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Abstract

A well known theorem of Voronoi characterizes extreme quadratic forms

and Euclidean lattices, that is those which are local maxima for the Hermite

function, as perfect and eutactic. This characterization has been extended

in various cases, such that family of lattices, sections of lattices, Humbert

forms, etc. Moreover, there is a criterion for extreme lattices, discovered by

Venkov, formulated in terms of spherical designs which has been extended in

the case of Grassmannians and sections of lattices.

In this article, we define a general frame, in which there is a “Voronoi

characterization”, and a “Venkov criterion” through an appropriate notion

of design. This frame encompasses many interesting situations in which a

“Voronoi characterization” has been proved.

We also discuss the question of extremality relatively to the Epstein

zeta function, and we extend to our frame a characterization of final zeta-

extremality formulated by Delone and Ryshkov and a criterion in terms of

designs found by Coulangeon.

Consider the following function on positive definite quadratic forms on Rn of
determinant 1,

γn(Q) = min
z∈Zn\{0}

Q(z),

which is called the Hermite function, and its maximal value, γn, which is the
Hermite constant. The problem of estimating γn is an important subject of
research, and the systematic investigation of extreme forms—the forms which are
local maxima for the Hermite function—comes back to Korkine and Zolotarev in
the nineteenth century.

The problem has an equivalent formulation in terms of Euclidean lattices: For
a lattice Λ ⊆ Rn of determinant 1, we define:

γn(Λ) = min
z∈Λ\{0}

〈z | z〉.

The Hermite constant γn is equal to the maximal value of this function among
all Euclidean lattices of dimension n and determinant 1. Both formulations have
their own advantages and drawbacks; the latter one provides a more graphical
representation of the problem and is naturally related to the problem of finding
densest ball packings in Euclidean space.
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A famous theorem of Voronoi (1908) [Voro08] characterizes extreme forms as
perfect and eutactic (the definition of these notions is given later). This theorem
has been extended in various situation, as dual-extremality of lattices (Bergé,
Martinet, 1989 [BerMar89]), extremality in families of lattices (Bergé, Martinet,
1991 [BerMar91], [BerMar95]), extremality for the Rankin function of lattices
(Coulangeon, 1996 [Coul96]), extremality of Humbert forms (Coulangeon, 2001
[Coul01]), and extremality in a more general frame, which includes systoles on a
Riemannian manifold (Bavard, 1997 [Bava97, Theorem 2.1]).

A relation between extreme lattices and so-called spherical designs has been
discovered by Boris Venkov (1998), who has shown that a lattice whose minimal
layer forms a 4-design is perfect and eutactic [VenMar01]. Recall that the minimal
layer of a Euclidean lattice Λ is the set of vectors x of Λ such that 〈x | x〉 is
minimal among all nonzero vectors of Λ, and that a spherical τ-design is a finite
subset X of the Euclidean sphere Sn−1 such that

1

|X |

∑

x∈X

f(x) =
1

vol(Sn−1)

∫

Sn−1

f(x)

for all polynomial functions f : R
n → R of degree at most τ . The criterion of

Venkov has been extended to extremality relatively to the Rankin function through
an appropriate notion of design in Grassmannian spaces (Bachoc, Coulangeon,
Nebe, 2002 [BaCoNe02]).

There is another kind of extremality for quadratic forms and lattices, namely
the extremality of the so-called Epstein zeta function : To a quadratic form Q on
Rn, and a complex number s, we associate the series

ζ(Q, s) =
∑

x∈Zn\{0}

Q(x)−s,

which converges for ℜs > n/2. The corresponding series for a lattice Λ ⊆ Rn is

ζ(Λ, s) =
∑

x∈Λ\{0}

〈x | x〉−s.

A quadratic form or a lattice is ζ-extreme at s > n/2 when the value of its
zeta function at s is locally minimal among quadratic forms or lattices of same
determinant. A characterization of finally ζ-extreme lattices—that is lattices which
are ζ-extreme at s for all s large enough—has been formulated by Delone and
Ryshkov (1967) [DelRyš67]: a Euclidean lattice is finally ζ-extreme if and only if
it is perfect and all its layers are strongly eutactic. This result may be seen as a
version for final ζ-extremality of Voronoi’s characterization of extremality. Such a
criterion has also been recently proved for Humbert forms by Coulangeon [Coul08].

As for classic extremality, there is a criterion for ζ-extremality in terms of
designs, discovered by Coulangeon (2006) [Coul06]: if all layers of a lattice of
dimension n are spherical 4-designs, then it is ζ-extreme for all s > n/2.

The goal of this paper is to provide a theoretical frame in which the four results
on extremality mentioned above hold. Our paper is organized as follows:

• In Section 1, we give the definitions and main properties of our frame, that
we call Voronoi space, and we give examples of Voronoi spaces, showing how
to integrate in our frame most of the cases mentioned in the introduction;

• In Section 2, we use some theory of linear Lie groups in order to establish
the structure of the group of a Voronoi space, which is a fundamental object
in our theory;
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• In Section 3, we prove a characterization à la Voronoi of extremality and
strict extremality in Voronoi spaces (Theorem 18). We also establish a
property which, in many cases, may be used to show easily the equivalence
of extremality and strict extremality (Proposition 20);

• In Section 4, we introduce alternative Voronoi spaces, which are essentially
equivalent to Voronoi spaces with respect to our problem of extremality, just
as quadratic forms are equivalent to lattices with respect to the Hermite
function;

• In Section 5, we define a notion of design for appropriate alternative Voronoi
spaces, and we prove the criterion corresponding to the criterion of Venkov
(Theorem 33 and Corollary 36);

• Finally, the problem of ζ-extremality is introduced in Section 6, and the
corresponding characterization of final extremality (Theorem 44) and the
criterion using designs (Theorem 46) are proved.

The theory developed in this paper is not the first attempt to provide a
unification of the problem of extremality introduced above. In particular, the
reader may check that our notion of Voronoi space is a particular case of a
more general frame introduced by Christophe Bavard, in which there is also a
“Voronoi characterization” under a condition of convexity, called “Condition C”
[Bava97, §2.2]. In our frame, we do not need such a condition, but instead we
use the structure of the Lie group acting on the situation to obtain the convexity
property given by Lemma 15 and the reducibility criterion given by Proposition 20.
Moreover, there is no natural notion of design in the frame of Bavard. On the other
hand, our frame does not encompass all interesting cases; in particular, we have
not succeeded to apply it to the problem of systoles on Riemannian manifolds, that
Bavard has studied in the cited paper.

Note also that the characterization of ζ-extremality of Delone and Ryshkov
(Theorem 44) may also be proved in the frame of Bavard.

1 Voronoi spaces

As stated in the introduction, the goal of this paper is to provide a practical
frame in which there is an equivalent of the characterization of extremality of
Voronoi [Voro08] and some other results on extremality that have been extended
in various cases. The notion of Voronoi space we introduce here is based on the
observation of features which often appear in the frames where those different
results of extremality have been proved. There are: a ground space that can be
expressed as real submanifold of the cone of positive definite quadratic forms on a
finite-dimensional real vector space, and the high symmetry of that ground space
which is expressed by the existence of a Lie group acting naturally and transitively
on it.

In the last paragraph of this section (Paragraph 1.5), we give some examples
of Voronoi spaces corresponding to situations studied before by others.

1.1 General conventions and notations

Let V be a finite-dimensional real vector space. If Q is a quadratic form on V , we
denote by the same symbol Q the associated symmetric bilinear form. The relation
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between the two is:

Q(x, y) =
1

2

(

Q(x + y) − Q(x) − Q(y)
)

,

Q(x) = Q(x, x).

For a nondegenerate quadratic form (or symmetric bilinear form) Q on V , and a
linear transformation H of V , we denote by H∗

Q the Q-adjoint of H , that is the
unique linear transformation of V such that Q(x, Hy) = Q(H∗

Qx, y) for every x, y ∈
V . The linear transformation H is Q-selfadjoint, respectively Q-antiselfadjoint,
respectively Q-orthogonal, when H∗

Q = H , respectively H∗
Q = −H , respectively

H∗
Q = H−1.
Let Q be a positive definite quadratic form on V . We define the norm ‖·‖Q on

the associative algebra End(V ) of linear endomorphisms of V by:

‖H‖
2
Q = sup

x∈V \{0}

Q(Hx)

Q(x)
, H ∈ End(V ).

If x is an element or a subset in V \ {0}, we denote by [x] the corresponding
element or subset in the projective space P(V ), that is the image of x through the
projection V \ {0} → P(V ).

1.2 Voronoi space

Here is the frame in which we do our theory:

1. Definition. A Voronoi space (V,Q, Z,G) is the data of

(a) a finite-dimensional real vector space V ,

(b) a connected submanifold Q in the half-cone of positive definite quadratic forms
on V ,

(c) a closed discrete subset Z of V not containing 0 and spanning V ,

(d) a closed linear Lie group G < GL(V ),

satisfying the following properties:

(i) For Q ∈ Q and c > 0, we have cQ ∈ Q only if c = 1;

(ii) for all g ∈ G and Q ∈ Q, we have g∗Q ∈ G;

(iii) for all g ∈ G and Q ∈ Q, we have Q ◦ g ∈ Q, and G is transitive on Q.

The point of restriction (i) is to avoid to deal with some special cases which
would be anyway trivially uninteresting for the problems of extremality which
occupy us in this paper.

The standard example of Voronoi space is V = Rn with n > 2, and Q the set
of positive definite quadratic forms of determinant 1, together with Z = Zn \ {0}
and G = SL±(n, R), where

SL±(n, R) = {g ∈ GL(n, R) | det g = ±1}. (1)

We refer to this example as the “classic Voronoi space of rank n”. Before we give
other examples, we fix some general notations and properties of Voronoi spaces.

The group G of the definition is the group of the Voronoi space. Given a
Voronoi space (V,Q, Z,G), there exist two linear groups Gmin and Gmax such
that (V,Q, Z, G̃) is a Voronoi space if and only if we have Gmin < G̃ < Gmax.
Moreover, (V,Q, Z, G̃) is equivalent to (V,Q, Z,G) with respect to the problems of
extremality that occupies us in this paper. For the classic Voronoi space of rank n,
we have Gmin = SL(n, R) and Gmax = SL±(n, R).
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1.3 Group of a Voronoi space

The group of a Voronoi space and the related objects play an important role in
our theory, as they assure the “convexity” of the functions Q 7→ Q(x), on Q
(Lemma 15).

2. Definition. Let (V,Q, Z,G) be a Voronoi space, and let Q ∈ Q. Then G is
the group of the Voronoi space. Moreover, we define the following objects:

• KQ = {g ∈ G | g∗Q = g−1}, the (compact) group of Q-selfadjoint elements
of G;

• g, the Lie algebra of G;

• kQ = {H ∈ g | H +H∗
Q = 0}, the Lie subalgebra of Q-antiselfadjoint elements

of g, which is the Lie algebra of KQ;

• pQ = {H ∈ g | H − H∗
Q = 0}, the set of Q-selfadjoint elements of g;

• G0 and K0
Q, the connected component of the identity of G and KQ respec-

tively.

Note that we have g = kQ ⊕ pQ, and, for any c ∈ R, we have c idV ∈ G if and only
if c = ±1, and c idV ∈ g if and only if c = 0.

3. Lemma. Let Q, Q′ ∈ Q and let g ∈ G such that Q′ = Q ◦ g. Then

pQ′ = g−1pQg, and kQ′ = g−1kQg.

Proof. Let H ∈ g. We have, for any linear endomorphism A of V ,

A∗
Q′ = (g∗Qg)−1A∗

Q(g∗Qg);

in particular, setting A = g−1Hg, we get

(g−1Hg)∗Q′ = (g∗Qg)−1(g−1Hg)∗Q(g∗Qg) = g−1H∗
Qg.

Therefore H is Q-selfadjoint, respectively Q-antiselfadjoint, if and only if g−1Hg
is Q′-selfadjoint, respectively Q′-antiselfadjoint.

1.4 Layers, Hermite function and extremality

4. Definition. Let (V,Q, Z,G) be a Voronoi space.

(i) The Hermite function associated to (V,Q, Z,G) is the function γ on Q defined
by

γ(Q) = min
x∈Z

Q(x), Q ∈ Q.

(ii) For r > 0, the layer of square radius r of a quadratic form Q ∈ Q is the set

Qr = {x ∈ Z | Q(x) = r}.

(iii) The set of minimal vectors of a quadratic form Q ∈ Q is the nonempty layer
of minimal radius, that is

Qmin = Qγ(Q) = {x ∈ Z | Q(x) = γ(Q)}.

(iv) A quadratic form Q ∈ Q is extreme, respectively strictly extreme, when it is
a local maximum, respectively a strict local maximum, of γ.
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In the case of the classic Voronoi space of rank n, the function γ is the “classic”
Hermite function, and its maximal value is the Hermite constant γn.

The main goal of this paper is to find criteria for extreme forms in Voronoi
spaces. The first question to consider is if the supremum of γ on Q is indeed a
local maximum. Sadly, we have not found any easy criterion to check this property;
nevertheless, the following definition is justified by many interesting examples of
Voronoi spaces.

