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Abstract

We present in this paper necessary and sufficient conditions for the representation
of preferences in a decision making problem, by the Sugeno integral, in a purely
ordinal framework. We distinguish between strong representation (exact) and weak
representation (no contradiction on strict preferences).
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1 Introduction

The main purpose of decision making theory is to find numerical representa-
tions of a given preference relation on a set of objects X. Usually, a preference
relation on X is a binary relation denoted >, which is complete, reflexive
and transitive. Depending on the structure of X, there are many results (see
e.g. [KLSTT71]) giving necessary and sufficient conditions on > in order to
have a numerical representation of >, i.e. a mapping V' : X — R such that
Va,b€ X,a > b< V(a) > V(b). A large class of decision making problems is
concerned with (or can be turned into) the case where the objects are points
in some n-dimensional space E", where F is a totally ordered set, typically
E =RU{—00,00} or [0,1]. In this case, denoting a = (a4, ...a,) an object
in E™, we call a; the score of object a on the ith dimension, V' (a) is the global
score of a.
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In real situations, where scores have to be directly assessed by the deci-
sion maker, it is often the case that F is a finite totally ordered set such
as {bad,medium,good}. In this case, two problems arise, one is due to the fact

that V' cannot use arithmetical operations and the second is the finiteness of
E.

A complete treatment of this case is beyond the scope of a single paper, and
we will focus only on a part of it. First, we will discard any problem coming
from the (possible) finiteness of E, and will suppose that we always “have
enough points” in E (this will be detailed in Section 2). The reader is referred
to [Gra01] for a detailed analysis of this question. Second, we concentrate
on a particular class of functions V', called Sugeno integrals with respect to
a capacity [Sug74]. The reason is that the Sugeno integral w.r.t. a capacity
coincides with the class of Boolean polynomials (i.e. expressions P(ay, - .., a,)
involving n variables and coefficients valued in E, a totally ordered set with a
least element 0 and a greatest element 1, linked by minimum (A) or maximum
(V) in an arbitrary combination of parentheses, e.g. ((aAai)V (a2 A(BVaz))) A
a4), such that P(0,0,...,0) =0, P(1,1,...,1) = 1, and P is non decreasing
w.r.t. each variable [Mar01]. These three conditions are very natural in the
context of score aggregation, since they mean that an object having the least
(resp. the greatest) score on each dimension should receive as global score the
least (resp. the greatest) one, and that improving a score on one dimension
cannot decrease the global score. Thus, the Sugeno integral captures a large
class of interest (however, see Section 6 for a discussion on limitations).

Suppose E is fixed, and a preference relation on a subset of E™ is given. Our
aim is to know if this preference relation is representable by a Sugeno integral,
and in the affirmative, by which capacities.

The paper is organized as follows. Section 2 presents the basic material for the
sequel, and defines exactly the representation problem we address, introducing
the notion of strong representation and weak representation. Section 3 solves
the strong representation problem, while Section 4 solves the weak one. To
conclude section 5 gives an example and section 6 presents a discussion about
the Sugeno integral.

2 Framework and notations

2.1 The preference representation problem

Let (E,<) be a totally ordered set with a least element 0 and a greatest
element 1. We consider O a finite subset of E", containing objects of interest,
on which the decision maker has a preference, expressed under the form of a



complete, reflexive, and transitive binary relation >. We denote by > and ~
the asymmetric and symmetric part of > respectively. The binary relation >
is called the strict preference, while ~ is the indifference relation. Clearly, ~
is an equivalence relation, and we denote by [a] the equivalence class of a € O.
Since O is finite, so is the number of equivalence classes, which we call p. For
the sake of convenience, we choose in each equivalence class a representative
a', which we number so that a* < a? < -+ < daP.

We distinguish two levels of representation of the preference. The strong rep-
resentation consists in finding a function V : O — E such that

Va,b€ O,a = b < V(a) > V(). (1)

It is well known and easy to prove (see [KLST71]) that when E is RU{—o0, o0},
such a representation always exists when O is finite !. By contrast with the
strong representation, the weak representation merely forbids to map strict
preference of a over b to b > a. Hence, function V is such that:

Va,b € O,a > b= —=(V(b) > V(a)), (2)
where — denotes negation.

Note that if a ~ b, there is no restriction on V(a) and V(b). Clearly, the set
of weak representations includes the set of strong ones.

2.2 Capacities and the Sugeno integral on finite sets
We call C'={1,...,n} the index set of dimensions used to score the objects.

