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Abstract

We develop two kernel smoothing based tests of a parametric mean-regression

model against a nonparametric alternative when the response variable is right-

censored. The new test statistics are inspired by the synthetic data and the weighted

least squares approaches for estimating the parameters of a (non)linear regression

model under censoring. The asymptotic critical values of our tests are given by the

quantiles of the standard normal law. The tests are consistent against fixed alter-

natives, local Pitman alternatives and uniformly over alternatives in Hölder classes

of functions of known regularity.
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1 Introduction

Parametric mean-regression models, in particular the linear model, are valuable tools for

exploring the relationship between a response and a set of explanatory variables (covari-

ates). However, in survival analysis such models are overshadowed by the fashionable

proportional hazard models and the accelerated failure time models where one imposes

a form for the conditional law of the response given the covariates. Even though mean-

regression models involve weaker assumptions on the conditional law of the responses, the

popularity of the parametric mean-regressions with censored data greatly suffers from the

difficulty to perform statistical inference when not all responses are available.

The existing methods for the estimation of the parameters of the mean-regression

in the presence of right censoring can be split into two main categories: i) weighted least

squares (WLS) based on the uncensored observations but suitably weighted to account for

censorship (see Zhou 1992, Stute 1999); and ii) synthetic data (SD) estimators obtained by

ordinary least squares with transformed responses, using a transformation that preserves

the conditional expectation and that can be estimated from data (e.g., Koul et al. 1981,

Leurgans 1987).

This paper’s main purpose focuses on a further step in the statistical inference for

parametric mean-regression models under right censoring, that is nonparametric lack-of-

fit testing. Checking the adequacy of a parametric regression function against a purely

nonparametric alternative has received a large amount of attention in the non-censored

case and several approaches have been proposed. See, amongst many others, Härdle and

Mammen (1993), Zheng (1996), Stute (1997), Horowitz and Spokoiny (2001), Guerre and

Lavergne (2005), and the references therein. But for right-censored data, these approaches

are not directly applicable. To our knowledge, very few solutions for nonparametric re-

gression checks with right-censored responses have been proposed. Following the approach

of Stute (1997), Stute et al. (2000) introduced two tests based on an empirical process

marked by weighted residuals, the role of the weights being to account for censoring. The

limit of their marked empirical process is a rather complicated centered Gaussian process

and therefore the implementation of the test requires numerical calculations. Sánchez-

Sellero et al. (2005) reconsidered this type of test and provided a complete proof of its
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asymptotic level. However, for technical reasons, Sánchez-Sellero et al. (2005) drop some

observations in the right tail of the response variable and therefore the resulting tests

are no longer omnibus. Moreover, neither Stute et al. (2000) nor Sánchez-Sellero et al.

(2005) studied the consistency of the tests against a sequence of alternatives approaching

the null hypothesis. Pardo-Fernandez et al. (2005) proposed another test for parametric

models in censored regression that is based on the comparison of two estimators, para-

metric and nonparametric, of the distribution of the errors. As the latter estimator is

based on a nonparametric location-scale model, the test of Pardo-Fernandez et al. (2005)

is not consistent against any alternative.

In this paper we consider two versions adapted for right-censored responses of the

kernel-based test statistic studied by Zheng (1996). See also Härdle and Mammen (1993),

Horowitz and Spokoiny (2001), Guerre and Lavergne (2005) for closely related test statis-

tics. In the non-censored case, the kernel-based test statistic we consider is a suitably

normalized U−statistic built from the estimated residuals of the parametric model. Un-

der suitable conditions, the test statistic converges in law to a standard normal when the

model is correct. The problem in presence of censoring is that estimated residuals can be

computed only for uncensored observations. The two solutions we propose are inspired

by the WLS and SD estimation approaches mentioned above. On one hand, we build

a weighted U−statistic using estimated residuals with the weights estimated from data.

Once again, the weights account for censoring. On the other hand, we build a U−statistic

using estimated synthetic residuals where the synthetic residuals are the difference between

the synthetic responses and the predictions given by the model. Two smoothing-based

test statistics are obtained after suitably normalizing each of these U−statistics.