Let (V,Q, Z,G) be a Voronoi space, and consider the discrete subgroup

H = {g ∈ G | gZ = Z}.

The quotient Q/H is separated, and we have a map

γ̄ : Q/H −→]0,∞[

QH 7−→ γ(Q),

5. Definition. The Voronoi space (V,Q, Z,G) is compact when γ̄ is bounded
and proper.

In a compact Voronoi space, the supremum of the Hermite function is a also a
local maximum.

The statement that classic Voronoi spaces are compact is essentially equivalent
to Mahler’s Compactness Theorem (see, e.g., [Mart03, §2.4]).

1.5 Examples

The examples of Voronoi space we give here show how to integrate most cases
cited in the introduction in our frame. All these examples have an alternative
formulation, which is made explicit in Section 4.

1. Classic spaces. Let V = Rn with n > 2, let Q be the set of positive
definite quadratic forms on Rn of determinant 1, let Z = Zn \ {0}, and let
G = SL±(n, R) = {g ∈ GL(n, R) | det g = ±1}. Then (V,Q, Z,G) is a
compact Voronoi space with the following parameters, where Q0 is the canonical
quadratic form on Rn:

KQ0
= {g ∈ Mat(n, R) | g∗ = g−1} = O(n),

g = {H ∈ Mat(n, R) | tr H = 0} = sl(n, R),

kQ0
= {H ∈ Mat(n, R) | H + H∗ = 0 and tr H = 0} = so(n, R),

pQ0
= {H ∈ Mat(n, R) | H∗ = H and tr H = 0}.

For this space, the Hermite function is the classic Hermite function (restricted to
quadratic forms of determinant 1), and its maximal value is the classic Hermite
constant γn.

2. Duality. Let (V,Q, Z,G) be a Voronoi space. Let Q 7→ Qα be an involution of Q,
and g 7→ gα an involution and automorphism of G such that (g∗Q)α = (gα)∗Qα

and
(Q ◦ g)α = Qα ◦ gα, ∀g ∈ G, ∀Q ∈ Q.

6



Then we define a Voronoi space (Ṽ , Q̃, Z̃, G̃) as follows:

Ṽ = V × V

Q̃ =
{

Q̃
∣

∣ Q̃
(

(x1, x2)
)

= Q(cx1) + Qα(c−1x2), for some Q ∈ Q and c ∈ R
∗
}

,

Z̃ =
(

Z × {0}
)

∪
(

{0} × Z
)

,

G̃ =
{

g̃ ∈ GL(V × V )
∣

∣

∣
g̃ =

(

cg 0
0 c−1gα

)

or

(

0 cg
c−1gα 0

)

for some g ∈ G and c ∈ R
∗
}

.

For Q ∈ Q and c ∈ R∗ let Q̃c ∈ Q̃ such that Q̃c((x1, x2)) = Q(cx1)+Qα(c−1x2).
The Hermite function γ̃ of (Ṽ , Q̃, Z̃, G̃) is equal to

γ̃(Q̃c) = min
(

c2γ(Q), c−2γ(Qα)
)

.

For a given Q ∈ Q, the maximum of γ(Q̃c) among all values of c is attained
when c2γ(Q) = c−2γ(Qα), that is when c2 = γ(Q)−1/2 γ(Qα)1/2, and, for this
value of c, we have

γ̃(Q̃c) =
(

γ(Q) γ(Qα)
)1/2

.

Therefore, the local maxima of the Hermite function γ̃ on Q̃ correspond to

the maxima of the function γ′(Q) =
(

γ(Q) γ(Qα)
)1/2

on Q. A quadratic form

Q ∈ Q such that the corresponding form Q̃c is extreme is called dual-extreme.

If (V, Q, Z,G) is compact and if we have gαZ = Z for every g ∈ G satisfying
gZ = Z, then (Ṽ , Q̃, Z̃, G̃) is compact.

As a particular case, we take for (V,Q, Z,G) the classic Voronoi space of
rank n, with gα = g∗−1 and Qα = Q−1, where g∗ denotes the adjoint of g
for the canonical scalar product on V = Rn, and where Q−1(x) = 〈x | A−1x〉
if Q(x) = 〈x | Ax〉. The maximal value γ′

n of the Hermite function on the
corresponding space (Ṽ , Q̃, Z̃, G̃) is known as Bergé-Martinet constant, and has
been first studied in [BerMar89].

3. Family of quadratic forms. Let (V,Q, Z,G) be a Voronoi space, let Q be an
element of Q, and let H be a connected closed subgroup of G such that g∗Q ∈ H

when g ∈ H. Let QH be the orbit of Q in Q. Then (V, QH, Z,H) is a Voronoi
space, which is compact if (V,Q, Z,G) is compact.

When (V,Q, Z,G) is a classic Voronoi space, the situation (but formulated in
terms of lattices instead of quadratic forms, see Paragraph 4.4) has been studied
by Anne-Marie Bergé and Jacques Martinet in [BerMar95]. As special cases,
we have:

(a) Let Γ be a finite subgroup of G such that γZ = Z for every γ ∈ Γ. An
element Q ∈ Q such that the elements of Γ are Q-orthogonal is called
Γ-invariant.

Let Q ∈ Q be a Γ-invariant quadratic form, and let H be the connected
component of the identity of the centralizer of Γ in G. The group H is
Q-selfadjoint, because so is Γ. However, the following fact is less evident:

6. Lemma. QH is the set of Γ-invariant elements of Q.

Proof. The nontrivial fact to show is that any Γ-invariant element of Q
is of the form Q ◦ h with h ∈ H. Let Q′ be such an element; according
to Proposition 14, we have Q′(x, y) = Q(x, exp(H)y) for some H ∈ pQ.
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Then, for γ ∈ Γ, we have Q′(γx, γy) = Q(x, exp(γ−1Hγ)y); therefore the
condition Q′ ◦ γ = Q′ is equivalent to

exp(γ−1Hγ) = exp(H).

Since exp is injective on pQ, the last condition is equivalent to γ−1Hγ = H .
Then h = exp(H/2) is an element of H, and we have Q′ = Q ◦ h.

So, (V, QH, Z,H) is a Voronoi space, and their extreme forms are local
maxima of the Hermite function restricted to the Γ-invariant elements of Q.

The case where (V,Q, Z,G) is a classic Voronoi space has been studied by
Bergé and Martinet in [BerMar91].

(b) Let Q 7→ Qα and g 7→ gα as in Example 2; let σ ∈ G such that σZ = Z.
An element Q ∈ Q such that Q = Qα ◦ σ, is called σ-isodual. Note that, if
Q ∈ Q is σ-isodual, we have γ(Q) = γ(Qα).

Let Q ∈ Q be a σ-isodual quadratic form, Let H be the connected
component of the identity of set of the elements g ∈ G satisfying σg = gασ.

7. Lemma. QH is the set of σ-isodual elements of Q.

Proof. The general line of the proof is the same as the one of Lemma 6:
The nontrivial fact to show is that any σ-isodual element of Q is of
the form Q ◦ h with h ∈ H. Let Q′ be such an element; according to
Proposition 14, we have Q′(x, y) = Q(x, exp(H)y) for some H ∈ pQ. Let
H 7→ HA be the derivative of g 7→ gα; we have exp(HA) = exp(H)α

and (H∗
Q)A = (HA)∗Qα . The property (Q ◦ h)α = Qα ◦ hα applied to

h = exp(H/2) gives Q′α(x, y) = Qα
(

x, exp(HA)y
)

. Therefore, we have

Q
(

x, exp(H)y
)

= Q′(x, y) = Q′α(σx, σy)

= Qα
(

σx, exp(HA)σy
)

= Qα
(

σx, σ exp(σ−1HAσ)y
)

= Q
(

x, exp(σ−1HAσ)y
)

.

We infer the following equality:

exp(H) = exp(σ−1HAσ).

If we have σ−1HAσ ∈ pQ, the injectivity of exp on pQ implies H = σ−1HAσ,
and we have Q′ = Q ◦ h with h = exp(H/2) ∈ H. Therefore, it suffices to
show the equality

(σ−1HAσ)∗Q = σ−1HAσ.

Since Qα = Q ◦ σ−1, we have, for any linear endomorphism A of V ,

A∗
Qα =

(

(σ−1)∗Qσ−1
)−1

A∗
Q

(

(σ−1)∗Qσ−1
)

= (σσ∗
Q)A∗

Q(σσ∗
Q)−1.

In particular, we get

(HA)∗Q = (σσ∗
Q)−1(HA)∗Qα(σσ∗

Q) = (σσ∗
Q)−1(H∗

Q)A(σσ∗
Q).

Therefore, we have

(σ−1HAσ)∗Q = σ∗
Q (σσ∗

Q)−1(H∗
Q)A(σσ∗

Q) (σ−1)∗Q = σ−1HAσ,

which is what remained to prove.

8. Lemma. For any g ∈ H, and any Q′ ∈ QH, we have g∗Q′ ∈ H.
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Proof. Let h ∈ H, and let Q′ = Q ◦ j with j ∈ H. since we have
g∗Q′ = (j∗Qj)−1h∗

Q(j∗Qj), it suffices to show the lemma for Q′ = Q. By the

same argument given in the previous proof for the calculation of (HA)∗Q, we
have

(hα)∗Q = (σσ∗
Q)−1(h∗

Q)α(σσ∗
Q),

and therefore

σh∗
Q = (σ−1σhσ∗

Q)∗Q = (σ−1hασσ∗
Q)∗Q = (σσ∗

Q)(hα)∗Q(σσ∗
Q)−1σ = (h∗

Q)ασ,

therefore, we have h∗
Q ∈ H.

So, (V, QH, Z,H) is a Voronoi space, and their extreme forms are local
maxima of the Hermite function restricted to the σ-isodual elements of Q.

The dual case of this situation (see Paragraph 4.4, Example 3) with the clas-
sic Voronoi space, has been studied by Bergé and Martinet in [BerMar95].
The case where σ2 = −idV is also interesting, see [BusSar94].

4. Exterior powers. Let (V,Q, Z,G) be a Voronoi space and let 1 6 m 6 dim(V )/2.
We define a space (V ∧m,Q∧m, Z∧m,G∧m) as follows: V ∧m is the mth exterior
power of V , and

Q∧m = {Q∧m | Q ∈ Q}, where Q∧m(x1 ∧ · · · ∧ xm) = det
(

Q(xi, xj)
m
i,j=1

)

,

Z∧m = {x1 ∧ · · · ∧ xm | x1, . . . , xm are linearly independent elements of Z},

G∧m = {g̃ | g ∈ G}, where g̃(x1 ∧ · · · ∧ xm) = gx1 ∧ · · · ∧ gxm.

The elements of its Lie algebra g∧m are of the form

H̃(x1 ∧ · · · ∧ xm) = (Hx1 ∧ x2 ∧ · · · ∧ xm)

+ (x1 ∧ Hx2 ∧ x3 ∧ · · · ∧ xm) + · · · + (x1 ∧ · · · ∧ xm−1 ∧ Hxm),

with H ∈ g.

If (V,Q, Z,G) is the classic Voronoi space of rank n, then (V ∧m,Q∧m, Z∧m,
G∧m) is a compact Voronoi space. The maximal value of the corresponding
Hermite function is the maximal value of

det
(

(

〈xi | xj〉
)m

i,j=1

)

among all sets of m linear independent n-dimensional vectors x1, . . . , xm with
integral entries. It is known as the Rankin constant γn,m, and it has been first
considered by Rankin in [Rank53].

5. Humbert forms. Let K be a number field of signature (r, s) of integral ring OK ,
let σ1, . . . , σr be the real embeddings of K, and σr+1, . . . , σr+2s be its complex
embeddings, with σr+s+i = σr+i, and let n be a positive integer. In what
follows, “⊗” denotes always the tensor product as real vector space. Let V be
the linear subspace of (Rn)⊗r ⊗ (Cn)⊗2s generated by x1 ⊗ · · · ⊗ xr+2s, where

xi ∈ R
n for 1 6 i 6 r,

xr+i ∈ C
n and xr+s+i = xr+i for 1 6 i 6 s.

Let Z be the subset of V given by

Z =
{

σ1(x) ⊗ · · · ⊗ σr+s(x)
∣

∣ x ∈ On
K

}

.
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Let Q be the space of quadratic forms Q on V satisfying

Q(x1 ⊗ · · · ⊗ xr+2s) =

r+2s
∏

j=1

〈xj | Ajxj〉,

where Ai is a positive definite symmetric operator on Rn for 1 6 i 6 r, and Ar+i

is a positive definite hermitian operator on Cn for 1 6 i 6 s, and Ar+s+i = Ar+i

for 1 6 i 6 s, and
r+2s
∏

j=1

detAj = 1.

Finally, let G be the linear group acting on V and whose elements g satisfy

g(x1 ⊗ · · · ⊗ xr+2s) = g1x1 ⊗ · · · ⊗ gr+2sxr+2s,

for some gi ∈ GL(n, R) for 1 6 i 6 r, and some gr+i ∈ GL(n, C) and
gr+s+i = gr+i for 1 6 i 6 r, such that

r+2s
∏

j=1

det(gj) = 1.

