϑ‖2
n
. We have

‖Sϑ‖2
n
− ‖Ŝϑ‖2

n
=

n∑

j=1

ϑ2(j)(θ2
j,n

− θ̂2
j,n

) ≤ −2M1(ϑ) (4.17)

with

M1(ϑ) =
1√
n

n∑

j=1

ϑ2(j)θj,nξj,n .

Now, taking into account that |ϑ(j)| ≤ 1 for any ϑ ∈ Λ1, we obtain

ESM2
1
(ϑ) ≤ σ∗

‖Sϑ‖2
n

n
.

Putting

Z∗
1

= sup
ϑ∈Λ

1

nM2
1
(ϑ)

‖Sϑ‖2
n

,

we get
ES Z∗

1
≤ νσ∗ . (4.18)

Therefore, applying inequality (4.16) for M1(ϑ) in (4.17) we deduce the upper
bound for ‖Sϑ‖2

n
, i.e.

‖Sϑ‖2
n
≤ 1

1 − ρ
‖Ŝϑ‖2

n
+

Z∗
1

nρ(1 − ρ)
. (4.19)

Taking into account this inequality in (4.16) we obtain that

2M(ϑ) ≤ ρ

1 − ρ
‖Ŝϑ‖2

n
+

Z∗ + Z∗
1

nρ(1 − ρ)

≤ 2ρ(Errn(λ) + Errn(λ0))

1 − ρ
+

Z∗ + Z∗
1

nρ(1 − ρ)
.
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Therefore (4.12) implies that

Errn(λ̂) ≤ 1 + ρ

1 − 3ρ
Errn(λ0) +

1 − ρ

1 − 3ρ
Υn

+
Z∗ + Z∗

1

nρ(1 − 3ρ)
+

2ρ(1 − ρ)

1 − 3ρ
P̂n(λ0) ,

Now by inequalities (4.15)–(4.18) we get that

ESErrn(λ̂) ≤ 1 + ρ

1 − 3ρ
ESErrn(λ0) +

1 − ρ

1 − 3ρ
ES Υn

+
2νσ∗

nρ(1 − 3ρ)
+

2ρ(1 − ρ)

1 − 3ρ
ESP̂n(λ0) .

By making use of inequality (4.13) and Lemma A.1 we come to Theorem 2.1.

4.2 Proof of Lemma 3.1

First notice that from (2.7) we obtain that

ς̂n − ςn =

n∑

j=m
n
+1

θ2
j,n

+
2√
n

n∑

j=m
n
+1

θj,n ξj,n

+ n−1
n∑

j=m
n
+1

ξ̃j,n + n−1
n∑

j=m
n
+1

ςj,n − mn

n
ςn

:= ∆1 +
2√
n

∆2 +
1

n
∆3 +

1

n
∆4 −

mn

n
ςn ,

where ξ̃j,n and ς j,n are defined in (4.3) and (4.9) respectively.
We estimate the first term by Lemma A.3 for S ∈ W 1

r
. We have

∆1 ≤
4r

m2
n

.

The next term we estimate with the help of Lemma A.4. We get that

ES(∆2)
2 ≤ σ∗∆1 ≤ σ∗

4r

m2
n

.
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By (4.4) and (4.5) we can represent ∆3 as

∆3 = N1(λI) + 2|λI |
√

nςnN2(λI)

with the vector λI = (λI(1) , . . . , λI(n))′ having the indicator components,
i.e. λI(j) = 1{j>m

n
}. By estimating in(A.1) φ2

j
by 2 we obtain

ES |N1(λI)| ≤ 2σ∗ξ
√

n .

Thus the upper bound (4.7) implies

ES|∆3| ≤ 2σ∗(ξ +
√

2)
√

n = σ
√

n .

Moreover, due to Lemma A.2 with m = 0, one has

|∆4| =

∣∣∣∣∣∣
n−1

n∑

d=1

σ2
d(S)

n∑

j=m
n
+1

φj(xd)

∣∣∣∣∣∣

≤ σ∗

n

n∑

d=1

∣∣∣∣∣∣

n∑

j=1

φj(xd)

∣∣∣∣∣∣
+

σ∗

n

n∑

d=1

∣∣∣∣∣∣

m
n∑

j=1

φj(xd)

∣∣∣∣∣∣
≤ 2σ∗ .