Definition 1 A capacity on C [Sug7/] is an isotone mapping from the Boolean
lattice 2€ to E preserving top and bottom, i.e. (@) =0, u(C) =1, and A C B
implies (A) < u(B).

We denote by M (C) the set of all capacities defined on C. On this set we
introduce the pointwise order, i.e. u < ' if and only if VA € 2¢, pu(A) <
p' (A); and the capacities V;e; p; and A,c; p; are defined pointwise.

Particular types of capacity useful in the sequel are called mazitive capacity
and minitive capacity, which we denote II and N respectively. Maxitive capaci-
ties are sup-preserving capacities, also called possibility measures [DuPrSa01]:
[I(AU B) =TI(A) VII(B), for any A, B € 2€. The associated possibility dis-
tribution 7 is defined by 7 (i) = II({:}), for any ¢ € C. Minitive capacities are
inf-preserving mappings, i.e N(AN B) = N(A) A N(B), for any A, B € 2°.

I Tt suffices to assign a number to each equivalence class so that the ordering reflects
the preference. So this remains possible if |E| > p.



We introduce now the Sugeno integral [Sug74] on a finite set. For any function
a:C — E, we denote a(i) by a;, thus identifying E¢ with E".

Definition 2 Leta € E™, and p be a capacity on C'. The Sugeno integral of a
with respect to p is defined by: S,(a) == \Vi_ 1[a(Z A u(Agy)], where ( ) indicates
a permutation on C such that agy < --- < amy, and Agy == {(i),...,(n)}.

Note that the permutation (-) depends on a.

Property 1 For any capacity u € M(C) and any a € E™, we have

(i) /\ a; < Sula) < \/ a;.
(m) zfa <d (pomt’wzse order), then S,(a) < S,(a).

(ii1) S, ( /\[a V pu(Agtny)], with Agpiry = 0.

The first two properties are elementary, the third one can be found in [Mar98].

The Sugeno integral w.r.t maxitive capacities Il with associated possibility
distribution 7 reduces to, for any a € E™:

n

Su(a) =V [7() A ail. (3)

i=1
Similarly the Sugeno integral w.r.t minitive capacities N is

n

Sn(a) = \[n(i) V a;], with n(i) = N (C\{d}). (4)

i=1
(for a proof, see [DuPr86]).

2.3 Representation of preference by the Sugeno integral

We restate the representation problem under the assumption that the function
V we are looking for is a Sugeno integral. Hence, V' will be entirely determined
if p is known. The problem amounts to finding if there exists a capacity u such
that (1) or (2) is satisfied, and in the case it exists, what is the set of all solu-
tions. Solving this problem in the general case is difficult, hence our approach
is to split it in two pieces. Let us consider first the strong representation prob-
lem. It amounts to find p “numbers” o; < ay < --- < oy in E such that there
exists a capacity u satisfying

Su(a) =a;, Yae€ld], Vi=1,...,p, (5)

according to notations of Section 2. For the weak representation problem, it
suffices to find p — 1 numbers 0 =: ap < 3 <y < --- < @ :=1in F such



that there exists a capacity p satisfying
i1 < Su(a) <y, Vae€ld], Vi=1,...,p. (6)

When F is finite with |E| > p, it is possible to build an efficient enumerative
algorithm, taking into account properties of the Sugeno integral, which gen-
erates p-uples (ay,...,q,), in order to test conditions (5) or (6). If we note
Sai,....a,, the set of capacities which are solutions for a p-uple (ay, ..., ap,), the
solution set we are looking for is Uy,,....a,Say,....a,- Hence, we limit ourself to
the problem of finding the set of all capacities satisfying either conditions (5),
or conditions (6) for a given p-uple.

3 Strong representation

In this section, we solve the strong representation problem, i.e. supposing to
have p numbers a; < --- < o, in F, find the set of capacities satisfying all
conditions (5). Let us denote this set by S, avoiding subscripts ay,...,q,
unless necessary. We solve the problem first for a single equivalence class,
say [a‘]. Let us call S; the set of solutions. In order to find S;, we first build
the set S=(a) of capacities such that S,(a) < a;, for some a € [af], and the
set S7(a) with the reversed inequality. Then clearly, S; = Naelai] (8=(a) N
S7(a)), and S =N, S;.

3.1 Construction of S;

We are looking for all capacities p such that S,(a) = o, for a given a in [a'].
For the sake of simplicity, we drop index 7 for «; in all this section. To build
our set of solutions we need the following steps:

Step 1: Construction of S5(a)
Let a be in [a’], commonly we use the notations: a() = 0 and a(p4+1) = 1.