The elements H of its Lie algebra g are of the form

H(x1 ⊗ · · · ⊗ xm) = (H1x1 ⊗ x2 ⊗ · · · ⊗ xm)

+ (x1 ⊗ H2x2 ⊗ x3 ⊗ · · · ⊗ xm) + · · · + (x1 ⊗ · · · ⊗ xr+2s−1 ⊗ Hr+2sxr+2s),

where Hi ∈ gl(n, R) for 1 6 i 6 r, and Hr+i ∈ gl(n, C) and Hr+s+i = Hr+i for
1 6 i 6 r, and

r+2s
∑

j=1

tr(Hj) = 0.

Then (V,Q, Z,G) is a Voronoi space. The maximal values of the associated
Hermite function has been in particular studied by R. Baeza and M. I. Icaza in
[Icaz97] and [BaeIca97].

2 Structure of the group of Voronoi space

The theoretical results of our paper rely strongly on the structure of the group of
Voronoi space, which is a selfdual real Lie group with some property of connect-
edness. The main features we will extract from this structure are the convexity
property of Lemma 15, the reducibility criterion of Proposition 20, the structure al-
lowing a natural definition of design (Definition 31), and the connection expressed
in Theorem 33 between designs and notions related to the extremality problem.

In this section, we give details concerning the important aspects of the structure
of the group of Voronoi space, relying on well-known structure results of the theory
of real Lie groups. The statements of this section may also be readily checked for
the particular examples of Paragraph 1.5, but we give here the proofs for the
general case.

2.1 Structure of selfdual linear Lie groups

Let E be a Euclidean space; we denote by P(E) the cone of positive definite
selfadjoint linear transformations of E, and by p(E) the vector space of selfadjoint
linear operators of E. Note that exp : p(E) → P(E) is a diffeomorphism. We have
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a scalar product on End(E), the associative algebra of linear endomorphisms of V ,
given by

〈X | Y 〉 = tr(X∗Y ).

For this scalar product, the selfadjoint linear operators on E are orthogonal to the
antiselfadjoint linear operators, and we have

〈X | [Y, Z]〉 = 〈[Y ∗, X ] | Z〉, ∀X, Y, Z ∈ End(E)

9. Theorem. Let E be a Euclidean space, and let G ⊆ GL(E) be a linear Lie
group such that

g ∈ G ⇒ g∗ ∈ G and g∗g ∈ G0.

Let moreover

• K = G ∩ O(E) be the subgroup of orthogonal elements of G;

• P = G ∩P(E) be the set of positive definite selfadjoint elements of G;

• g ⊆ gl(E) be the Lie algebra of G;

• k = g ∩ so(E) be the subalgebra of antiselfadjoint elements of g, or the Lie
algebra of K;

• p = g∩p(E) be the linear subspace of selfadjoint elements of g, or the tangent
space of P.

Then

(i) we have g = [g, g] ⊕ z(g), and [g, g] is semisimple;

(ii) P = exp(p);

(iii) g = k ⊕ p and G = KP; moreover, for any g ∈ G, there exist unique k ∈ K

and p ∈ P such that g = kp.

(iv) there exists a triangular connected Lie subgroup D ⊆ G (i.e., a connected
Lie subgroup whose elements are expressed by upper triangular matrices with
respect to some basis of E) such that G = KD.

If G were a connected semisimple group, Claims (iii) and (iv) would be
respectively the classic “Cartan decomposition” and “Iwasawa decomposition” of
G, that we recall here:

10. Theorem. Let G be a connected semisimple group, and let g be its Lie
algebra. Let g = k ⊕ p be a Cartan decomposition of g, that is a direct sum of
vector subspaces such that the map θ : X + Y 7→ X − Y (X ∈ k, Y ∈ p) is an
automorphism of g, and the bilinear form

bθ(X, Y ) = − trg

(

ad(θX) ad(Y )
)

, X, Y ∈ g,

is positive definite. Then:

(i) (Cartan decomposition.) Let K = exp(k). We have a diffeomorphism

ϕ : K× p → G, ϕ(k, H) = k exp(H).

(ii) (Iwasawa decomposition.) There exists a connected triangular Lie subgroup
D ⊆ G such that we have a diffeomorphism

µ : K× D → G, µ(k, d) = kd.

11



See, e.g., [OniVin94, Chap. 4, Theorem 3.2, p.145, and Theorem 4.6, p. 159].
Our proof of Theorem 9 relies on that result; but since our group G is not
semisimple, we need some work before we can apply it.

11. Lemma. Let g ⊆ gl(E) be a linear Lie algebra such that X∗ ∈ g whenever
X ∈ g. Then we have the decomposition

g = [g, g] ⊕ z(g),

the algebra [g, g] is semisimple, the spaces [g, g] and z(g) are stable under the
adjunction X 7→ X∗, and they are orthogonal one to the other. Moreover, the
decomposition

[g, g] = ([g, g] ∩ k) ⊕ ([g, g] ∩ p)

is a Cartan decomposition.

Proof. Let X ∈ g; we have X ∈ [g, g]⊥ if and only if

0 = 〈X | [Y, Z]〉 = 〈[Y ∗, X ] | Z〉 ∀Y, Z ∈ g;

thus since g is stable under the adjunction, we have [Y ∗, X ] = 0 for all Y ∗ ∈ g, that
is X ∈ z(g). This shows that g = [g, g] ⊕ z(g), and [g, g] and z(g) are orthogonal.

Let now r be the radical of g; it is clearly stable under X 7→ X∗, so we can
apply to r what we have proved for g, so we have r = [r, r] ⊕ z(r). If r′ = [r, r], we
have

r′ = [r, r] = [r′ ⊕ z(r), r′ ⊕ z(r)] = [r′, r′];

therefore, since r is solvable, we have [r, r] = {0}. Now, since r is an ideal of g, we
have [r, [r, g]] ⊆ [r, r] = {0}, and then

〈[R, X ] | [R, X ]〉 = 〈[R∗, [R, X ]] | X〉 = 0 ∀R ∈ r, X ∈ g.

Therefore we have r ⊆ z(g), and [g, g] is semisimple.
Let g′ = [g, g], k′ = [g, g] ∩ k, and p′ = [g, g] ∩ p, and let us show that

g′ = k′ ⊕ p′ is a Cartan decomposition. The corresponding automorphism is given
by θ(X) = −X∗, and the bilinear form is

bθ(X, Y ) = trg′

(

ad(X∗) ad(Y )
)

In order to show that bθ is positive definite, it suffices to show that ad(X∗) =
ad(X)∗

g′ , where α∗
g′ denotes the adjoint of α ∈ gl(g′) for the scalar product

〈X | Y 〉 = tr(X∗Y ) on g′. We have

〈ad(X∗)Y | Z〉 = 〈[X∗, Y ] | Z〉 = 〈Y | [X, Z]〉 = 〈Y | ad(X)Z〉, ∀X, Y, Z ∈ g′.

Therefore ad(X)∗
g′ = ad(X∗).

12. Lemma. Let E be a Euclidean space, and let k1, k2 ∈ O(E) and p1, p2 ∈ P(E)
such that k1p1 = k2p2. Then k1 = k2 and p1 = p2.

Proof. We have p1 = k∗
1k2p2, and also p1 = p∗1 = p2k

∗
2k1. Therefore

p2
1 = (p2k

∗
2k1)(k

∗
1k2p2) = p2

2.

Since p1 and p2 are positive definite, we have p1 = p2. The equality k1 = k2

follows.
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Proof of Theorem 9. (i) This follows from Lemma 11.
(ii) and (iii) Let g′ = [g, g], k′ = [g, g] ∩ k, and p′ = [g, g] ∩ p. According to

Theorem 10(i), we have
G′0 = K′0 exp(p′),

where G′0 = exp(g′), K′0 = exp(k′). It follows from Lemma 11 that we have

K0 = K′0
(

Z(G)0 ∩ K
)

, exp(p) = exp(p′)
(

Z(G)0 ∩ P
)

,

G0 = K0 exp(p).

Now, let g ∈ G; as we have g∗g ∈ G0, there exists k̃ ∈ K0 and H ∈ p such that
g∗g = k̃ exp(H). Since g∗g is symmetric positive definite, by Lemma 12, we have
in fact g∗g = exp(H). Then we have g = kp with

k = g exp(−H/2) ∈ K and p = exp(H/2) ∈ exp(p).

In particular, if p ∈ P, we have a decomposition p = kp′ with p′ ∈ exp(p). By
Lemma 12, we have p = p′; therefore, the equality P = exp(p) holds. The same
Lemma 12 shows the uniqueness of the decomposition g = kp.

(iv) According to Theorem 10(ii), there exists a connected triangular Lie
subgroup D′ ⊆ G′ such that G′0 = K′0D. The group

D = D′
(

Z(G)0 ∩ P
)

is connected and triangular, and we have G0 = K0D. Now, we have

KD = KK0D = KG0 = KK0P = KP = G.

2.2 Structure of the group of Voronoi space

In order to apply Theorem 9 to the group of a Voronoi space, we have to check
that the assumption of the theorem is satisfied.

13. Lemma. Let (V,Q, Z,G) be a Voronoi space, and let Q ∈ Q. Then, for every
g ∈ G, we have g∗Qg ∈ G0.

Proof. Let g ∈ G, and let Q′ = Q ◦ g. As Q is connected, there exists h ∈ G0 such
that Q′ = Q ◦ h. Then we have

Q′(x, y) = Q(x, g∗Qgy) = Q(x, h∗
Qhy), ∀x, y ∈ V.

Therefore, we have g∗Qg = h∗
Qh ∈ G0.

As a first application of Theorem 9, we have the following description of the
set of quadratic forms of a Voronoi space.

14. Proposition. Let (V,Q, Z,G) a Voronoi space, and let Q ∈ Q. For H ∈ pQ,
we define QH by

QH(x) = Q(x, exp(H)x).

Then we have
Q = {QH | H ∈ pQ}.

In particular, if, for Q ∈ Q and ǫ > 0, we set

VQ,ǫ =
{

QH

∣

∣ H ∈ pQ and ‖H‖Q < ǫ},

then the family {VQ,ǫ}ǫ>0 is a basis of neighborhoods of Q in Q.

Proof. Let Q′ ∈ Q, and let g ∈ G such that Q′ = Q ◦ g. According to Theorem 9,
we have g∗Qg ∈ PQ = exp(pQ), therefore there exists an H ∈ pQ such that
g∗Qg = exp(H), and we have Q′ = QH . Conversely, for H ∈ pQ, we have QH = Q◦g
with g = exp(H/2), so QH ∈ Q. The rest of the lemma is straightforward.
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3 Characterization of extremality à la Voronoi

The notions of perfection and eutaxy play a key role in theories involving problems
of extremality for a Hermite-type function, because they are the main ingredients
of the theory of Voronoi and its generalizations.

In this section, we introduce the notion of perfection and eutaxy in a Voronoi
space, and we prove a characterization of extremality and strict extremality in
the spirit of the one of Voronoi (Theorem 18). Finally, we prove a statement
(Proposition 20) which provides an efficient tool to check that extremality implies
strict extremality in many Voronoi spaces.

3.1 Neighborhoods in Voronoi space

Let (V,Q, Z,G) be a Voronoi space. Firstly, we need estimates of the value taken by
forms in a neighborhood of a given quadratic form Q in Q. Recall (Proposition 14)
that such quadratic forms are of the form QH(x) = Q(x, exp(H)x), with H ∈ pQ

and ‖H‖Q small. Recall that we have defined

‖H‖
2
Q = sup

x∈V \{0}

Q(Hx)

Q(x)
,

The triangular inequality implies |Q(x, Hx)| 6 ‖H‖ × Q(x).
The following lemma states that the functions t 7→ QtH(x) are strictly convex

near to 0, except when they are constant. The convexity is a key property in all
characterizations of extremality by perfection and eutaxy.

15. Lemma. Let Q ∈ Q and 0 < t 6 1, and H ∈ pQ such that ‖H‖Q 6 1. For
every x ∈ V , we have

Q(x) + t Q(x, Hx) 6 QtH(x) 6 Q(x) + t Q(x, Hx) + t2Q(Hx),

with equality if and only if Hx = 0.

Proof. We have

QtH(x) = Q
(

x, exp(tH)x
)

=
∑

k>0

tk

k!
Q(x, Hkx)

= Q(x) + t Q(x, Hx) +
t2

2
Q(Hx) +

∑

k>3

tk

k!
Q(Hx, Hk−1x).