Hence Lemma 3.1.

5 Appendix

A.1 Proof of (4.6)

First note that we can represent the term N1(λ) as

N1(λ) =

n∑

l=1

vl,nξ̃l with vl,n =
σ2

l
(S)

n

n∑

j=1

λ(j)φ2
j
(xl) .

Recalling that Eξ̃2
1

= ξ∗ − 1 = ξ
2

we calculate

ESN2
1
(λ) =

ξ
2

n2

n∑

l=1

ESσ4
l
(S)




n∑

j=1

λ(j)φ2
j
(xl)




2

.
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Therefore for any vector λ ∈ R
n

ES |N1(λ)| ≤ σ∗
ξ√
n

max
0≤x≤1

|
n∑

j=1

λ(j)φ2
j
(x) | . (A.1)

Thus taking into account here definitions (2.9) we come to inequality (4.6).

A.2 Proof of (4.7)

By putting αl =
∑n

j=1
λ(j)τj,l and taking into account that the random

variables (ξk)1≤k≤n are independent of (σk(S))1≤k≤n we obtain that

ES

(
N2

2
(λ) | σk(S) , 1 ≤ k ≤ n

)
= 1{ςn>0}

(
n∑

l=1

σ2
l
(S)

)−1 n∑

j=1

α̂l , (A.2)

where

α̂l = E(α2
l
| σk(S) , 1 ≤ k ≤ n)

=
σ2

l
(S)

n2

l−1∑

r=1

σ2
r
(S)




n∑

j=1

λ(j)φj(xl)φj(xr)




2

.

Therefore the orthonormality property (2.5) implies that for any λ ∈ R
n

α̂l ≤ σ∗

σ2
l
(S)

n2

n∑

d=1




n∑

j=1

λ(j)φj(xl)φj(xd)




2

= σ∗

σ2
l
(S)

n

n∑

j=1

λ
2
(j)φ2

j
(xl) ≤ 2σ∗

n
σ2

l
(S) .

Now by making use of this inequality in (A.2) we get (4.7).
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A.3 Technical lemma

Lemma A.1. For any n ≥ 1 and λ ∈ Λ,

ESP̂n(λ) ≤ ES Errn(λ) +
̺n

n
ES|ς̂n − ςn| +

σ∗̺2,n

n
.

Proof. Indeed, by the definition of Errn(λ) we have

Errn(λ) =

n∑

j=1

(
(λ(j) − 1)θj,n + λ(j)

1√
n

ξj,n

)2

.

Therefore,

ESErrn(λ) ≥ ES

1

n

n∑

j=1

λ2(j) ξ2
j,n

= ES

1

n

n∑

j=1

λ2(j) ςj,n ,

where the sequence (ςj,n) is defined in (4.2). Moreover, note that the last
term can be estimated as

∣∣∣∣∣∣

n∑

j=1

λ2(j)ςj,n − |λ|2ςn

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

n

n∑

l=1

σ2
l
(S)

n∑

j=1

λ2(j) φ
j
(xl)

∣∣∣∣∣∣
≤ σ∗̺2,n

.

We recall that the definition of the set Λ and the definition of ̺n in (2.9)
imply that |λ|2 ≤ ̺n for λ ∈ Λ. Therefore for any λ ∈ Λ

n∑

j=1

λ2(j) ςj,n ≥ |λ|2ς̂n − σ∗̺2,n
− |λ|2|ς̂n − ςn|

≥ |λ|2ς̂n − σ∗̺2,n
− ̺n|ς̂n − ςn| .

Hence the desired inequality.