The paper is organized as follows. In section 2 we recall the weighted least squares

and synthetic data approaches for (non)linear regression models when the response is

right-censored. Section 3 shows how to build two kernel based test statistics adapted for

censored responses. Section 4 deals with the asymptotic behavior of the two omnibus

tests that we derive. The main results in this paper show that the asymptotic study of

our tests boils down to the asymptotic study of kernel-based tests without censoring but

with suitably transformed observations. As a consequence, the asymptotic critical values
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of the new tests are given by the quantiles of the standard normal law. Moreover, the

asymptotic consistency of our tests is obtained by arguments similar to those used for

kernel based tests in the non-censored case. In particular, we study the consistency of the

new tests against fixed alternatives, local Pitman type alternatives and the consistency

uniformly over Hölder classes of alternatives of known regularity. The performances of

the kernel-based tests we propose depend on the choice of the bandwidth. Inspired by

the maximum test approach of Horowitz and Spokoiny (2001), we propose a data-driven

procedure to select the bandwidth with censored responses. However, to keep this paper at

reasonable length, the detailed theoretical and empirical investigation of this data-driven

procedure is left for future work. Finally, in section 5 we illustrate the performance of the

new tests using simulated and real data.

2 Preliminaries

Consider the model Y = m (X) + ε, where Y ∈ R, X ∈ R
p, E (ε | X) = 0 almost surely

(a.s.), and m (·) is an unknown function. In presence of random right censoring, the

response Y is not always available. Instead of (Y,X), one observes a random sample from

(T, δ,X) with

T = Y ∧ C, δ = 1{Y ≤C},

where C is the “censoring” random variable, and 1A denotes the indicator function of the

set A. In our setting, the variable X is not subject to censoring and is fully observed.

We want to check whether the regression function m (·) belongs to a parametric family

M =
{

f (θ, ·) : θ ∈ Θ ⊂ R
d
}

where f is a known function. Our null hypothesis then writes

H0 : for some θ0, E (Y |X) = f(θ0, X) a.s., (2.1)

while the alternative is P [E (Y |X) = f(θ, X)] ≤ c for every θ ∈ Θ and some c < 1. For

testing H0, first we need to estimate θ0.

2.1 Estimating (non)linear regressions with censored data

Since the observed variable T does not have the same conditional expectation as Y ,

classical techniques for estimating parametric (non)linear regression models like M must
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be adapted to account for censorship. Several adapted procedures have been proposed,

that we classify in two groups: synthetic data (SD) procedures and weighted least squares

(WLS). In the SD approach one replaces the variable T with some transformation of the

data Y ∗, a transformation which preserves the conditional expectation of Y . Several

transformations have been proposed, see for instance Leurgans (1987), Zheng (1987). In

the following, we will restrain ourselves to the transformation first proposed by Koul et

al. (1981), that is

Y ∗ =
δT

1 − G (T−)
, (2.2)

where G (t) = P (C ≤ t). The following assumptions will be used throughout this paper

to ensure that E (Y ∗ | X) = E (Y | X) for Y ∗ defined in (2.2).

Assumption 1 Y and C are independent.

Assumption 2 P (Y ≤ C | X,Y ) = P (Y ≤ C | Y ) .

These assumptions are quite common in the survival analysis literature when covariates

are present. Assumption 1 is an usual identification condition when working with the

Kaplan-Meier estimator. Stute (1993), pages 462-3, provides a detailed discussion on

Assumption 2. These assumptions may be inappropriate for some data sets. However,

they are often satisfied in randomized clinical trials when the failure time Y of each

subject is either observed or administratively censored at the end of the follow-up period.

Notice that Assumption 2 is flexible enough to allow for a dependence between X and C.

Moreover, Assumptions 1 and 2 imply the following general property: for any integrable

φ(T,X),

E

[

δ

1 − G(T−)
φ(T,X) | X

]

= E [φ(Y,X) | X] . (2.3)

Unfortunately, one cannot compute the transformation (2.2) when the function G is

unknown. Given the i.i.d. sample (T1, δ1, X1) , ..., (Tn, δn, Xn) , Koul et al. (1981) proposed

to replace G with its Kaplan-Meier estimate

Ĝ (t) = 1 −
∏

{j:Tj≤t}

(

1 − 1

Rn (Tj)

)1−δj

, with Rn (t) =
n

∑

k=1

1{t≤Tk},

and to compute

Ŷ ∗
i =

δiTi

1 − Ĝ (Ti−)
, i = 1, ..., n. (2.4)
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Next, Koul et al. (1981) proposed to estimate θ0 by θ̂SD that minimizes

MSD
n (θ) =

1

n

n
∑

i=1

[

Ŷ ∗
i − f (θ, Xi)

]2

over Θ. They obtained the consistency of θ̂SD and the asymptotic normality of
√

n(θ̂SD −
θ0) in the particular case of a linear regression model. Delecroix et al. (2006) generalized

these results to more general functions f (θ, x).