Let S be the sum at the end of that expression. We have
∣

∣Q(Hx, Hk−1x)
∣

∣ 6

‖H‖k−2
Q Q(Hx), and therefore

|S| =

∣

∣

∣

∣

∑

k>3

tk

k!
Q(Hx, Hk−1x)

∣

∣

∣

∣

6 t2
∑

k>3

(

t ‖H‖Q

)k−2

k!
Q(Hx)

Now, using t 6 1 and ‖H‖Q 6 1, we get

|S| 6 t2
∑

k>3

1

k!
Q(Hx) = t2

(

e − 5/2
)

Q(Hx) 6
1

2
t2Q(Hx),

with equality if and only if Q(Hx) = 0. From this, we deduce

Q(x) + t Q(x, Hx) 6 Q
(

x, exp(tH)x
)

6 Q(x) + t Q(x, Hx) + t2Q(Hx),

with equality if and only if Hx = 0.
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The next lemma is standard in all Voronoi theories. It states that, when
studying the value of the Hermite function on quadratic forms in a neighborhood
of Q ∈ Q, it suffices to consider the values taken by those quadratic forms on the
minimal layer of Q.

16. Lemma. Let (V,Q, Z,G) be a Voronoi space, and let Q ∈ Q. Then there
exists a neighborhood U ⊆ Q of Q such that Q′

min ⊆ Qmin for every Q′ ∈ U .

Proof. Let γ = γ(Q) = minx∈Z Q(x) and let δ = minx∈Z\Qmin
Q(x) − γ > 0. Let

H ∈ pQ with ‖H‖Q 6 1; by Lemma 15, we have, for any x ∈ Qmin,

QH(x) 6 Q(x) + Q(x, Hx) + Q(Hx) 6 Q(x) + ‖H‖Q Q(x) + ‖H‖
2
Q Q(x)

6 γ
(

1 + ‖H‖Q + ‖H‖
2
Q

)

,

and for any z ∈ Z \ Qmin

QH(z) > Q(z) + Q(z, Hz) > Q(z) − ‖H‖Q Q(z) > (γ + δ)
(

1 − ‖H‖Q

)

Let ǫ > 0 such that γ(1 + η + η2) < (γ + δ)(1 − η) for every η with 0 6 η < ǫ.
Then QH(x) < QH(z) if ‖H‖Q < ǫ. So we have the claim of the lemma with
U = {QH | H ∈ pQ, ‖H‖Q < ǫ}.

3.2 Perfection and eutaxy

We introduce now the two fundamental notions, and variants of them, which enters
in characterizations of extremality.

17. Definition. Let (V,Q, Z,G) be a Voronoi space. Let Q ∈ Q be a quadratic
form, and X a nonempty finite subset of V \ {0}.

(a) (Q, X) is eutactic when, for every H ∈ g,

∃x ∈ X, Q(x, Hx) > 0 =⇒ ∃y ∈ X, Q(y, Hy) < 0.

(b) (Q, X) is strongly eutactic when, for every H ∈ g,

∑

x∈X

Q(x, Hx)

Q(x)
= 0.

(c) (Q, X) is weakly perfect when, for every H ∈ g,

∃c ∈ R, ∀x ∈ X, Q(x, Hx) = c Q(x) =⇒ ∀x ∈ X, Hx + H∗
Qx = 2cx.

(d) (Q, X) is perfect when, for every H ∈ g,

∃c ∈ R, ∀x ∈ X, Q(x, Hx) = c Q(x) =⇒ H + H∗
Q = 2c idV .

Moreover, Q is eutactic, perfect, etc., when (Q, Qmin) is eutactic, perfect, etc.

In the definition above, we can replace H ∈ g by H ∈ pQ. This follows directly
from the fact that any H ∈ g can be decomposed in g as the sum of a Q-selfadjoint
element and a Q-antiselfadjoint one, and that the conditions of the definition are
trivially true for Q-antiselfadjoint linear transformations. Namely, we have:

(a) (Q, X) is eutactic iff, for every H ∈ pQ,

∃x ∈ X, Q(x, Hx) > 0 =⇒ ∃y ∈ X, Q(y, Hy) < 0.
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(b) (Q, X) is strongly eutactic iff, for every H ∈ pQ,

∑

x∈X

Q(x, Hx)

Q(x)
= 0.

(c) (Q, X) is weakly perfect iff, for every H ∈ pQ,

∃c ∈ R, ∀x ∈ X, Q(x, Hx) = c Q(x) =⇒ ∀x ∈ X, Hx = cx.

(d) (Q, X) is perfect iff, for every H ∈ pQ,

∃c ∈ R, ∀x ∈ X, Q(x, Hx) = c Q(x) =⇒ H = c idV .

We mention also a geometric interpretation of these notions, although we
will not use it. Let us fix Q ∈ Q and consider, for x ∈ V , the linear form
ǫx ∈ (pQ ⊕ R idV )∗ defined by ǫx(H) = Q(x, Hx)/Q(x). Let τ be the linear
form on g ⊕ R idV such that τ(H) = 0 for any H ∈ g and τ(idV ) = 1; for most
interesting examples of Voronoi spaces, the form τ is the normalized trace on V .
Then

(a) (Q, X) is eutactic iff the form τ |pQ⊕R idV
is in the geometric interior of the

convex hull of {ǫx}x∈X ⊆ (pQ ⊕ R idV )∗.

(b) (Q, X) is strongly eutactic iff

1

|X |

∑

x∈X

ǫx = τ |pQ⊕R idV
.

(c) (Q, X) is weakly perfect iff the family {ǫ̃x}x∈X generates
(

(pQ ⊕ R idV )/A
)∗

,
where

A = {H ∈ pQ | Hx = 0, ∀x ∈ X},

and ǫ̃x(H + A) = ǫx(H).

(d) (Q, X) is perfect iff the family {ǫx}x∈X generates (pQ ⊕ R idV )∗.

The geometric reformulation of Claim (a) can be deduced from the Hahn-Banach
theorem; other claims follow from standard finite-dimensional linear space theory.

3.3 Characterization of extremality

The following result, that we call the Voronoi characterization of extremality,
characterizes extreme and strictly extreme forms in terms of perfection and eutaxy.
The characterization of strict extremality is known for many particular cases: it
has been proved by Voronoi in the case of classic Voronoi space [Voro08], by Bergé
and Martinet in the cases of dual-extremality in classic Voronoi space [BerMar89,
Théorème 3.14], and family of quadratic forms in classic Voronoi space [BerMar91,
Théorème 2.10], [BerMar95, Théorème 4.5], by Coulangeon in the case of exterior
powers of classic Voronoi space [Coul96, Théorème 3.2.3], and Humbert forms
[Coul01, Proposition 3]. Moreover, in many of the above cases, extremality is
shown to be equivalent to strict extremality; but this question will be considered
in the next paragraph. However, we do not know any appearance in the literature
of a characterization of extremality, not necessarily strict, similar to the one we give
here—although this absence is justified in the many cases where extremality implies
strict extremality—, but a weaker result appears in [BerMar95, Théorème 4.5].
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18. Theorem (Voronoi characterization). Let (V,Q, Z,G) be a Voronoi
space.

(i) A quadratic form Q ∈ Q is strictly extreme if and only if it is perfect and
eutactic.

(ii) A quadratic form Q ∈ Q is extreme if and only if there exists a nonempty
subset of Qmin that is weakly perfect and eutactic.

Before giving the proof, we reformulate the conditions of perfection and eutaxy:

19. Lemma. Let (V,Q, Z,G) be a Voronoi space, and let X be a nonempty finite
subset of V .

(i) (Q, X) is perfect and eutactic if and only if, for each H ∈ pQ, one of the two
following conditions holds:

(a) H = 0;

(b) there exists x ∈ X such that Q(x, Hx) < 0.

(ii) (Q, X) is weakly perfect and eutactic if and only if, for each H ∈ pQ, one of
the two following conditions holds:

(a) Hx = 0 for every x ∈ X ;

(b) there exists x ∈ X such that Q(x, Hx) < 0.

Proof. Let H ∈ pQ. The eutaxy of (Q, X) implies that Condition (b) holds unless
we have Q(x, Hx) = 0 for every x ∈ X . In the last case, the perfection, respectively
the weak perfection, of (Q, X) implies Condition (a).

Proof of the Theorem. First, recall that a basis of neighborhoods of Q ∈ Q is given
by
{

QH

∣

∣ H ∈ pQ and ‖H‖Q < ǫ
}

, with ǫ > 0 (Proposition 14).
(i, ⇐) Suppose that Q is perfect and eutactic. Consider the following function

on the sphere S(pQ) of elements of pQ whose Q-norm is equal to 1:

m(H) = min
x∈Qmin

Q(x, Hx), H ∈ S(pQ).

The perfection and eutaxy of Q imply that m(H) < 0 for each H ∈ S(pQ)
(Lemma 19). Then, the continuity of m and the compactness of S(pQ) imply
that there exists a δ > 0 such that m(H) < −δ for every H ∈ S(pQ). We infer that

min
x∈Qmin

Q(x, Hx) < −δ ‖H‖Q , ∀H ∈ pQ \ {0}.

Now, let H ∈ pQ \ {0} with ‖H‖Q < 1, and let x ∈ Qmin such that Q(x, Hx) <
−δ ‖H‖Q. By Lemma 15,

QH(x) 6 Q(x) + Q(x, Hx) + Q(Hx) < Q(x) − δ ‖H‖Q + ‖H‖2
Q Q(x).

Therefore, when ‖H‖Q < min
(

1, δ/Q(x)
)

, we have γ(QH) 6 QH(x) < Q(x) =
γ(Q). So, Q is strictly extreme.

(ii, ⇐) The pattern of the proof is similar as the one for (i, ⇐) above. Suppose
that there exists X ⊆ Qmin such that (Q, X) is weakly perfect and eutactic. Let
A = {H ∈ pQ | Hx = 0, ∀x ∈ X}. We have a norm ‖·‖Q on pQ/A defined by

‖H + A‖Q = min
J∈A

‖H + J‖Q , H ∈ pQ.
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As (H + J)x = Hx for every J ∈ A and every x ∈ X , we have

∣

∣Q(x, Hx)
∣

∣ 6 ‖H + A‖Q Q(x) and Q(Hx) 6 ‖H + A‖
2
Q Q(x), ∀x ∈ X.

We define now a function m on the sphere S(pQ/A) consisting of classes of norm 1
by

m(H + A) = min
x∈X

Q(x, Hx), H ∈ pQ, ‖H + A‖Q = 1.

Now we use the weak perfection and the eutaxy of (Q, X) : Lemma 19 implies that
m(H +A) is negative on S(pQ/A); therefore, by compactness, there exists a δ > 0
such that m

(

H + A
)

< −δ for every H + A ∈ S(pQ/A). We infer that

min
x∈Qmin

Q(x, Hx) 6 −δ ‖H + A‖Q , ∀H ∈ pQ.

Now, let H ∈ pQ with ‖H‖Q < 1, and let x ∈ X such that Q(x, Hx) 6 −δ×
‖H + A‖Q. By Lemma 15, we have

QH(x) 6 Q(x) + Q(x, Hx) + Q(Hx) 6 Q(x) − δ ‖H + A‖Q + ‖H + A‖
2
Q Q(x).

Therefore, when ‖H + A‖Q < min
(

1, δ/Q(x)
)

, we have γ(QH) 6 QH(x) 6 Q(x) =
γ(Q). So, Q is extreme.

(i, ⇒) Suppose that Q is strictly extreme. Let H ∈ pQ \ {0} with ‖H‖Q 6 1.
By Lemma 15, we have, for each x ∈ Qmin,

QtH(x) > Q(x) + t Q(x, Hx), ∀t, 0 < t < 1.

Since Q is strictly extreme, and (QtH)min ⊆ Qmin for t sufficiently small
(Lemma 16), we have QtH(x) < Q(x) for some x ∈ Qmin and some t > 0. This im-
plies Q(x, Hx) < 0 for some x ∈ Qmin, which means, by Lemma 19, that (Q, Qmin)
is both perfect and eutactic.

(ii, ⇒) We proceed by induction on the cardinal of Qmin. Suppose that Q
is extreme. Let 0 < δ 6 1 such that, for every H ∈ pQ with ‖H‖Q 6 δ, we
have (QH)min ⊆ Qmin (by Lemma 16) and γ(QH) 6 γ(Q) (by the assumption of
extremality). Suppose that (Q, Qmin) is not weakly perfect and eutactic (otherwise
we are done). Then, by Lemma 19, there exists an H ∈ pQ and an x0 ∈ Qmin, such
that Q(x, Hx) > 0 for every x ∈ Qmin and Hx0 6= 0. Moreover, we can choose H
such that ‖H‖Q < δ. By Lemma 15, we have,

QH(x) > Q(x) + Q(x, Hx), ∀x ∈ Qmin, with a strict inequality when Hx 6= 0.

Then the extremality of Q and the choice of δ imply that γ(QH) = γ(Q), with

(QH)min = {x ∈ Qmin | Hx = 0},

and
∣

∣(QH)min

∣

∣ <
∣

∣Qmin

∣

∣ (since Hx0 6= 0), and QH is itself extreme. By induction,
there exists a subset X of (QH)min such that (QH , X) is weakly perfect and
eutactic. It remains to show that (Q, X) is also weakly perfect and eutactic.

On the one hand, we have, for every x ∈ X and every J ∈ g, using Hx = 0,

QH(x, Jx) = Q(exp(H)x, Jx) = Q(x, Jx).

