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ZERO-SUM FREE SEQUENCES WITH SMALL SUM-SET

least possible size of the set of all subset-sums of A.

Introduction and Results

For an abelian group G and a subset B of G, write Σ(B) := { b∈C b | C ⊂ B} for the set of all subset sums of B. We say that B is zero-sum free if it contains no non-empty subset adding up to zero. In this note we are only interested in finite cyclic groups, and we write Z n = Z/nZ.

Define f n (k) = min |Σ(B)| -1, where B runs over all zero-sum free subsets of Z n of cardinality k, and set f (k) := min n f n (k). If there are no zero-sum free sets of cardinality k in Z n , we set f n (k) = ∞. This function arises naturally when considering the structure of zero-sum free sequences in Z n with not too many repetitions. For example, Gao and Geroldinger [START_REF] Gao | On the structure of zerofree sequences[END_REF] showed that a sequence a 1 , . . . , a m in Z n with m > δn contains a sub-sequence adding up to 0, provided that no element occurs in the sequence more than ǫn times, where ǫ is a constant depending only on δ, its precise value being determined by f n .

The following proposition summarises our knowledge about f . Proposition 1.1.

(1) We have f (1) = 1, f (2) = 3, f n (3) = 5 for n even, and f n (3) = 6 for n odd.

(2) We have f (k) ≥ 2k for k ≥ 4, and f (k) ≥ 1 9 k 2 .

(

) If p is prime, then f p (k) ≥ k+1 2 -δ, where δ = 0, k ≡ 0 (2) 1, k ≡ 1 (2) 3 
The first statement is straight forward. The second is due to Eggleton and Erdős [START_REF] Eggleton | Two combinatorial problems in group theory[END_REF] and Olson [4,Theorem 3.2], respectively, and the third is due to Olson [START_REF] Olson | An addition theorem modulo p[END_REF]. In this note we describe the computation of f n (k) for k ≤ 7 and all n.

The computations for k = 7 took 18 hours of CPU-time, the same algorithm solved k = 6 within 2 minutes. Hence, even if we only assume exponential growth of the running time, which appears somewhat optimistic, the case k = 8 would require some serious improvements of the algorithm.

Our main result is the following Theorem 1.2. We have f (4) = 8, f (5) = 13, f (6) = 19, and f (7) = 24.

In fact, we computed f n (k) for k ≤ 7 and all n; the results of these computations are listed in the following table.

How to read the table :  The last column gives an example of a set B of k elements which has no zero-sum and which has the number of non-empty sums specified in the third column. The second column specifies the conditions on n for this example to work. Some of the examples of B are only specified for some fixed n 0 ; it is clear how to turn this into an example for any multiple of n 0 .

Thus one gets: if the condition in the second column is satisfied, then f n (k) has at most the value given in the table. Using a computer we checked that there are no other examples making f n (k) smaller.

The boldface values in the third column are the values of f (k).