The WLS approach consists of applying weighted least squares techniques directly to

variables Ti, that is computing θ̂WLS which minimizes

MWLS
n (θ) =

n
∑

i=1

Win [Ti − f (θ,Xi)]
2 ,

with a specific choice of Win that compensates for the fact that Y is censored. More

precisely, the weights Win are defined by

Win =
δi

n
[

1 − Ĝ (Ti−)
] . (2.5)

Zhou (1992) studied an estimator like θ̂WLS in the case of linear regression. Under As-

sumptions 1 and 2, Stute (1999) generalized this approach to nonlinear regressions. Using

the Kaplan-Meier estimator F̂(X,Y ) (x, y) of F(X,Y ) (x, y) = P (X ≤ x, Y ≤ y) introduced

by Stute (1993), Stute (1999) interpreted θ̂WLS as the minimizer of

∫

[y − f (θ, x)]2 dF̂(X,Y ) (x, y) (2.6)

with respect to θ. Indeed, on one hand, by definition, at observation i the jump of F̂(X,Y )

is equal to the jump of the Kaplan-Meier estimate of F (t) = P (Y ≤ t). On the other

hand, it can be easily shown that the jump of F̂ (t) at observation i is equal to the weight

Win defined in (2.5). Using the properties of Kaplan-Meier integrals, one can deduce

consistency and
√

n−asymptotic normality for θ̂WLS. See Stute (1999, 1993) or Delecroix

et al. (2006). It is worthwhile to notice that a choice of Win as in (2.5) connects MWLS
n (θ)

to MSD
n (θ) since Ŷ ∗

i = nWinTi. In the following section, we extend the purpose of the SD

and WLS methodologies from estimation to testing.
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3 Nonparametric test procedures under censoring

To better explain the new approach, first the case where Y is not censored is reconsidered.

Then, testing the adequacy of model M is equivalent to testing

for some θ0, Q (θ0) = 0 where Q (θ) = E [U (θ) E [U (θ) | X] g (X)] ,

U (θ) = Y − f (θ, X) and g denotes the density of X that is assumed to exist. The choice

of g avoids handling denominators close to zero. When the responses are not censored,

one may estimate Q (θ0) by

Qn(θ̂) =
1

n (n − 1) hp

∑

i6=j

Ui(θ̂)Uj(θ̂)Kh (Xi − Xj) (3.1)

where θ̂ is an estimator of θ0 such that θ̂ − θ0 = OP (n−1/2), Ui (θ) = Yi − f (θ, Xi) ,

K is some p−dimensional kernel function, h denotes the bandwidth and for x ∈ R
p,

Kh (x) = K(x/h). See Zheng (1996). See also Horowitz and Spokoiny (2001) or Guerre

and Lavergne (2005).

Using a consistent estimate V̂ 2
n of the asymptotic variance of nhp/2Qn(θ̂), the smooth-

ing based test statistic with non-censored responses is

TNC
n = nhp/2Qn(θ̂)

V̂n

. (3.2)

Under the null hypothesis the statistic behaves asymptotically as a standard normal and

therefore the nonparametric test is defined as “Reject H0 when TNC
n ≥ z1−α”, where z1−α

is the (1 − α)th quantile of the standard normal law. As an estimate V̂ 2
n , one could use

either

V̂ 2
n =

2

n(n − 1)hp

∑

i 6=j

U2
i (θ̂)U2

j (θ̂)K2
h (Xi − Xj)

or V̂ 2
n =

2

n(n − 1)hp

∑

i6=j

σ̂2 (Xi) σ̂2 (Xj) K2
h (Xi − Xj) , (3.3)

with σ̂2 (x) a nonparametric estimator of σ2 (x) = V ar(ε | X = x). The former choice for

V̂ 2
n is simpler but is likely to decrease the power of the test because the squares of the

estimated residuals of the parametric model produce an upward biased estimate of σ2 (x)

under the alternative hypothesis. In the presence of censored responses, the test statistic

(3.2) cannot be computed since Ui(θ) are not available for censored observations.
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3.1 Two test statistics with right-censored responses