On the other hand, we have for every x ∈ X and every y ∈ V ,

Q(J∗
Qx, y) = Q(x, Jy) = QH(exp(−H)x, Jy)

= QH(x, Jy) = QH(J∗
QH

x, y) = Q(exp(H)J∗
QH

x, y),
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so J∗
QH

x = exp(−H)J∗
Qx for every x ∈ X .

Let us now show that (Q, X) is weakly perfect and eutactic using Lemma 19.
Let J ∈ pQ. If there exists x ∈ X such that QH(x, Jx) < 0, then, since
QH(x, Jx) = Q(x, Jx) for every x ∈ X , there exists x ∈ X such that Q(x, Jx) < 0.
Otherwise, since (QH , X) weakly perfect and eutactic, by Lemma 19, we have
Jx + J∗

QH
x = 0 for every x ∈ X . But since,J∗

QH
x = exp(−H)J∗

Qx, we have
(1+exp(−H))Jx = 0. Yet (1+exp(−H)) is an isomorphism, because it is positive
Q-definite. Therefore Jx = 0 for every x ∈ X .

3.4 More about perfection

It is known that, in classic Voronoi spaces and many other interesting Voronoi
spaces, extremality implies strict extremality. This is not true in general; but the
following proposition gives a simple property of weakly perfect quadratic form,
which turns to be an efficient tool to rule out the existence of extreme but not
strictly extreme quadratic forms in many Voronoi spaces.

20. Proposition. Let (V,Q, Z,G) be a Voronoi space, and let Q ∈ Q be a
quadratic form and X ⊆ V be a nonempty finite subset. If (Q, X) is weakly
perfect but not perfect, then there exists a proper G0-invariant subspace U of V
such that X ⊆ U .

Proof. Let Q ∈ Q and X ⊆ V as in the hypothesis of the theorem. Consider the
following subspace of pQ ⊕ R idV :

A = {H ∈ pQ ⊕ R idV | Hx = 0, ∀x ∈ X}.

Since (Q, X) is weakly perfect but not perfect, A is not reduced to {0}. We define
U as

U =
⋂

H∈A

kerH,

which is a proper subspace of V containing X . It remains to show that it is
G0-invariant, or, equivalently, g-invariant.

(a) Let us first show that U is invariant under the action of kQ. Let H ∈ kQ.
For any J ∈ A and any x ∈ X , we have

Q
(

[J, H ]x, x
)

= Q
(

JHx − HJx, x
) Jx=0

= Q
(

JHx, x
) J=J∗

Q

= Q
(

Hx, Jx
) Jx=0

= 0.

Since [J, H ] ∈ pQ and since (Q, X) is weakly perfect, we have [J, H ] ∈ A. Then,
for any u ∈ U , we have

JHu = [J, H ]u + HJu = 0,

so Hu ∈ kerJ for any J ∈ A, therefore Hu ∈ U by definition of U .
(b) Let us now show that the elements of pQ preserve U ; since g = kQ ⊕ pQ,

this will achieve the proof. Let H ∈ pQ. For any J ∈ A, and any u ∈ U , we have

Q
(

[J, H ]u, [J, H ]u
)

= Q
(

JHu − HJu, [J, H ]u
)

Ju=0
= Q

(

JHu, [J, H ]u
) J=J∗

Q

= Q
(

Hu, J [J, H ]u
)

.

Because we have [J, H ] ∈ kQ and the elements of kQ preserve U by the part (a)
of the proof, we have [J, H ]u ⊆ U , and therefore J [J, H ]u = 0. We infer that
Q
(

[J, H ]u, [J, H ]u
)

= 0, that is [J, H ]u = 0. Then

JHu = [J, H ]u + HJu = 0,

so Hu ∈ kerJ for any J ∈ A, therefore Hu ∈ U by definition of U .
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The last proposition above implies that, in a Voronoi space (V,Q, Z,G) where
an orbit of an element of Z under the action of G0 generates the space V , weak
perfection implies perfection, and therefore, by Theorem 18, extremality implies
strict extremality. This is the case in particular for

• the classic Voronoi space of rank n (Example 1 of Paragraph 1.5). Here, we
have G0 = SL(n, R), which has two orbits on V , namely {0} and V \ {0};

• the mth exterior power (V ∧m,Q∧m, Z∧m,G∧m) of the classic Voronoi space
of rank n, with m 6 n/2 (Example 4 of Paragraph 1.5). Here, the orbit of
an element of Z∧m under the action of G0 is equal to

{x1 ∧ · · · ∧ xm | x1, . . . , xm are linearly independent elements of R
n},

and it spans V ∧m;

• the space (V,Q, Z,G) of Humbert forms of rank n over a number field
(Example 5 of Paragraph 1.5). Here, the orbit of an element of Z under
the action of G0 is equal to

{x1 ⊗ · · · ⊗ xr+2s | xi ∈ R
n \ {0} for 1 6 i 6 r,

xr+i ∈ C
n \ {0} and xr+s+i = xr+i for 1 6 i 6 s},

and this set spans V .

• the “symplectic” Voronoi space of rank 2m: Let σ =
(

0 Im

−Im 0

)

, and consider
the Voronoi space of σ-isodual quadratic form of the classic Voronoi space of
rank 2m, as constructed in Example 3(b) of Paragraph 1.5. Here, we have
G0 = Sp(2m)0, which has two orbits on V , namely {0} and V \ {0}.

As another example, let (V,Q, Z,G) be a classic Voronoi space, and let (Ṽ ,
Q̃, Z̃, G̃) be the Voronoi space constructed in Example 2 of Paragraph 1.5 (with
Qα = Q−1). For Q ∈ Q and c ∈ R∗, let Q̃c ∈ Q̃ such that Q̃c((x1, x2)) =
Q(cx1) + Q−1(c−1x2). If c is chosen such that c2γ(Q) < c−2γ(Q−1), we have
(Q̃c)min = Qmin × {0}, and Q̃c is weakly perfect if and only if Q is perfect; but
Q̃c is not perfect. However Q̃c is not eutactic either, and it is easy to show that
all examples of weakly perfect but not perfect quadratic forms in this space are of
this type. Therefore, in this space, extremality implies strict extremality.

Another question is the finiteness (up to equivalence) of perfect forms as it is
the case for the classic Voronoi space. We conjecture that the set of perfect forms
in a Voronoi space is closed and discrete, but we have not been able to prove it,
except under a very restrictive hypothesis, namely when the Lie algebra g⊕R idV is
also an associative algebra. Since the set of Voronoi spaces given in Paragraph 1.5
for which that condition is satisfied is a strict subset of the set of Voronoi spaces
for which finiteness of perfect forms is already known, we will not give the proof.

Also, an algorithm which would allow to enumerate theoretically all perfect
form, as the one of Voronoi [Voro08], [Mart03, Chap. 7], which has been extended
in various situations [Mart03, Chap. 13], [Bava01], [Bava07], would be a subject of
high interest. However, a study of such an algorithm, is beyond the scope of this
paper.

4 Alternative Voronoi spaces

The classic problems related to the Hermite function can be equivalently formulated
in terms of quadratic forms or of Euclidean lattices. While the former formulation
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is more convenient for the proof of the Voronoi characterization of extremality, the
latter one is more appropriate for expressing the relation between spherical designs
and extremality.

The same situation holds in our frame of Voronoi spaces. Hitherto, we have
worked with the “quadratic forms” formulation, in which the subset Z of V is
fixed and the quadratic forms Q varies. But in order to define designs, we need
to work with the dual formulation, where the quadratic form Q is fixed and
the corresponding subset Z of V varies; we name alternative Voronoi space this
dual concept of Voronoi space. The Voronoi characterization of extremality is
reformulated in terms of alternative Voronoi space in Theorem 26.

Regular alternative Voronoi spaces as defined in Paragraph 4.3 are a particular
type of alternative Voronoi spaces for which designs may be defined in the most
natural way. Finally, in the last paragraph of this section (Paragraph 4.4), we give
the dual formulation of all the examples of Voronoi spaces given in Paragraph 1.5,
and we add another example of alternative Voronoi space.

4.1 Alternative Voronoi space

21. Definition. (Compare with Definition 1.) An alternative Voronoi space is
the data of

(a) a finite-dimensional real vector space V ,

(b) a positive definite quadratic form Q of V ,

(c) a closed (for the topology of simple convergence) set Z of closed discrete subsets
Z of V not containing 0 and spanning V ,

(d) a closed linear Lie group G < GL(V ),

satisfying the following properties:

(i) For Z ∈ Z and c > 0, we have cZ ∈ Z only if c = 1;

(ii) for all g ∈ G, we have g∗Q ∈ G and g∗Qg ∈ G0;

(iii) for all g ∈ G and Z ∈ Z, we have gZ ∈ Z, and G is transitive on Z.

The supplementary requirement g∗Qg ∈ G0 in condition (ii) is to be compared
to Lemma 13; it replaces the condition of connectedness of Q in the definition of
Voronoi space.

22. Definition. (Compare with Definition 2.) Let (V, Q,Z,G) be an alternative
Voronoi space. We define the following objects:

• K = {g ∈ G | g∗Q = g−1}, the group of Q-selfadjoint elements of G, which is
the compact group of (V, Q,Z,G);

• g, the Lie algebra of G;

• k = {H ∈ g | H +H∗
Q = 0}, the subalgebra of Q-antiselfadjoint elements of g,

or the Lie algebra of K;

• p = {H ∈ g | H − H∗
Q = 0}, the set of Q-selfadjoint elements of gQ;

• G0 and K0, the connected component of the identity of G and K respectively.

Note that we have g = k ⊕ p.
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23. Definition. (Compare with Definition 4.) Let (V, Q,Z,G) be an alternative
Voronoi space.

(i) The Hermite function associated to (V, Q,Z,G) is the function γ defined on
K\Z by

γ(KZ) = min
x∈Z

Q(x), Z ∈ Z.

(ii) For r > 0, the layer of square radius r of Z ∈ Z is the set

Zr = {x ∈ Z | Q(x) = r}.

(iii) The set of minimal vectors of a set Z ∈ Z is the layer of minimal radius, that
is

Zmin = Zγ(Z) = {x ∈ Z | Q(x) = γ(Q)}.

(iv) A set Z ∈ Z is extreme, respectively strictly extreme, when its class KZ is a
local maximum, respectively a strict local maximum, of γ.

24. Definition. (Compare with Definition 5.) The alternative Voronoi space
(V, Q,Z,G) is compact when γ : K\Z → ]0,∞[ is bounded and proper.

4.2 Equivalence between Voronoi space and alternative Voronoi space

We construct standard transformations from Voronoi spaces to alternative Voronoi
spaces and conversely as follows:

Let (V,Q, Z,G) be a Voronoi space, and let Q ∈ Q. We construct an alternative
Voronoi space (V, Q,Z,G) by setting

Z = {gZ | g ∈ G}.

If γ is the Hermite function of (V,Q, Z,G) and γ̃ the Hermite function of (V, Q,
Z,G), we have γ̃(gZ) = γ(Q ◦ g).

Conversely, let (V, Q,Z,G) be an alternative Voronoi space, and let Z ∈ Z.
We construct a Voronoi space (V,Q, Z,G) by setting

Q = {Q ◦ g | g ∈ G}.

The property g∗Qg ∈ G0 for g ∈ G implies that Q is connected. If γ is the
Hermite function of (V, Q,Z,G) and γ̃ the Hermite function of (V,Q, Z,G), we
have γ̃(Q ◦ g) = γ(gZ).

The Voronoi characterization of extremality (Theorem 18) can be formulated in
the language of alternative Voronoi space. First we have to complete the definitions
of eutaxy and perfection (Definition 17):

25. Definition. Let (V, Q,Z,G) be an alternative Voronoi space, and let Z ∈ Z.
Then Z is eutactic, perfect, etc., when (Q, Zmin) is eutactic, perfect, etc.

26. Theorem (Voronoi characterization). (Compare with Theorem 18.)
Let (V, Q,Z,G) be an alternative Voronoi space.

(i) A set Z ∈ Z is strictly extreme if and only if it is perfect and eutactic.

(ii) A set Z ∈ Z is extreme if and only if there exists a nonempty subset of Zmin

that is weakly perfect and eutactic.
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Proof. Let Z ∈ Z, and let (V,Q, Z,G) be the Voronoi space associated to
(V, Q,Z,G) and Z. Then the extremality, perfection, eutaxy, etc., of Z in the
alternative Voronoi space (V, Q,Z,G) is equivalent the extremality, perfection,
eutaxy, etc., of Q in the Voronoi space (V,Q, Z,G). Therefore, the theorem is
equivalent to the corresponding theorem for Voronoi spaces (Theorem 18).

Finally, we give a description of neighborhoods in alternative Voronoi space:

27. Proposition. (Compare with Proposition 14.) Let (V, Q,Z,G) an alterna-
tive Voronoi space, and let Z ∈ Z. For H ∈ p, we define ZH by

ZH = exp(H/2)Z.

Then each Z ′ ∈ Z can be written as Z = kZH for some H ∈ p and some k ∈ K.
In particular, if, for Z ∈ Z and ǫ > 0, we set

VZ,ǫ =
{

KZH ∈ K\Z
∣

∣ H ∈ p and ‖H‖Q < ǫ},

then the family {VZ,ǫ}ǫ>0 is a basis of neighborhoods of K\Z.