k cond. on n f n (k) Example 2 n ≥ 4 3 {1, 2} ⊂ Z n 3 n ≥ 6 2|n 5 {1, 1 2 n, 1 2 n + 1} ⊂ Z n n ≥ 7 6 {1, 2, 3} ⊂ Z n 4 9|n 8 {3, 1, 4, 7} ⊂ Z 9 n ≥ 10 2|n 9 {1, 2, 1 2 n, 1 2 n + 1} ⊂ Z n n ≥ 12 3|n 9 {1, 1 3 n, 1 3 n + 1, 2 3 n + 1} ⊂ Z n n ≥ 11 10 {1, 2, 3, 4} ⊂ Z n 5 n ≥ 14 2|n 13 {1, 2, 1 2 n, 1 2 n + 1, 1 2 n + 2} ⊂ Z n 15|n 14 {-1, 2, 3, 4, 5} ⊂ Z 15 n ≥ 16 15 {1, 2, 3, 4, 5} ⊂ Z n 6 n ≥ 20 2|n 19 {1, 2, 3, 1 2 n, 1 2 n + 1, 1 2 n + 2} ⊂ Z n 21|n 20 {-1, 2, 3, 4, 5, 6} ⊂ Z 21 n ≥ 22 21 {1, 2, 3, 4, 5, 6} ⊂ Z n 7 25|n 24 {5, 10, 1, 6, 11, 16, 21} ⊂ Z 25 n ≥ 26 2|n 25 {1, 2, 3, 1 2 n, 1 2 n + 1, 1 2 n + 2, 1 2 n + 3} ⊂ Z n 27|n 26 {1, -2, 3, 4, 5, 6, 7} ⊂ Z 27 n ≥ 30 3|n 27 {1, 2, 1 3 n, 1 3 n + 1, 1 3 n + 2, 2 3 n + 1, 2 3 n + 2} ⊂ Z n n ≥ 30 5|n 27 {1, 1 5 n, 1 5 n + 1, 2 5 n, 2 5 n + 1, 3 5 n + 1, 4 5 n + 1} ⊂ Z n n ≥ 29 28 {1, 2, 3, 4, 5, 6, 7} ⊂ Z n It is clear that f n (k) is either ∞ or less than n, so in particular f n (k) = ∞ if n ≤ f (k).
On the other hand, for any n > f (k) the table does give an example which yields f n (k) < ∞. Thus we get:

Corollary 1.3. If k ≤ 7, then f n (k) = ∞ if and only if n ≤ f (k).

Description of the algorithm

Let k and ℓ be fixed. We want to check whether there exists a number n and a zero-sum free set

B = {b 1 , . . . b k } ⊂ Z n consisting of k distinct elements such that |Σ(B)| -1 = ℓ.
First we describe how to turn the problem into an algorithmically decidable one, and then we shall describe how to reduce the amount of computation so as to solve the problem in real time.

Suppose there exist such n and B. Then we get an equivalence relation ∼ on the set of non-empty subsets of {1, . . . , k}, defined by

C ∼ C ′ ⇐⇒ i∈C b i =
i∈C ′ b i , and this equivalence relation has ℓ equivalence classes. Moreover, the elements b i of B form a solution modulo n of the system of equations and inequations E(∼), which we define as follows:

(1) For each i = j, take the inequation x i = x j .

(2) For each C ⊂ {1, . . . , k}, C = ∅, take the inequation i∈C x i = 0.

(3) For each pair C, C ′ ⊂ {1, . . . , k}, take i∈C x i = i∈C ′ x i or i∈C x i = i∈C ′ x i , depending on whether C ∼ C ′ or not. On the other hand, any solution modulo n of this system E(∼) defines a set B solving the original problem.

The algorithm now does the following. It iterates through all possible equivalence relations with at most ℓ max equivalence classes, where ℓ max = k(k+1) 2 -1 is one less than the trivial upper bound for f n (k). For each relation ∼, it checks whether there is an inequation L = R in E(∼) such that L = R lies in the Z-lattice generated by the equations in E(∼). If this is the case, then E(∼) is not solvable modulo n for any n. Otherwise, call ∼ an almost-example.

Note that not all almost-examples really yield an example of a set B. For example, E = {x 1 = 0, x 2 = 0, x 1 = x 2 , 2x 1 = 2x 2 = 0} has no solution modulo any n, but none of x 1 = 0, x 2 = 0, x 1 = x 2 lies in 2x 1 = 0, 2x 2 = 0 Z . In fact, by leaving out any of the inequations the system becomes solvable for any even n.

For each almost-example, the algorithm solves the system of equations in E(∼) in Q/Z, that is, we solve it in Q in the usual way, but whenever an equation L = 0 is divided by an integer a, one has to separately consider the cases L a = 0, L a = 1, . . . , L a = a -1. Thus one gets a whole list of solutions, and each solution consists of a list of variables x i which can be chosen freely, and linear expressions for the remaining ones. Now the algorithm symbolically plugs these linear expressions into the inequalities L = R of E(∼). If one gets identically L = R, then this is not a solution of E(∼); if however one does not get identically L = R for any of the inequalities, then almost all values in Q/Z for the free variables x i yield a solution of E(∼) in Q/Z, which means that by multiplying by appropriate n, we find solutions in Z n . Finally, the computer prints all those solutions of E(∼) in Q/Z, and we manually check the necessary conditions on n to make the example work.