Definition 3 Let iZ, be the index such that (i2,-1) <a< a2, and iz,
be the one such that a(i;‘rl) <a< a(iga).

Note that in this definition a(;) means the j™ largest a; (see definition 2). We
illustrate the above definition by Fig. 1.

Definition 4 Let a € O and o € E. We define the set function 1* by:

aif ACA
VAeP(C)\{0,C}, p»(A)= (@a)

1 otherwise
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It is easy to check that i** € M (C).

Property 2 Ifi;, #1, (% is a maxitive capacity with the possibility dis-

tribution: 7 (1) =--- =7 (zia — 1) =landm (zia) =---=7(n)=oa.

Proof : If i;, = 1, i®* is not a maxitive capacity since 1 = g (C) >
Vieci®* ({i}) = a. If 57, # 1, we name II the maxitive capacity with the

possibility distribution 7 (1) = --- =« (zia - 1) =land (zia) = ... =
m(n) =a. VA CC, II(A) = Vieca 7 (i), which is clearly equal to g**. m

Property 3 Ifi;, =1, then Sjaa(a) > . Otherwise Spaa(a) < a.

>
Proof : Assume i, # 1, then using (3), we obtain Sje.(a) = Vs 1%_) \Y%

Visiz, . Since V:i‘fla(i) < a, we get the desired result.
Now if i, = 1, clearly Sgea(a) > aq) > a. m

From Property 3 we deduce immediately:

Corollary 1 Sja.e(a) < « if and only if apy < c.

Lemma 1 Givena € O and a € F,

0 if aq) > o

{ne M(C)ISu(a) < a} = A _
{peM(C)| p<p»} otherwise.

Proof : Let 11 be a capacity such that for a subset A, p(A) > g%* (A) . Clearly



A is neither the set C' nor the empty set. The case A A(iga) cannot happen
because it implies 4*® (A) = 1; so we have A C A(i;a). Then 1 (A) > «, and
the monotonicity of the capacity permits us to write ag> A p (A(Z-ga)) > o
which implies S, (a) > o. =

In substance, the result says that the upper envelope of the set of solutions,
whenever nonempty, is a maxitive capacity (in possibility theory, these are the
least informative capacities).

The next result gives a characterization of the capacities satisfying p < g*°.

Property 4 Let p1 be in M (C), pu < p»* if and only if u (A(ig )) < a.

S,

Proof : If we have p < ®® then p (A(ii,a)) < ave (A(ii,a)) =alfp (A(ii,a)) <
o there are two possible cases. Either A C A;> ) and we get u(A) < p (A( > ) <
<

a = g% (A). Or A Z A;> ) hence we have %% (A) = 1 and so /L(A)
are(A). m

In summary, the set {u € M (C)|S,(a) < a} is empty if aq) > o and is the
set {,u eM(QC)|u (A(i;a)) < a} otherwise.

Step 2: Construction of S7(a)

Definition 5 Let a € O and o € E be given, we define:

(0% Zf A > g A
VAeP(C)\{0,C} a»*(A)= (i@a)

0 otherwise
and > (0) =0, g (C) = 1.
It is easy to check that 1%* € M (C).
Property 5 If i%a #n+1, 4% is a minitive capacity.
Proof : The proof is quite similar to the proof of Property 2 m

Property 6 Sjc.(a) > a if and only if ap) > o

Proof : If agm) > @, Spe(a) = i\:/l[%)/\ﬂ“’“(A(z‘))] > gz ) N (A,
If Sja.e (@) > « then we get Vi ag; V a** (A(,-H)) > . So for (i) = n we have
A(n) = A(n) V ﬂa’a(A(n+1)) > a.n

)Zoz.



Lemma 2 Let a € O and o € E be given.

0 if an) < @

{peM(@) | Sua)2a}= ) ,
{peM(C)| p>p»} otherwise.

Proof : The proof is similar as the proof of Lemma 1. m
Property 7 Let p be a capacity, p > a*® if and only if u (A(z'Z )) > .
Proof : The proof is the dual of the proof of Lemma 2. m

In conclusion, the set {u € M (C)|Su(a) > a} is empty if ap,) < o and is
{u|u (A(z'Z )) > a} otherwise.

Step 3: Construction of S7(a) N S7(a)
Let a be in [a], the association of Lemma 1 and 2 implies the following result.
Theorem 1

0 if ay < a or agy > «

{pe M(C)[Su(a) =a} = . .
{p e M(C)|p** < p< p»*} otherwise.

