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Abstract :

An analytical theory is presented for the generation of small-amplitude three-dimensional monochromatic internal
waves by an oscillating object. The theory expresses the structure of the waves in terms of the size of the object,
the viscosity of the fluid and the time elapsed since the start-up; to this, it adds near-field effect and modification of
the added mass of the object by the stratification. Comparison with experiment allows assessment of the relative
importance of all five effects.
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1 Introduction

Interest in the generation of monochromatic internal waves has recently been revived, owing on
one hand to the realization of the importance of internal tides for mixing the ocean (St Laurent
and Garrett, 2002), and on the other hand to the advent of digital measurement techniques such
as synthetic Schlieren and Particle Image Velocimetry (Dalziel et al., 2000).

Most laboratory experiments so far have dealt with two-dimensional situations, and the
agreement with theory has been found satisfactory; see for example Sutherland et al. (1999)
for a vertically oscillating cylinder. Lately, tomographic inversion has allowed the generaliza-
tion of synthetic Schlieren to three-dimensional axisymmetric situations (Onu et al., 2003), a
generalization applied by Flynn et al. (2003) to a vertically oscillating sphere. In doing so, a
discrepancy between experiment and theory has been revealed.

The present paper proposes amendments to the theory, in order to remove the discrepancy.
Three effects are considered: interference with transients produced by the start-up of the motion;
near field; modification of the added mass of the oscillating object by the stratification. The
exposition is focused on the comparison with Flynn et al. (2003); the details of the theory will
be presented elsewhere (Voisin, 2007a, b).

2 The classical theory revisited

In a uniformly stratified fluid of buoyancy frequency N , an object of characteristic radius a gen-
erates monochromatic internal waves by oscillating at frequency ω < N with surface velocity
U(x)e−iωt . The waves vary with time through the factor e−iωt , which is implicit in the following.
Wave beams are formed, on a double cone of vertical axis, apex at the object and semi-angle
θ = arccos(ω/N ). Conical polar coordinates (x±,ϕ, z±) are introduced, with ϕ the azimuthal
angle, ±z± the direction of energy propagation and x± the direction of phase propagation. In
terms of the cylindrical polar coordinates (rh,ϕ, z), we have

x± = rh cosθ ∓ z sinθ, z± =±rh sinθ + z cosθ. (1)

The coordinates (x+,ϕ, z+) are used in the upper half-space z> 0 and the coordinates (x−,ϕ, z−)
in the lower half-space z < 0, so that ±= sign z.
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2.1 Calculation of the waves

The classical approach to this problem dates back to Lighthill (1978, §4.10): the oscillating
object is represented by a source term in the wave equation, say, a source of mass releasing the
volume q(x) of fluid per unit volume per unit time, and the waves are calculated in the far field.
An integral over the transverse wavenumber k± is obtained. However, this integral diverges
along the wave rays tangent to the surface of the object. Viscosity comes into play (Lighthill,
1978, §4.10), attenuating each Fourier component at the rate βk3

± per unit distance along rays,
with ν the kinematic viscosity and

β =
ν

2ω tanθ
. (2)

Unsteadiness comes into play as well (Voisin, 2003), preventing, at time t after impulsive start-
up, each Fourier component to travel further than a distance 1/(αk±) along rays, with

α =
1

ωt tanθ
. (3)

The velocity disturbance becomes (Voisin 2007a)

u∼±
ez±

25/2π3/2

(
cotθ
|z±|

)1/2

e−iπ/4
∫ 1/(α|z±|)

0
e−βk3

±|z±|k1/2
± q±(k±,ϕ,0)eik±x± dk± (4)

with ez± a unit vector along the z±-axis and q±(k±,ϕk,m±)= q(k). Hereinafter the definition
of Fourier transforms is f (k)=

∫
f (x)exp(−ik ···x)d3k.