Proof. Let Z ′ ∈ Z, and let g ∈ G such that Z ′ = gZ. According to Theorem 9, we
have g∗Qg ∈ P = exp(p), therefore there exists an H ∈ p such that g∗Qg = exp(H).
Let k = g exp(−H/2); we have k ∈ K and g = k exp(H), and we have Z ′ = kZH .
The rest of the lemma is straightforward.

4.3 Regular alternative Voronoi space

There is not, in general, a natural notion of design for an arbitrary alternative
Voronoi space; but we need to restrict to the following class of alternative Voronoi
spaces.

28. Definition. Let (V, Q,Z,G) be an alternative Voronoi space, and let

Ω =
⋃

Z∈Z

[Z] ∈ P(V ),

where [ ] denotes the projection V \ {0} → P(V ) and E denotes the adherence
of E. The space (V,Q, Z,G) is regular when Ω is an orbit of G acting on P(V ).

The following fact is crucial for the definition of designs.

29. Proposition. Let (V, Q,Z,G) be a regular alternative Voronoi space. Then
its compact group K is transitive on Ω.

In order to show that statement, we need the following fact on triangular linear
Lie groups:

30. Lemma. Let D be a connected triangular subgroup of GL(V ) and let Ω be a
D-invariant closed subset of the projective space P(V ). Then D has a fixed point
in Ω.

For a proof, see [OniVin94, Chap. 4, Prop. 4.6, p. 161].

Proof of Proposition 29. According to Theorem 9, there exists a connected trian-
gular subgroup D of G such that G = KD. By Lemma 30, there exists ξ ∈ Ω such
that Dξ = ξ. As the alternative Voronoi space is regular, its group G is transitive
on Ω, and we have

Ω = Gξ = KDξ = Kξ,

therefore K is transitive on Ω.

23



4.4 Examples

We give here the alternative Voronoi spaces corresponding to the Voronoi spaces
given in Paragraph 1.5, and we add another example of alternative Voronoi space.

1. Classic spaces. Let V = R
n with n > 2, let Q be the canonical quadratic form

on Rn, let Z be the set of Euclidean lattices in Rn of determinant 1 without their
zero vector, and let G = SL±(n, R). Then (V, Q,Z,G) is a regular alternative
Voronoi space with Ω = P(Rn).

2. Duality. Let (V, Q,Z,G) be an alternative Voronoi space. Let Z 7→ Zα be an
involution of Z, and g 7→ gα be an involution and automorphism of G such that
(g∗Q)α = (gα)∗Q and

(gZ)α = gαZα, ∀g ∈ G, ∀Z ∈ Z.

We define an alternative Voronoi space (Ṽ , Q̃, Z̃, G̃) as follows:

Ṽ = V × V,

Q̃
(

(x1, x2)
)

= Q(x1) + Q(x2),

Z̃ =
{

(cZ × {0}) ∪ ({0} × c−1Zα)
∣

∣ Z ∈ Z, c ∈ R
∗
}

,

G̃ =
{

g̃ ∈ GL(V × V )
∣

∣

∣
g̃ =

(

cg 0
0 c−1gα

)

or

(

0 cg
c−1gα 0

)

for some g ∈ G and some c ∈ R
∗
}

.

We have
Ω̃ =

(

Ω × {0}
)

∪
(

{0} × Ω
)

,

and the space (Ṽ , Q̃, Z̃, G̃) is regular if (V, Q, Z,G) is regular. The local maxima
of the Hermite function γ̃ of (Ṽ , Q̃, Z̃, G̃) correspond to the local maxima of the

function γ′(Z) =
(

γ(Z) γ(Zα)
)1/2

on Z.

As a particular case, we take for (V, Q,Z,G) the classic alternative Voronoi
space of rank n, with gα = g∗−1 and Zα = Z∗, where Z∗ ∪ {0} is the dual
lattice of Z ∪ {0}.

3. Family of lattices. Let (V, Q,Z,G) be an alternative Voronoi space, let Z be
an element of Z, and let H be a connected closed subgroup of G such that
g∗Q ∈ H when g ∈ H. Let HZ be the orbit of Z in Z. Then (V, Q,HZ,H)
is an alternative Voronoi space, which is in general not regular, even when
(V, Q,Z,G) is regular.

As special cases, we have:

(a) Let Γ be a finite subgroup of K, let Z ∈ Z be a Γ-invariant set, that is such
that γZ = Z for every γ ∈ Γ, and let H be the connected component of the
identity of the centralizer of Γ in G. Then H is Q-selfadjoint and HZ is a
connected component of the set of Γ-invariant elements of Z. (Note that,
contrary to what happens with the dual formulation in terms of Voronoi
space, HZ is not necessary the entire set of Γ-invariant elements of Z.) So,
(V, Q,HZ,H) is an alternative Voronoi space.

(b) Let Z 7→ Zα and g 7→ gα as in Example 2; let σ ∈ G such that (σ∗)−1 = σ.
An element Z ∈ Z such that Zα = σZ is called σ-isodual.

Let Z be a σ-isodual element of Z. Let H be the connected component
of the identity of the elements of g ∈ G satisfying σg = gασ. Then H

is Q-selfadjoint, and HZ is a connected component of the set of σ-isodual
elements of Z. So, (V, Q,HZ,H) is an alternative Voronoi space.
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4. Exterior powers or Grassmannian spaces. Let (V, Q,Z,G) be an alternative
Voronoi space and let 1 6 m 6 dim(V )/2. We define a space (V ∧m, Q∧m,Z∧m,
G∧m) as follows: V ∧m is the mth exterior power of V , and

Q∧m(x1 ∧ · · · ∧ xm) = det
(

Q(xi, xj)
m
i,j=1

)

,

Z∧m = {Z∧m | Z ∈ Z}, G∧m = {g̃ | g ∈ G},

where

Z∧m = {x1 ∧ · · · ∧ xm | x1, . . . , xm are linearly independent elements of Z},

g̃(x1 ∧ · · · ∧ xm) = gx1 ∧ · · · ∧ gxm.

Note that the fact that (V, Q,Z,G) is regular does not imply that the space
(V ∧m, Q∧m,Z∧m,G∧m) is regular. If (V, Q,Z,G) is the classic Voronoi space
of rank n, then (V ∧m, Q∧m,Z∧m,G∧m) is regular, with

Ω∧m =
{

[x1 ∧ · · · ∧ xm]
∣

∣ x1, . . . , xm are linearly independent elements of R
n
}

,

which is the space of nonoriented Grassmannians of dimension m in Rn.

5. Humbert forms. Let K be a number field of signature (r, s), of integral ring
OK , let σ1, . . . , σr the real embeddings of K, and σr+1, . . . , σr+2s its complex
embeddings, with σr+s+i = σr+i, and let n be a positive integer. In what
follows, ‘⊗” denotes always the tensor product as real vector space. Let V be
the linear subspace of (Rn)⊗r ⊗ (Cn)⊗2s generated by x1 ⊗ · · · ⊗ xr+2s, where

xi ∈ R
n for 1 6 i 6 r,

xr+i ∈ C
n and xr+s+i = xr+i for 1 6 i 6 s.

Let Q be the quadratic form on V defined by

Q(x1 ⊗ · · · ⊗ xr+2s) =
r+2s
∏

j=1

〈xj | xj〉.

Let G be the linear group acting on V and whose elements g satisfy

g(x1 ⊗ · · · ⊗ xr+2s) = g1x1 ⊗ · · · ⊗ gr+2sxr+2s,

for some gi ∈ GL(n, R) for 1 6 i 6 r, and some gr+i ∈ GL(n, C) and
gr+s+i = gr+i for 1 6 i 6 r, such that

r+2s
∏

j=1

det(gj) = 1.

Let Z = {gZ | g ∈ G}, where

Z = {σ1(x) ⊗ · · · ⊗ σr+s(x) | x ∈ On}.

We obtain a regular alternative Voronoi space (V,Q, Z,G) with

Ω =
{

[x1 ⊗ · · · ⊗ xr+2s]
∣

∣ xi ∈ R
n \ {0} for 1 6 i 6 r,

xr+i ∈ C
n \ {0} and xr+s+i = xr+i for 1 6 i 6 s

}

.
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6. Isotropy in isodual lattices. We add an example of alternative Voronoi space,
which does not seem to have a natural formulation in terms of Voronoi space.

Let V = Rn. An isodual lattice is the data of a Euclidean lattice Λ ⊆ Rn and
an orthogonal transformation σ ∈ O(n) such that Λ∗ = σ(Λ). The lattice is
unimodular when σ = ±id, orthogonal when σ2 = id and σ 6= id, and symplectic
when σ2 = −id. For each isodual lattice (Λ, σ), we set

Z(Λ,σ) = {z ∈ Λ | 〈z | σz〉 = 0} \ {0}.

Let σ ∈ O(n); let Z be a connected component of the set of Z(Λ,σ), where Λ is
a lattice such that (Λ, σ) is isodual; let Q be the canonical quadratic form on
Rn, and let

G = {g ∈ GL(n, R) | σg = g∗−1σ}.

Then (Rn, Q,Z,G) is an alternative Voronoi space of Lie algebra

g = {H ∈ gl(n, R) | σH + Hσ = 0}.

The case where σ2 = id and σ is of signature (n − 1, 1) has been studied by
Ch. Bavard in [Bava07].

5 Designs

The term of “spherical design” was introduced in a paper of Delsarte, Goethals and
Seidel [DeGoSe77] as an equivalent on the Euclidean sphere of the notion of design
in combinatorics, although it is also a particular case of the notion of cubature
formula on sphere, as studied by Sobolev [Sobo62], [Sobo96].

Boris Venkov has shown that a lattice whose minimal vectors form a spherical
4-design is extreme [VenMar01], criterion which has been extended in few other
situations.

In this section, we introduce an appropriate notion of designs in regular
alternative Voronoi spaces, for which the criterion of Venkov holds (Corollary 36).
The frame in which we define design is a particular case of the notion of polynomial
space as defined and studied in [Pach06]. Other noteworthy, although more
restrictive notions of polynomial space are found, e.g., in [Gods93, Chap. 14] and
[HarPac05]. In the present paper, we do not develop the theory more than needed
for our purpose.

In the last paragraph, we give a useful criterion (Corollary 38) which allows
to check that a set is a design by considering the invariants of his automorphism
group.

5.1 Definitions

We fix (V, Q,Z,G) a regular alternative Voronoi space (Definition 28). Recall that
K denotes the compact subgroup of Q-orthogonal elements of G, and p denotes
the subspace of Q-selfadjoint elements of the Lie algebra g of G. As the group
K is compact and transitive on Ω (Proposition 29), there is a unique K-invariant
probability measure µ on Ω.

Consider the following linear subspaces of End(V ), the associative algebra of
linear endomorphisms of V :

p0 = R idV , p1 = R idV + p,

pk = span{H1H2 · · ·Hk + HkHk−1 · · ·H1 | Hi ∈ p ⊕ R idV }, k > 1.
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The elements of pk are Q-selfadjoint, and we have, for i, j > 0,

H ∈ pi, J ∈ pj ⇒ HJ + JH ∈ pi+j .

In other words, pi+j is the subspace of Q-selfadjoint elements of the space generated
by multiplications of elements of pi with elements of pj.

Now we define the following finite-dimensional subspaces of the space C(Ω, R) of
real continuous functions on Ω: Let {2k1, . . . , 2kd} be a finite set with multiplicities
whose elements are even positive integers. We set:

F∅ = R idΩ F{2k1,...,2kd} = span
{

x 7→
d
∏

i=1

Q(x, Hix)

Q(x)

∣

∣

∣
Hi ∈ pki

}

.

and, for τ an even nonnegative integer,

Fτ =
∑

{2k1,...,2kd}
2k1+···+2kd6τ

F{2k1,...,2kd}.

We have

F{2k1,...2kd} ⊆ F{2k′

1
,...2k′

d′
} if d 6 d′ and 2ki 6 2k′

i for i 6 d,

F{2k1,...2kd}F{2kd+1,...2kd+d′} = F{2k1,...2kd+d′},

For f ∈ C(Ω, R), we define his average on Ω by

〈f〉 =

∫

Ω

f(ξ) dµ(ξ),

where µ is the unique K-invariant probability measure on Ω.

31. Definition. Let A be either a finite set with multiplicities of even positive
integers, or an even positive integer. A weighted design or cubature formula of
strength A on Ω, or, in short a weighted A-design, is the data of a finite subset X
of Ω and a function W : X →]0, 1], ξ 7→ Wξ, such that

∑

ξ∈X Wξ = 1 and

∑

ξ∈X

Wξf(ξ) = 〈f〉, ∀f ∈ FA.

A design of strength A on Ω, or an A-design, is a finite subset X of Ω such that
(X, W ) is a weighted A-design for W the constant function of value |X |

−1
.

In particular, {2}-designs and 2-designs are the same things, while 4-designs
are sets which are simultaneously {4}- and {2, 2}-designs.