Step 4: Construction of S;
In this section we are interested of representing an equivalence class.
Theorem 2 The set of capacities pu such that S,(a) = a Va € [a'] is

o () if Ja € [a'] such as aqy > o or agy < a,

o {,LLEM )V v <p< N\ A%} otherwise .

a€lat] a€la?]

Note that the capa(:lty Vaelai] £ 1s no longer a minitive capacity, and that
the capacity Aqepi) 4 is no longer a maxitive capacity.

Proof : According to theorem 1, we can find a solution if « is such that a() <
o < amyVa € [o'] that is to say if and only if Vyepiaq) < @ < Auepai) Gn)-
When We have Voeiai) 01) < Adaeai) @(n), & capacity p is a solution if and only
if g < p < p**Va € [az] in other words if and only if Vg i < p <
Naclai] 4. We know that the % take the values 0 or o and the capacities



p» the values 1 or . Henceforth, V,epi 4% < Agepai) 4% ®

3.2 Construction of S

In this section, the goal is to find one or several common capacities for repre-
senting simultaneously several equivalence classes. Hence the set of solutions
is the intersection of the set of solutions for each class.

We define i := Vyepei) %%, and i := Agefqi] A2

With these new notations, for a given equivalence class [a'], the solutions are
such that i* < u < fi*. Consequently our solution set is the set of capacities
such that \/?_; i < p < AP_; ji*. Hence we must find a necessary and sufficient
condition for this double inequality to be true.

Theorem 3 There exists a common capacity for the different equivalent classes

if and only if Vi, 7, o < aj = A(i2 ) z A(z}ia ) Va € [a'], Vb € [o].

b,a]' 4

Proof : For i = 1,...,p, the capacities i* can take the values o; or 0 and the
capacities i° the values a; or 1. We have a solution if and only if vle/“ﬁ' <
Ni1ji'. Consequently, if /i/ takes the value a; for a given index j, fi* cannot
reach the values o; < ;. Let o; < a; € E. The definition of the measures /i’

associated to ¢ implies A (.> ) C A,Vb € [a?]. For such sets A, we must have

Zb_,aj

Ag A(z‘i Y)‘v’a € [a*]. Writing this property for the set A, . \, we obtain
o . oy

gh< pt = A(‘> ) Z A(iia») for all o; < @, Va € [da'], Vb € [¢’].

i2
b,aj

On the other hand, if for all o; < «;, Va € [a'], Vb € [a?], we get A<. ) ¢

Zb,ajz

> )’ then when «; is the value of 7/, i cannot take the value ;. It

A
combietes the proof of the equivalence. m

4 Weak representation

We address now the weak representation problem. We suppose to have p — 1
numbers 0 =: ap < a3 <y <--- <, :=11in F, and we try to find the set
of capacities such that all conditions (6) are satisfied. Let us call W this set
of solutions, avoiding as before the subscripts a1, ..., 0 1.

4.1 Construction of {y € M (C)|S,(a) < a < S,(b)}.

If a1y < o, the set of the capacities 1 such that S,(a) < o has a greatest



element 4** and if b,) > «, the set of the capacities p such that S,(b) > «
has a least element 2*®. In other words we obtain the following result:

Property 8 Let a,b € O and o € E be given, the set of capacities p such
that Su(a) < a < S,(b) is equal to

o 0 ifap)y > orby <a,
o {u EMEC)| per<u< ﬂ“""} otherwise.

4.2 Construction of W
First we introduce the following capacities:

Definition 6 Let ji and i be two capacities defined by:

p—1 p—1
VAEPE), A=V V @A), ad)=A A i)
1=1 a€[aitl] i=1 ac[ai]

Theorem 4 The set of capacities p such that S, (a) < o; < S, (b), Va €
[@'], Vb€ [aT],Vi=1,....,p—1 is

o () if 3i such that apy > o for some a € [a'] or Ti such that by < o; for
some b € [a*T!],
o {u such that i < p < i1} otherwise.

Proof : If there exists ¢ such that for a € [a'], a(1) > o; or such that for b €
[a™*1], by < ay; then {p such that S, (a) < a; < S, (b)} is empty. So the so-
lutions set is empty. Otherwise, if p is such that S, (a) < o; < S, (b), Va €
[a], b € [a*™!], Vi=1,...,p— 1, then for all a € [a'] and for all b € [a**!], we
have 1% (A) < p(A) < a%% (A), Vi € 1,...,p— 1, which implies i < p <
fi.

Let u be a capacity such that i < p < fi, hence g < a%%, i > jb% Vi €

1,...,p—1,Va € [a'] and Vb € [a**!]. So i>% < u < p@% Viel,---,p—1,
Va € [a‘] Vb € [a*"!] and the property 8 implies y is a solution. m

The solution set is not empty if and only if i < ji.