A.4 Properties of trigonometric basis

Lemma A.2. For any m ≥ 0,

sup
N≥2

sup
x∈[0,1]

N−m

∣∣∣∣∣

N∑

l=2

lmφ
l
(x)

∣∣∣∣∣ ≤ 2m . (A.3)
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Proof. Due to the properties of the trigonometric functions, we get

N∑

l=2

lmφ
l
(x) =

∑

1≤l≤N/2

(2l)m cos(4πlx)

−
∑

1≤l≤(N−1)/2

(2l + 1)m cos(4πlx) .

This yields

∣∣∣∣∣

N∑

l=2

lmφl(x)

∣∣∣∣∣ ≤

∣∣∣∣∣∣

∑

1≤l≤(N−1)/2

((2l + 1)m − (2l)m) cos(4πlx)

∣∣∣∣∣∣
+ Nm

≤
∑

1≤l≤(N−1)/2

((2l + 1)m − (2l)m) + Nm

=
∑

1≤l≤(N−1)/2

m−1∑

j=0

(
m

j

)
(2l)j + Nm .

This implies (A.3).

Lemma A.3. For any function S ∈ W k
r ,

sup
n≥1

sup
1≤m≤n−1

m2k

(
n∑

j=m+1

θ2
j,n

)
≤ 4r

π2(k−1)
. (A.4)

Proof. First, note that any function S from W k
r can be represented by its

Fourier series, i.e. S =
∑∞

j=1 θjφj with the coefficients defined by (3.4). By
denoting the residual term for S as

∆m(x) = S −
m∑

j=1

θjφj =
∞∑

j=m+1

θjφj(x) ,

we obtain that

n∑

j=m+1

θ2
j,n

= inf
α1,...,αm

‖S −
m∑

j=1

αj φj‖2
n ≤ ‖∆m‖2

n .
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Moreover, it is easy to deduce that

‖∆m‖2
n = n−1

n∑

k=1

∆2
m(xk) =

n∑

k=1

∫ x
k

x
k−1

∆2
m(xk)dx

≤ 2

∫ 1

0

∆2
m(x)dx + 2

n∑

k=1

∫ x
k

x
k−1

(∆m(xk) − ∆m(x))2dx .

The last term in this inequality we estimate as

(∆m(xk) − ∆m(x))2 =

(∫ x
k

x

∆̇m(z)dz

)2

≤ n−1

∫ x
k

x
k−1

(∆̇m(z))2dz .

Therefore,

‖∆m‖2
n ≤ 2‖∆m‖2 +

2

n2
‖∆̇m‖2

= 2
∞∑

j=m+1

θ2
j

+
2

n2

∞∑

j=m+1

θ2
j
‖φ̇j‖2.

Now note that by the representation of the set W k
r

in the form (3.3) we can
estimate the first term in the last inequality as

∞∑

j=m+1

θ2
j

=
∞∑

j=m+1

θ2
j

aj

aj

≤ r

am+1

≤ r

(πm)2k
.

Similarly, we find that

∞∑

j=m+1

θ2
j
‖φ̇j‖2 ≤ sup

j≥m+1

‖φ̇j‖2

aj

r ≤ sup
j≥m+1

‖φ̇j‖2

‖φ(k)
j ‖2

r ≤ r

(πm)2(k−1)
.

Therefore, for m ≤ n we get that

1

n2

∞∑

j=m+1

θ2
j
‖φ̇j‖2 ≤ r

π2(k−1)m2k
.

This implies (A.4).
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Lemma A.4. Let ξj,n be defined in (2.7) for the model (1.1). Then, for any
real numbers v1, . . . , vn,

E

(
n∑

j=1

vjξj,n

)2

≤ σ∗

n∑

j=1

v2
j . (A.5)

Proof. Due to the definition of ξj,n, one has

n∑

j=1

vj ξj,n =

n∑

l=1

σlṽl ξl

with

ṽl =
1√
n

n∑

j=1

vjφj(xl) .

Moreover

E

(
n∑

j=1

vj ξj,n

)2

=

n∑

l=1

σ2
l
(S)ṽ2

l ≤ σ∗

n∑

l=1

ṽ2
l

= σ∗

n∑

i,j=1

vivj(φi, φj)n .

The orthogonality of the basis (φj) implies inequality (A.5). Hence Lemma A.4.
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