Transitions take place, as the waves propagate away from the source, between a bimodal
regime governed by the spectrum of the source and a unimodal regime governed by either
viscosity (Makarov et al., 1990) or unsteadiness. The names ‘bimodal’ and ‘unimodal’ refer to
the transverse profile of velocity amplitude: a bimodal profile exhibits two peaks on either side
of the axis of the wave beam, and a unimodal profile a single peak at this axis. The transitions
are illustrated in figure 1. They are characterized by two parameters,

σv =
(β|z±|)1/3

a
=

(
|z±|/a
Re tanθ

)1/3

and σu =
α|z±|

a
=
|z±|/a
ωt tanθ

, (5)

involving the length scales of the problem, with Re = 2ωa2/ν the Reynolds number. In the
(σu,σv)-plane a transition diagram may be drawn (figure 2), in which the boundary between the
bimodal and unimodal zones is defined, for the quantity considered, by the largest distance |z±|
at which the concavity of the profile at the axis x± = 0 changes sign.

2.2 Representation of the oscillating object

Since forcing takes place at the surface S of an oscillating object, the most natural representation
of this object is a surface distribution of singularities. A popular approximation, dating back
to Gorodtsov and Teodorovich (1986) and Makarov et al. (1990), consists in borrowing the
distribution from the theory of homogeneous fluids, on the assumption that, for small amplitude
of oscillation A compared with the radius a of the object, the influence of the stratification is
negligible in the vicinity of the object. For a rigid sphere of radius a oscillating at the velocity
U, the approximation yields

q(x)=
3
2

U ···
x
r
δ(r −a), q(k)=−6iπa2U ···

k
κ

j1(κa), (6)

with r = |x| and κ = |k|, and j1(x)= (sin x)/x2
− (cos x)/x a spherical Bessel function.
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FIG. 1 – Wave beams from a pulsating sphere, accounting for either viscous effects at Re = 283 (left)
or unsteady effects at ωt = 21 (right). The wave intensity profile is drawn at three distances z+ from
the sphere, respectively before, at and after the transition from bimodality to unimodality at distance dt.
Distances are drawn to scale with respect to the size of the sphere.

3 Beyond the classical theory

3.1 Near-field effects

In the classical approach, neither Lighthill’s far-field approximation nor its viscous and unsteady
extension (4) have their conditions of validity specified. Going back to the wave equation, and
assuming large time ωt � 1 and large Reynolds number Re� 1 but leaving r/a arbitrary, we
obtain (Voisin 2007a)

u∼±
cosθ
8π2

∫ 2π

0
dϕk em±(ϕk)

∫ cosθ/(α|z|)

0
dk± e−βk3

±|z|/cosθk±q±(k±,ϕk,0)eik±Φ(ϕk), (7)

with
Φ(ϕk)= rh cosθ cos(ϕk−ϕ)∓ z sinθ (8)

and
em±(ϕk)=±erh sinθ cos(ϕk−ϕ)± eϕ sinθ sin(ϕk−ϕ)+ ez cosθ. (9)

The result (4) is recovered at large distances |z±|/a� 1. At smaller distances |z±|/a = O(1),
two discrepancies arise. First, all the wavenumber vectors satisfying the dispersion relation
contribute to the wave field, instead of only those, of azimuthal angle ϕk = ϕ, associated with
group velocity vectors pointing towards the point of observation. Secondly, the viscous and
unsteady cutoffs involve the projected vertical distance |z|/cosθ , instead of the longitudinal
distance |z±| along rays. Since |z|/cosθ = |z±∓ x± tanθ |, a transverse asymmetry of the wave
beams follows, the waves being more attenuated for x± < 0 than for x± > 0.

3.2 Added-mass effects

The representation of a rigid sphere of radius a oscillating at the velocity U in a stratified fluid
can be determined exactly (Voisin, 2007b). The result is the same (6) as in a homogenous fluid,
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FIG. 2 – Regimes of internal wave propagation in the experiments of Flynn et al. (2003). The dashed
curves represent the trajectories, in the (σu,σv)-plane, of each experiment as the distance from the oscil-
lating sphere varies, and the points represent the positions at which the transverse profiles are plotted in
figure 3.

except for the replacement of the actual velocity U by the virtual velocity U?, of horizontal and
vertical components

U?h =
4/3

1+ B(ω/N )
Uh and W ?