In the following, the observations are (Ti, δi, Xi), 1 ≤ i ≤ n, a random sample from

(T, δ,X) . In the spirit of the SD approach, consider

QSD
n (θ̂) =

1

n(n − 1)hp

∑

i 6=j

ÛSD
i (θ̂)ÛSD

j (θ̂)Kh(Xi − Xj), (3.4)

where θ̂ = θ̂SD and

ÛSD
i (θ) =

δi

1 − Ĝ (Ti−)
Ti − f (θ,Xi) = nWinTi − f (θ, Xi) (3.5)

are the estimated synthetic residuals. The statistic QSD
n (θ) estimates

QSD(θ) = E
[

USD (θ) E
[

USD (θ) | X
]

g (X)
]

with USD (θ) = δT [1 − G (T−)]−1 − f (θ, X) . By (2.3), if Assumptions 1 and 2 hold then

the null hypothesis is equivalent to QSD (θ0) = 0.

On the other hand, following the WLS approach we can replace Qn(θ̂) in (3.1) with

QWLS
n (θ̂) =

1

n(n − 1)hp

∑

i6=j

ÛWLS
i (θ̂)ÛWLS

j (θ̂)Kh (Xi − Xj) , (3.6)

where θ̂ = θ̂WLS and

ÛWLS
i (θ) =

δi

1 − Ĝ (Ti−)
[Ti − f (θ,Xi)] = nWin [Ti − f (θ, Xi)] . (3.7)

The statistic QWLS
n (θ) estimates

QWLS(θ) = E
[

UWLS (θ) E
[

UWLS (θ) | X
]

g (X)
]

with UWLS(θ) = δ [1 − G (T−)]−1 [T − f (θ, X)] . By (2.3), the null hypothesis is equiva-

lent to QWLS (θ0) = 0.

Now, given consistent estimates
[

V̂ SD
n

]2

and
[

V̂ WLS
n

]2

of the asymptotic variance of

nhp/2QSD
n (θ̂) and nhp/2QWLS

n (θ̂), respectively, we introduce

T SD
n = T SD

n (θ̂) = nhp/2QSD
n (θ̂)

V̂ SD
n

, TWLS
n = TWLS

n (θ̂) = nhp/2QWLS
n (θ̂)

V̂ WLS
n

.

The corresponding omnibus tests are

“Reject H0 when T SD
n ≥ z1−α (resp. TWLS

n ≥ z1−α) ”. (3.8)
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To estimate the variance of nhp/2QSD
n (θ̂) we consider

[

V̂ SD
n

]2

=
2

n(n − 1)hp

∑

i6=j

[

ÛSD
i (θ̂)

]2 [

ÛSD
j (θ̂)

]2

K2
h (Xi − Xj) . (3.9)

The variance of nhp/2QWLS
n (θ̂) is estimated similarly with ÛSD

i (θ̂) replaced by ÛWLS
i (θ̂).

Alternative variance estimates are discussed in section 4.

Checking the validity of a parametric conditional model has attracted much attention

in survival analysis. Hjort (1990) and Lin and Spiekerman (1996) considered goodness-

of-fit statistics based on martingale residuals, while Gray and Pierce (1985) showed how

Neyman’s smooth tests may be adapted to censored data. See chapter 10 of Lawless

(2003) for a review of the methods for testing the lack-of-fit. All these techniques can be

used to check whether some parametric form of the conditional law of the response given

the explanatory variables is consistent with observed data. Therefore, these techniques

are only of limited use in our framework where we aim to check the adequacy of some para-

metric form of the conditional expectation of the response variable given the covariates.

The standard normal limit of the test statistics T SD
n and TWLS

n under the null hypothesis,

a property that will be proved in the following, yields the simple one-sided tests (3.8)

for checking mean-regressions. By contrast, the alternative test statistics available in the

literature (see Stute et al. 2000) have a complicated limit and there is no simple way to

construct the critical values of the associated tests.