The problem is now finite, but the number of equivalence relations which we have to try is of magnitude the number of equivalence relations on a set of 2 k elements, that is, even for k = 4 we would have to check about 10 10 cases. Since each single case requires a considerable amount of computation, this would already stretch our resources.

We first remark that it turned out that the number of almost-examples is very small. For example, for k = 7 and ℓ ≤ 27 there are only 19 up to permutation of the set B, so there is no need to optimise any part of the algorithm treating the almost-examples. And even though the search for almost-examples finds some almost-examples in several different shapes given by permutations of the basic set, removing duplicates takes almost no time compared to the main search. Thus in the sequel, we describe how the algorithm works in practice, but we only deal with the part searching for almost-examples.

The program starts with a system E consisting only of the inequations (1) and (2). Then it recursively adds equations and inequations of the form (3) to E. As soon as E gets inconsistent, the program stops in this branch. By "inconsistent" we mean, as described above, that there exists an inequation whose negation lies in the lattice generated by the equations.

The program also stops if it can easily prove that the final equivalence relation will have more than ℓ max equivalence classes. To this end, it searches for a maximal anti-clique using a greedy approach. Start with an empty anti-clique A. Iterate through all subsets C ⊂ {1, . . . , k}. If for all C ′ ∈ A, E c is inconsistent with the equation i∈C x i = i∈C ′ x i , then add C to A. The cardinality of A is a lower bound for the number of different sums we will finally get. Whether this method yields good bounds heavily depends on the order in which the subsets C are considered. We will describe the order below.

We can greatly reduce the computation time by exploiting symmetry coming from permutations of the elements of B. We use the following general method: we choose a totally ordered set Γ, and for each complete system E a function v E : {1, . . . , k} → Γ such that v σ(E) (σ(i)) = v E (i) for any permutation σ ∈ S k . We may then restrict our search to those E for which v E is (weakly) increasing. During the computation, the program computes lower and upper bounds for the values of v E and stops if v E can not be increasing anymore.

The function v E which we use is:

v E (i) = (number of equations in E of the form x i = a + b, number of equations in E of the form a = x i + b, number of equations in E of the form x i + a = b + c) ∈ N 3 .
We use the lexicographical order on these tuples, where the first entry is the most significant one.

It is important to choose a good order in which to try to add equations and inequations during the recursion, so that we get contradictions as early as possible. A good approach is to start with equations between one and two element sums: on the one hand, such equations imply a lot of other equations. On the other hand, if only few such equations exist, then we already get a lot of different sums, which is also helpful. Therefore, the program first treats the equations of the form x i = x i ′ +x i ′′ , then the equations of the form x i +x i ′ = x i ′′ +x i ′′′ , and the remaining ones only afterwards. Another advantage of this order is that we are able to apply the symmetry conditions early. Now we can explain the order in which the above anti-clique A is built: as we expect to have a lot of inequations between one and two element sums, the program tries these sums first when constructing the anti-clique.

Finally, we mention some of the data structures used to work more efficiently with E c .

• Do not perform any consistency check of E c with another equation or inequation twice: always store the old results. • Keep track of the equivalence relation defined by the equations which we already added to E c . If C and C ′ are equivalent, then concerning consistency of E c we do not need to distinguish between C and C ′ , i.e. we are able to use remembered consistency results more often. Also update the equivalence relation when we accidentally stumble over an equation which follows from E c .

• Each time an equation is added to E, immediately put the system of equations into upper triangular form.

Mathematics Subject Classification. Primary 11B75; Secondary 11B50. Supported by the Fondation sciences mathématiques de Paris.c 1997 American Mathematical Society