=
2/3

1− B(ω/N )
W, (10)

varying with frequency according to

B
(ω

N

)
=
ω2

N 2

[
1−

(
1−

ω2

N 2

)1/2(
i
π

2
+ arccosh

N
ω

)]
. (11)

The physical interpretation of this result is a modification of the added mass of the sphere by
the stratification, a phenomenon first noticed theoretically by Lai and Lee (1981) and verified
experimentally by Ermanyuk and Gavrilov (2003). It is only in the limit ω� N that B→ 1/3
and U?→ U, irrespective of the amplitude of oscillation.

4 Comparison with experiment

We apply the above results to the experiments of Flynn et al. (2003), involving two spheres,
one small (such that Re = 350) and the other large (such that Re = 1000). The perturbation
1N 2 of the squared buoyancy frequency is measured, and its amplitude |1N 2| is obtained by
sampling the measurement at sixteen equally spaced times between the start ωt = 4π and the
end ωt = 6π of the third period of oscillation, then calculating the root-mean-square average of
the samples and multiplying the result by

√
2.

The theoretical perturbation is, for ωt � 1 and Re� 1,

1N 2
∼±iN 2 A

a
(sinθ cosθ)2

1− B(cosθ)

∫ (a cosθ)/(α|z|)

0
exp

(
−

β|z|
a3 cosθ

K 3
)

×K 2 j1(K )J0

(
K

rh

a
cosθ

)
exp

(
∓iK

z
a

sinθ
)

dK , (12)
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FIG. 3 – Transverse profiles of |1N 2
| at two distances z+/a = 5 (left) and 8 (right) from the small (top)

and large (bottom) spheres in the experiments of Flynn et al. (2003). The dashed curves represent the
experimental data for three oscillation amplitudes. The continuous curves represent the theory, starting
from the steady inviscid far field (—) and adding cumulatively the effects of viscosity (—), added mass
(—), near field (—), unsteadiness (—) and rms (—). The unsteady profiles are calculated at ωt = 5π ,
and the rms profiles are deduced from sixteen samples starting at ωt = 4π and separated by π/8.

becoming, in the far field |z±| � a,

1N 2
∼±

eiπ/4
√

2π
N 2 A

a
(sinθ cosθ)3/2

1− B(cosθ)

√
a
|z±|

×

∫ a/(α|z±|)

0
exp

(
−
β|z±|

a3 K 3
)

K 3/2 j1(K )exp
(

iK
x±
a

)
dK . (13)

Based on this far field, the bimodal and unimodal regimes are as represented in figure 2.
We focus in figures 3 and 4 on comparison with figures 8–11 of Flynn et al. (2003), where

the amplitude is normalized by AN 2 = (N 2/2)(A/a)sinθ cosθ . The distinctive influence of
each mechanism is visible in the theoretical curves: viscosity, smoothing out the inviscid singu-
larities; added mass, diminishing the amplitude by 40%; near field, breaking the symmetry of
the profiles; unsteadiness, adding oscillations. In the experimental curves, the dominant effect
appears to be the added mass correction, especially for the large sphere. On top of it, an asym-
metry is observed in the transverse profile for the small sphere at z+/a = 5, but this asymmetry
goes opposite to that predicted for near-field effects and is absent for the large sphere. The
overall noise level of the measurements makes it difficult to assess unsteady effects precisely.
These effects, though, seem to provide an explanation for the otherwise unexplained increase
of the amplitude at sufficiently large z+ for the large sphere on the axis x+ = 0.

5



18ème Congrès Français de Mécanique Grenoble, 27–31 août 2007

0 0.01 0.02

0

1

|Δ
N
2
|/A

N
2

0 0.01 0.02

0

1

2

3

0 0.005

0

1

2

z+/(a Re tan θ)

|Δ
N

2
|/A

N
2

0 0.005

0

2

4

z+/(a Re tan θ)

FIG. 4 – Longitudinal variations of |1N 2
| at two positions x+/a = 0 (left) and −1 (right) across the

wave beam for the small (top) and large (bottom) spheres in the experiments of Flynn et al. (2003). The
mode of representation is the same as in figure 3. The longer tick marks represent the positions z+/a = 5
and 8 of the transverse profiles in figure 3.
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