The notion of τ -design on Ω = P(Rn) for classic alternative Voronoi spaces coin-
cides with the usual notion of antipodal spherical τ -designs on the Euclidean sphere
of dimension n−1, as defined in [DeGoSe77] (see also [GoeSei79], [VenMar01], etc.)
When our alternative Voronoi space is an exterior power of the classic alternative
Voronoi space, Ω is identified with a nonoriented Grassmannian manifold, and the
notion of τ -design coincides with the one defined and studied in [BaCoNe02] and
[BaBaCo04]. (Caution: the sets with multiplicities of even positive integers we use
to define designs are not directly related to the partitions of even positive integers
used to define designs on Grassmannian manifolds in the cited papers.)

When the Lie algebra g⊕R idV is also an associative algebra (as it is the case for
classic alternative Voronoi spaces), then τ -designs are equivalent to {2, 2, . . . , 2}-
designs, where the multiplicity of 2 is equal to τ/2.
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5.2 Criterion for eutaxy and perfection

Although we have defined perfection and eutaxy for subsets of V , the definition is
adaptable to subsets of P(V ), as follows:

32. Definition. Let Q be a quadratic form on V , and let X ⊆ P(V ) be a
nonempty finite subset.

(a) (Q, X) is eutactic when, for every H ∈ p,

∃[x] ∈ X,
Q(x, Hx)

Q(x)
> 0 =⇒ ∃[y] ∈ X,

Q(y, Hy)

Q(y)
< 0.

(b) (Q, X) is strongly eutactic when, for every H ∈ p,

∑

[x]∈X

Q(x, Hx)

Q(x)
= 0

(c) (Q, X) is weakly perfect when, for every H ∈ p,

∃c ∈ R, ∀[x] ∈ X,
Q(x, Hx)

Q(x)
= c =⇒ ∀[x] ∈ X, Hx = cx.

(d) (Q, X) is perfect when, for every H ∈ p,

∃c ∈ R, ∀[x] ∈ X,
Q(x, Hx)

Q(x)
= c =⇒ H = c idV .

The main goal of this section is to prove the following result, which has been
proved by Venkov in the case of classic alternative Voronoi spaces [VenMar01,
Proposition 6.2 and Théorème 6.4], and by Bachoc, Coulangeon and Nebe in the
case of Grassmannians [BaCoNe02, Theorem 6.2].

33. Theorem.

(i) If (X, W ) is a weighted design of strength {2} then (Q, X) is eutactic.

(ii) If X is a design of strength {2} then (Q, X) is strongly eutactic.

(iii) If (X, W ) is a weighted design of strength {2, 2} then (Q, X) is perfect and
eutactic.

For this, we first need some lemmas:

34. Lemma. Let H ∈ p and let f([x]) = Q(x, Hx)/Q(x). If f is constant on Ω,
then H = 0.

Proof. First, we reformulate the assumption of the lemma as follows: There exists
a constant c ∈ R

∗ such that

Q
(

x, (H − c)x
)

= 0 ∀[x] ∈ Ω.

Now, for [y] ∈ Ω and t ∈ R, we have

[

exp(t(H − c)) y
]

=
[

e−tc exp(tH) y
]

=
[

exp(tH) y
]

∈ Ω,
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because exp(tH) is an element of G and Ω is G-invariant. Therefore we have
Q
(

exp(t(H − c)) y, (H − c) exp(t(H − c)) y
)

= 0, or, using H∗
Q = H ,

Q
(

exp(2t(H − c))y, (H − c)y
)

= 0, ∀y ∈ Ω, t ∈ R.

Differentiating this expression in t and setting t = 0, we obtain 2Q
(

(H − c)y,

(H − c)y
)

= 0, therefore Hy = cy for every y ∈ Ω. As Ω spans V , we have
H = c idV , and since R idV ∩ p = {0}, we have c = 0.

35. Lemma. Let H ∈ p and let f([x]) = Q(x, Hx)/Q(x). Then 〈f〉 = 0.

Proof. Using the transitivity of K on Ω (Proposition 29), we get, for any [y] ∈ Ω,

〈f〉 =

∫

Ω

Q(x, Hx)

Q(x)
dµ([x]) =

∫

K

Q(gy, Hgy)

Q(gy)
dg

=

∫

K

Q(y, g−1Hgy)

Q(y)
dg =

Q
(

y,
∫

K
g−1Hg dg y

)

Q(y)

=
Q(y, HKy)

Q(y)
,

where HK =
∫

K
g−1Hg dg is an element of p. Applying Lemma 34 to HK, we get

HK = 0; it follows that 〈f〉 = 0.

Proof of Theorem 33. (i) Suppose that (X, W ) is a weighted design of strength
{2}. Let H ∈ p, and let f([x]) = Q(x, Hx)/Q(x). As 〈f〉 = 0 by Lemma 35, we
get

∑

x∈X

Wx
Q(x, Hx)

Q(x)
= 0.

This implies that, if there exists an x ∈ X such that Q(x, Hx)/Q(x) > 0, then
there exists an y ∈ X such that Q(y, Hy)/Q(y) < 0, that is (Q, X) is eutactic.

(ii) The argument is the same as in the proof of Claim (i).
(iii) Suppose that (X, W ) is a weighted design of strength {2, 2}. As it is in

particular a weighted design of strength {2}, (Q, X) is eutactic by Claim (i). It
remains to show that (Q, X) is perfect.

Let H ∈ p, and suppose that there exists a c ∈ R such that Q(x, Hx)/Q(x) = c
for every x ∈ X . Consider the nonnegative function f ∈ F{2,2} defined by

f([x]) =

(

Q(x, Hx)

Q(x)
− c

)2

.

We have
∫

Ω

f(x) dx =
∑

x∈X

Wxf(x) = 0,

and therefore f(x) = 0 for every x ∈ Ω, that is

Q(x, Hx)

Q(x)
= c, ∀x ∈ Ω.

By Lemma 34, H = 0 (and c = 0). Thus, (Q, X) is perfect.

As a direct consequence of Theorem 33, using Theorem 26, we get:

36. Corollary (Venkov criterion). Let (V, Q,Z,G) be an alternative Voro-
noi space, and let Z ∈ Z. If the minimum layer Zmin of Z is a {2, 2}-design, then
Z is strictly extreme.
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In order to apply this criterion, we need some method for checking easily that
a given finite set of V provide a design. In the next paragraph, we give a criterion
exploiting the symmetry of the set to be checked.

5.3 Designs invariant under finite group

Let (V, Q,Z,G) be a regular alternative Voronoi space, and Ω, FA, etc., as above.
For A a set with multiplicities of even positive integers, or an even positive integer,
and for F a closed subgroup of K we note FF

A the subspace of A-invariant elements
of FA, that is

FF

A = {f ∈ FA | f ◦ g = f, ∀g ∈ F}.

The technique of the following proposition has already been used by Sobolev in
order to compute cubature formulas on spheres [Sobo62]; see also [Sobo96, Chap. 2,
§ 2, Theorem 2.3].

37. Proposition. Let (V, Q,Z,G) be a regular alternative Voronoi space. Let
F be a finite subgroup of K, let X be a finite subset of Ω, and W : X → R a
function with W (ξ) = Wξ > 0 for all ξ ∈ X and

∑

ξ∈X Wξ = 1. Suppose that
(X, W ) is invariant under the action of F, that is gξ ∈ X and Wgξ = Wξ for g ∈ F

and ξ ∈ X .
Then (X, W ) is a weighted A-design if and only if

∑

ξ∈X

Wξf(ξ) = 〈f〉, ∀f ∈ FF

A .

Proof. Let f ∈ FA. The invariance of (X, W ) implies that
∑

ξ∈X

Wξf(ξ) =
∑

ξ∈X

Wξf(gξ), ∀g ∈ F.

Taking the sum on all elements g ∈ F, we obtain
∑

ξ∈X

Wξf(ξ) =
∑

ξ∈X

Wξf
F(ξ), where fF =

∑

g∈F

f ◦ g.

In the same way, the invariance of the measure µ under the action of F ⊆ K implies
that

〈f〉 = 〈fF〉.

Therefore, we have
∑

ξ∈X

Wξf(ξ) = 〈f〉, iff
∑

ξ∈X

Wξf
F(ξ) = 〈fF〉.

The function fF is an element of FA, which is invariant under the action of F. It
follows that, in order to have the equality

∑

ξ∈X Wξf(ξ) = 〈f〉 for every f ∈ FA,

it suffices to check it for every f ∈ FF

A .

As a particular case of the last proposition, we have:

38. Corollary. Under the assumptions of Proposition 37, if the only F-invariant
functions in FA are the constant functions, then (X, W ) is a weighted A-design.

In particular, using the Venkov criterion of extremality (Corollary 36), we have:

39. Corollary. Let (V, Q,Z,G) be an alternative Voronoi space, and let Z ∈ Z.
Let F = {g ∈ K | gZ = Z}. If the only F-invariant functions in F{2,2} are the
constant functions, then Z is strictly extreme.
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For example, let
(

(Rn)∧m, Q,Zn,m,SL±(n, R)
)

be the mth exterior power of
the classic alternative Voronoi space of rank n (Example 4 of Paragraph 4.4).
Recall that the elements of Zn,m are of the form

Z(Λ, m) =
{

x1 ∧ · · · ∧ xm

∣

∣ x1, . . . , xm are linearly independent elements of Λ
}

,

where Λ is a Euclidean lattice in Rn of determinant 1; and the space Ωn,m =

[
⋃

Z∈Zn,m
Z] is identified to the space of m-dimensional subspaces of Rn. We

denote by Fτ (Ωn,m) = Fτ the corresponding spaces of function on Ωn,m. Consider
the following list of Euclidean lattices in Rn (the subscript indicates the dimension
of the ambient space), which is taken from [Bach05] (see also [VenMar01]):

A2, D4 = BW 4, E6, E7, E8 = BW 8,

Q14, Λ16 = BW 16, O16, O22, Λ22, Λ22[2], M22, M22[5],

O23, Λ23, M23, M23[2], Λ24, and BW 2k , k > 2,

where An, Dn, En denote root lattices, Λn denotes laminated lattices, and BW n

denotes the Barnes-Wall lattices. It is known that the automorphism group of these
lattices has no nonconstant invariant polynomial in F4(Ωn,m) for every m 6 n/2
(see [Bach05]); therefore, all these lattices and their duals provide strictly extreme
sets for the alternative Voronoi spaces

(

(Rn)∧m, Q,Zn,m,SL±(n, R)
)

.

6 Epstein zeta function

Hitherto, we have considered extremality relatively to the Hermite function; now,
we turn towards extremality relatively to the Epstein zeta function as defined be-
low. Delone and Ryshkov have formulated a characterization of the so-called final
ζ-extremality [DelRyš67] in what we call classic Voronoi spaces. This character-
ization has some resemblance with Voronoi characterization of extremality, as it
involves the notions of eutaxy and perfection. Likewise, a criterion of ζ-extremality
using designs resembling to the criterion of Venkov for usual extremality has been
found by Coulangeon [Coul06].

The goal of this section is to prove both results in our frame of Voronoi space. In
this whole section, we suppose, for simplicity, that the Voronoi spaces (V,Q, Z,G)
we consider are antipodal, that is Z = −Z. All the results are also correct for
non-antipodal spaces, and even for sets Z with positive weights attached to its
elements and to the corresponding terms in the Epstein ζ-series, if correct weights
are set in all conditions of eutaxy and designs.

6.1 Definitions

Let V be a vector space, Q a positive definite quadratic form, and Z a subset
of V \ {0}, discrete and closed in V . We define the Epstein zeta series of (Q, Z)
by

ζ(Q, Z, s) =
∑

x∈Z

Q(x)−s, s ∈ C.

When Q, respectively Z, is implied, we write ζ(Z, s), respectively ζ(Q, s), instead
of ζ(Q, Z, s).

40. Lemma. There exists a s0(Z) ∈ [−∞, +∞] (with s0 > 0 when Z is infinite)
depending only on Z such that ζ(Q, Z, s) converges absolutely for s ∈ C with
ℜs > s0 and diverges for s ∈ R with s > s0.
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Proof. Suppose that ζ(Q, Z, s) converges for some positive definite quadratic form
Q and some real number s, and let Q′ be another positive definite quadratic form,
and s′ ∈ C such that ℜs′ < s. There exists α > 0 such that Q′(x) 6 αQ(x) for
every x ∈ V . We have

∑

x∈Z

∣

∣

∣
Q′(x)−s′

∣

∣

∣
=
∑

x∈Z

Q′(x)−ℜs′

6 α−s
∑

x∈Z

Q(x)−s = α−sζ(Q, Z, s) < ∞.

So, we have the lemma with s0(Z) the supremum of the values of s for which
ζ(Q, Z, s) converges.

41. Lemma. Let (V,Q, Z,G) be a Voronoi space, let s0 = s0(Z) as in the previous
lemma. Then, for every s > s0, the function Q 7→ ζ(Q, s) converges and is
indefinitely differentiable.