Theorem 5 [ < [i if and only if Vi, j such that o; > «, A(Z.bz ) Z Az, ) Va €
Ple 71 v
[a*], Vb € [d/].

Proof : The proof is similar as the proof of Theorem 3. m
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5 Example

We consider three students a, b, c who are evaluated according to two criteria
1,2.

The scores are given in the evaluation scale E = {bad, medium, good, excellent}.
Moreover, the decision maker gives the following preferences: a ~ b < c¢. There
are two equivalence classes. In this paper we focus on the solution where a
pair (a1, ap) is given to represent a class. We consider the following data:

students | score according to 1 | score according to 2 Q;
a bad good medium
b good bad medium
c good excellent good

We try to build strong and weak representations.

Strong representation

Ap = {1.2}, Ap> y= {2} and A> = {1} which entail
¢,good a,medium ,medium
A(izgooz) A(if,medium) and A(iigm)d) A A(iimedmm)' Consequently Theorem 3

entails the existence of solutions.
So now we look for capacities such that S,(a) = S,(b) = medium. We
obtain the following result:

0 1 2 {1,2}

fimedium . pbmedium \ha dimedium|medium |excellent

~a,medium A

il

So there is one solution: () = bad, u(1) = medium, u(2) = medium, p(1,2) =
excellent.

To conclude, we verify that the capacity p can represent the second equiv-
alence class.

pbmedivmihad imedium [medium |excellent

0 1 | 2| {12
[%9°°dbad| bad | bad |excellent

[199°° | bad |excellent |[good |excellent

We have [1¢9°0¢ < < 4%9°°¢ 50 11 can represent the second equivalence
class.
Weak representation
We look for the capacities which satisfy S,(a) < a < S,(c) and S,(b) <
B < Su(c) where o, 8 € E. In this paper, we focus on the solution for a
given ordered pair (a, §). We fix for this example o = f = medium. It is

11



easy to check that these two equations have solutions. Now we are going to
compute the capacities which define the set of solutions.

0 1 2 {1,2}
jiemedivm had|  bad bad |excellent

femedivm had lexcellent | medium |excellent

pbmedivm had| medium |excellent|excellent

U satisfies Iac,medz’um S U S ﬂa,medz’um and Iac,medium S U S Iab,medium’ SO
we have pomedivm < g < pamedivm A- pbmedium Tn conclusion, the capaci-
ties which are solutions satisfy bad < pu(1) < medium and bad < p(2) <
medium.

6 Discussion and related results

We have presented general results on preference representation by a Sugeno
integral, illustrated by a detailed example. As one can guess, there is a high
probability that the preference cannot be represented by a Sugeno integral
in the strong sense as soon as the set O of objects becomes large. The weak
representation has however, less drastic conditions. In case of a large set O,
we think that only an approximate representation can be obtained. The exact
way of doing this approximation is still a topic of research.

Despite the fact that the Sugeno integral covers almost all the class of “suit-
able” functions built with V, A as explained in the introduction, the Sugeno
integral has several drawbacks and curious properties for preference represen-
tation. Due to space limitations, we do not detail them and refer the reader
to a survey of the topic in [DMPRS01]. However, we think that all these
limitations have a common origin, which is related to Pareto conditions. We
summarize below these facts, see [Mur01] for a detailed study of them. Let us
take E = [0,1], and a,b € [0,1]". We say that a < bif a; < b; for all i € C,
and that a < b if a < b and a; < b; for some 7 € C. Lastly, we write a < b if
a; < b; for all i € C. We consider a preference relation < on [0, 1]", and define
the following conditions:

e Monotonicity: a < b implies a < b.
e Strong Pareto condition: a < b implies a < b.
e Weak Pareto condition: a < b implies a < b.

Monotonicity is a fundamental condition for any preference representation,
but the weak Pareto condition is also desirable, otherwise the model could
be said to be “blind” or insensitive in certain situations. It can be shown

12



that the Sugeno integral always satisfies monotonicity, but it can never satisfy
the strong Pareto condition. More surprisingly, it satisfies the weak Pareto
condition if and only if the capacity is valued on {0,1}. This last property
shows clearly the weakness of the Sugeno integral. A possible way to escape
this is to consider a lexicographic use of the Sugeno integral, as shown in
[Mur01].

Lastly, we mention the fact that the Sugeno integral can be represented under
the form of decision rules, as shown by Greco et al. [GMS01].
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