Proof. It is a direct consequence of the proof of the previous lemma, using the
fact that the successive derivatives of Q 7→ Q(x)−s are bounded by a bound
proportional to Q(x)−s.

42. Definition. Let (V,Q, Z,G) be a Voronoi space, and let s0 = s0(Z) as in
Lemma 40. Let Q ∈ Q.

(i) For s > s0, Q is ζ-extreme at s when it is a local minimum of the function
Q 7→ ζ(Q, s).

(ii) Q is finally ζ-extreme when there exists an s > s0 such that Q is ζ-extreme
at any s′ > s.

6.2 Characterization of final ζ-extremality

In this section, (V,Q, Z,G) denotes a Voronoi space with s0 < ∞, Z = −Z, and
|Z| = ∞.

In order to study the ζ-extremality of a quadratic form Q, we need to approx-
imate the function ζ in a neighborhood of Q:

43. Lemma. Let s > s0, Q ∈ Q, H ∈ pQ, and QH(x) = Q(x, exp(H)x). We have

ζ(QH , s) =
∑

x∈Z

Q(x)−s

(

1 − s
Q(x, Hx)

Q(x)
+

s2

2

Q(x, Hx)2

Q(x)2

−
s

2

(

Q(Hx)

Q(x)
−

Q(x, Hx)2

Q(x)2

)

+ O
(

‖H‖
3
Q

)

)

.

Proof. We have, using H = H∗
Q,

QH(x)−s = Q
(

x, exp(H)x
)−s

=
(

Q(x) + Q(x, Hx) +
1

2
Q(x, H2x) + O

(

‖H‖
3
Q

)

)−s

= Q(x)−s

(

1 +
Q(x, Hx)

Q(x)
+

1

2

Q(x, H2x)

Q(x)
+ O

(

‖H‖
3
Q

)

)−s

.
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Using (1 + α)−s = 1 − sα +
(

s(s + 1)/2
)

α2 + O(|α|
3
), we get:

QH(x)−s = Q(x)−s

(

1 − s
Q(x, Hx)

Q(x)
−

s

2

Q(x, H2x)

Q(x)

+
s(s + 1)

2

Q(x, Hx)2

Q(x)2
+ O

(

‖H‖
3
Q

)

)

= Q(x)−s

(

1 − s
Q(x, Hx)

Q(x)
+

s2

2

Q(x, Hx)2

Q(x)2

−
s

2

(

Q(Hx, Hx)

Q(x)
−

Q(x, Hx)2

Q(x)2

)

)

+ O
(

‖H‖
3
Q

)

.

To get the claim of the lemma, it remains to sum on x ∈ Z and to use the absolute
convergence of the series.

Recall that, for Q ∈ Q, the layer of square radius r is the set

Qr = {x ∈ Z | Q(x) = r}.

The following result has been proved by Delone and Ryshkov in the case of classic
Voronoi spaces [DelRyš67], and recently by R. Coulangeon in the case of Humbert
forms [Coul08].

44. Theorem. (Compare with Theorem 18.) Let (V,Q, Z,G) be a Voronoi space
such that Z = −Z and s0 < ∞, and let Q ∈ Q.

(i) If (Q, Qr) is strongly eutactic for every r > 0 such that Qr 6= 0, and if
(Q, Qmin) is perfect, then Q is finally ζ-extreme.

(ii) If Q is finally ζ-extreme, then (Q, Qr) is strongly eutactic for every r > 0
such that Qr 6= 0, and (Q, Qmin) is weakly perfect.

Proof. Let r0 = γ(Q) < r1 < r2 < · · · be the square radii of the nonempty layers
of Q. We have, according to Lemma 43,

ζ(QH , s) = ζ(Q, s) + A(H) + B(H) + O
(

‖H‖
3
Q

)

,

where A is a linear form on pQ and B is a quadratic form on pQ. More precisely,

A(H) = −s
∑

i>0

r−s
i

∑

x∈Qri

Q(x, Hx)

Q(x)
,

B(H) =
∑

i>0

(

s2

2
r−s
i Ci(H) −

s

2
r−s
i Di(H)

)

,

where

Ci(H) =
∑

x∈Qri

Q(x, Hx)2

Q(x)2
,

Di(H) =
∑

x∈Qri

(

Q(Hx)

Q(x)
−

Q(x, Hx)2

Q(x)2

)

.

Using the definition of the Q-norm and the triangular equality, we get

0 6 Ci(H) 6 |Qri
| ‖H‖

2
Q and 0 6 Di(H) 6 |Qri

| ‖H‖
2
Q .

To prove the theorem, we use the classic criterion for minima on twice continuously
differentiable functions:
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45. Theorem. Let W be a finite-dimensional real vector space, and let f : W → R

be a twice continuously differentiable function such that

f(H) = f(0) + f ′
0(H) + f ′′

0 (H) + O
(

‖H‖3),

where f ′
0 and f ′′

0 are respectively linear and quadratic forms. Then, if f ′
0(H) = 0

and f ′′
0 (H) > 0 for all H ∈ W \ {0}, then 0 is a local minimum of f . Conversely, if

0 is a (strict) local minimum of f , then f ′
0(H) = 0 and f ′′

0 (H) > 0 for all H ∈ W .

Applying the criterion to the function H 7→ ζ(QH , s), we get: If A(H) = 0 and
B(H) > 0 for all H ∈ pQ \ {0}, then Q is (strictly) ζ-extreme at s. Conversely, if
Q is ζ-extreme at s, then A(H) = 0 and B(H) > 0 for all H ∈ pQ. This criterion,
together with Claims A and B below, achieves the proof.

Claim A. The following are equivalent:

(a) A(H) = 0 for every H ∈ pQ and for s large enough;

(b) (Q, Qri
) is strongly eutactic for every i.

It is clear that (b) implies (a). Conversely, suppose that there exists an
index i such that (Q, Qri

) is not strongly eutactic. Let k be the smaller index
for which (Q, Qrk

) is not strongly eutactic, and let H ∈ pQ such that p :=
∑

x∈Qri
Q(x, Hx)/Q(x) 6= 0. We have

A(H) = −sr−s
k (p + S),

where

|S| 6

∣

∣

∣

∣

∞
∑

i=k+1

( ri

rk

)−s ∑

x∈Qri

Q(x, Hx)

Q(x)

∣

∣

∣

∣

6 ‖H‖

∞
∑

i=k+1

( ri

rk

)−s

.

Now, for s′ = s
(

1 − log(rk)/ log(rk+1)
)

, we have (ri/rk)−s 6 r−s′

i for i > k + 1.
Therefore,

|S| 6 ‖H‖Q

∑

i>0

r−s′

i = ‖H‖Q ζ(Q, s′).

As ζ(Q, s′) tends to zero when s tends to the infinity, for s large enough, we have
|S| 6 p/2, and therefore A(H) 6= 0. This achieves the proof of Claim A.

Claim B. If (Q, Qmin) is perfect, then B(H) > 0 for every H ∈ pQ \ {0} and for s
large enough. Conversely, if B(H) > 0 for every H ∈ pQ and for s large enough,
and if (Q, Qmin) is eutactic, then (Q, Qmin) is weakly perfect.

If (Q, Qmin) is perfect, then C0(H) > 0 when H ∈ pQ \ {0}. The function

f : [H ] 7→ C0(H)/ ‖H‖2
Q defined on P(pQ) is continuous and positive, and P(pQ)

is compact; therefore there exists a δ > 0 such that f > δ, that is

C0(H) > δ ‖H‖
2
Q , ∀H ∈ pQ.

Thus, we have

B(H) >
s2r−s

0

2

(

δ ‖H‖2
Q + S

)

,

S = −s−1D0(H) +

∞
∑

i=1

( ri

rk

)−s
(

Ci(H) − s−1Di(H)
)

With an argument similar to the one of the proof of Claim A, it is shown that
|S| 6 δ ‖H‖2

Q /2 for s large enough, and therefore B(H) > 0 for every H ∈ pQ\{0}.
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Conversely, suppose, that (Q, Qmin) is eutactic but not weakly perfect. Then
there exists an H0 ∈ pQ, an x ∈ Qmin and a c ∈ R such that (H0 − c)x 6= 0 but
Q(y, (H0 − c)y) = 0 for every y ∈ Qmin; the eutaxy of (Q, Qmin) then implies that
c = 0. So, we have C0(H0) = 0 and D0(H0) = p > 0. So,

B(H0) =
sr−s

0

2

(

−p + S
)

,

S =

∞
∑

i=1

( ri

rk

)−s
(

s Ci(H0) − Di(H0)
)

.

As before, |S| 6 p/2 for s sufficiently large, and therefore B(H0) < 0. This achieves
the proof of Claim B and of the theorem.

6.3 Criterion of ζ-extremality in terms of design

In this paragraph, we work with alternative Voronoi spaces, since they are more
convenient when talking about designs. All the definitions and results from the
two previous paragraphs can be formulated in the language of alternative Voronoi
spaces.

The following result has been proved by Coulangeon in the case of the classic
alternative Voronoi space [Coul06, Theorem 1]; note however that our result
generalizes only partially the theorem of Coulangeon. Recall that we use the
brackets [ ] to denote the image through the projection V \ {0} → P(V ).

46. Theorem. (Compare with Corollary 36.) Let (V, Q,Z,G) be a regular
alternative Voronoi space such that Z = −Z. Then there exists a s1 > 0 with
the following property: For Z ∈ Z, if [Zr] is a 4-design for every r > 0 such that
Zr 6= 0, then Z is ζ-extreme for every s > s1.

The constant s1 of the theorem can be computed explicitly by the formula given
in the proof below. For example in the case of the classic alternative Voronoi space
of rank n, we have s1 = n/2 [Coul06].

Proof. Let Z ∈ Z and let r0 = γ(Q) < r1 < r2 < · · · be the square radii of the
nonempty layers of Z; and suppose that [Zri

] is a 4-design for every i. Recall
(Proposition 27) that a set in the neighborhood of Z is of the form kZH with
ZH = exp(H/2)Z, k ∈ K, and H ∈ p with ‖H‖Q small. From Lemma 43, we have

ζ(ZH , s) = ζ(Z, s) +
∑

i>0

r−s
i

(

−s Ai(H) +
s2

2
Bi(H) −

s

2
Ci(H) + O

(

‖H‖
3
Q

)

)

,

where

Ai(H) =
∑

x∈Zri

Q(x, Hx)

Q(x)
, Bi(H) =

∑

x∈Zri

Q(x, Hx)2

Q(x)2
,

Ci(H) =
∑

x∈Zri

(

Q(Hx)

Q(x)
−

Q(x, Hx)2

Q(x)2

)

.

As [Zri
] is in particular a {2}-design, we have Ai(H) = 0 by Lemma 35. Let

βH(x) =
Q(x, Hx)2

Q(x)2
> 0, γH(x) =

Q(Hx)

Q(x)
−

Q(x, Hx)2

Q(x)2
> 0.
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We have βH ∈ F{2,2} ⊆ F4 and γH ∈ F{2,2} +F{4} = F4. Since [Zri
] is a 4-design,

we have Bi(H) = |Zri
| 〈βH〉 and Ci(H) = |Zri

| 〈γH〉, so

ζ(ZH , s) = ζ(Z, s) +
∑

i>0

|Zri
| r−s

i

(s2

2
〈βH〉 −

s

2
〈γH〉 + O

(

‖H‖
3
Q

)

)

,

= ζ(Z, s)
(

1 +
s2

2
〈βH〉 −

s

2
〈γH〉 + O

(

‖H‖
3
Q

)

)

.

Now consider the function f : P(p) → ]0,∞[ defined by f([H ]) = 〈γH〉/〈βH〉, and

let s1 be the maximal value of f . For s > s1, we have 〈γH〉 6 s1〈βH〉 6 s ‖H‖
2
Q,

hence

ζ(ZH , s) > ζ(Z, s)
(

1 +
s(s − s1)

2
‖H‖

2
Q + O

(

‖H‖
3
Q

)

)

.

We infer that ζ(kZH , s) = ζ(ZH , s) > ζ(Z, s) for ‖H‖Q sufficiently small. Note
that the value of s1 depends only on the structure of alternative Voronoi space of
(V, Q,Z,G).

As for standard extremality, we can exploit the symmetry of the potentially ex-
treme sets in order to check that there are indeed extreme. So, using Corollary 38,
we draw the following consequence:

47. Corollary. (Compare with Corollary 39.) Let (V, Q,Z,G) be a regular
alternative Voronoi space, and let Z ∈ Z. Let F = {g ∈ K | gZ = Z}. If the
only F-invariant functions in F4 are the constant functions, then Z is ζ-extreme
at every s > s1.

For example, this criterion allows to show that all the lattices given at the end
of Paragraph 5.3, are ζ-extreme at any s > n/2.
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[Coul01] R. Coulangeon, Voronöı theory over algebraic number fields, chap. 5
of [MartV01].

[Coul06] R. Coulangeon, Spherical designs and zeta functions of lattices, Int.
Math. Res. Not. (2006) Art. ID 49620.

[Coul08] R. Coulangeon, On Epstein’s zeta function of Humbert forms, to
appear in: Int. J. Number Theory.
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