4 Asymptotic analysis

The most difficult part of the study of our tests is the investigation of QSD
n (θ) and

QWLS
n (θ). These quadratic forms are difficult to analyze even under H0 and for θ = θ0,

since they do not rely on i.i.d. quantities Ui, as the quadratic form (3.1) does. Due to

the presence of Ĝ in (3.5) and (3.7), each ÛSD
i (θ0) and ÛWLS

i (θ0) depend on the whole

sample. Then, a key point is to show that under H0, in some sense, QSD
n (θ̂) and QWLS

n (θ̂)

are asymptotically equivalent to the “ideal”quadratic forms

Q̃SD
n (θ0) =

1

n(n − 1)hp

∑

i6=j

USD
i (θ0) USD

j (θ0) Kh (Xi − Xj) (4.1)
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and

Q̃WLS
n (θ0) =

1

n(n − 1)hp

∑

i6=j

UWLS
i (θ0) UWLS

j (θ0) Kh (Xi − Xj) , (4.2)

respectively, where

USD
i (θ) =

δi

1 − G (Ti−)
Ti − f (θ,Xi) = γ(Ti)Ti − f (θ, Xi) ,

UWLS
i (θ) =

δi

1 − G (Ti−)
[Ti − f (θ, Xi)] = γ(Ti) [Ti − f (θ,Xi)] .

The asymptotic study of Q̃SD
n (θ0) and Q̃WLS

n (θ0) can be done like in the i.i.d. non-censored

case. See, for instance, Zheng (1996), Horowitz and Spokoiny (2001), Guerre and Lavergne

(2005). A similar equivalence result deduced under fixed or moving alternatives will serve

for studying the asymptotic consistency of our tests.

4.1 Assumptions

In the following, τL = inf {t | L (t)=1} for any distribution function L.

Assumption 3 (i) F and G are continuous.

(ii)−∞<τF ≤ τG ≤ ∞.

Assumption 3-(i) is introduced for convenience purposes. It allows us to use a sim-

pler i.i.d. representation of the Kaplan-Meier estimator (see Theorem 1 of Major and

Rejtő, 1988). Moreover, Assumption 3-(i), considered together with Assumption 1, im-

plies P (Y = C) = 0 and this latter condition justifies the definition of the Kaplan-Meier

estimate Ĝ. When τF > τG, in general, there is no way to consistently estimate θ0.

Assumption 3-(ii) allows one to avoid this case.

Assumption 4 (Data): (i) Let (ε1, C1, X1), ..., (εn, Cn, Xn) be an independent sample of

(ε, C, X) where ε, C ∈ R and X ∈ R
p, and suppose E(ε | X) = 0 a.s.

(ii) X is a random vector with bounded support X and bounded density g.

(iii) There exist some constants cinf , csup such that for each x ∈ X

0 < cinf ≤ E
[

ε2 | X = x
]

≤ E
[{

1 + ε2
}

{1 − G(Y )}−1 | X = x
]

≤ csup < ∞.

(iv) E [{1 + ε4} δ{1 − G(Y )}−4] = E [{1 + ε4} γ(T )4] < ∞.
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Assumptions 4 (iii)-(iv) are counterparts of assumptions on the conditional variance

and the fourth moment of the residuals that are usually imposed in the non-censored

case. See, e.g., Guerre and Lavergne (2005). Now, define ∇θf(θ, x) = ∂f(θ, x)/∂θ,

∇2
θf(θ, x) = ∂2f(θ, x)/∂θ∂θ′, whenever these derivatives exist. For any matrix A, let

‖A‖2 = supv 6=0 ‖Av‖/‖v‖ where ‖v‖ is the Euclidean norm of the vector v.

Assumption 5 (Parametric model): The parameter set Θ is a compact subset of R
d,

d ≥ 1, and θ0 in an interior point of Θ. The parametric regression model M={f (θ, ·) :

θ ∈ Θ} satisfies:

(i) Differentiability in θ: for each x ∈ X , f (θ, x) is twice differentiable with respect

to θ. There exists a finite constant c1 such that for each θ ∈ Θ and x ∈ X , |f(θ, x)| +

‖∇θf(θ, x)‖ + ‖∇2
θf(θ, x)‖2 ≤ c1. Moreover, there exist finite constants a, c2 > 0 such

that for each θ and x, |∇2
θf(θ, x)jk −∇2

θf(θ0, x)jk| ≤ c2‖θ− θ0‖a, where ∇2
θf(θ, x)jk is the

element jk of the matrix ∇2
θf(θ, x).

(ii) Identifiability: there exists a bounded function Φ ≥ 0 with E [Φ(X)] > 0 such that

for each θ ∈ Θ and x ∈ X , |f(θ, x) − f(θ0, x)| ≥ Φ(x)‖θ − θ0‖.

Assumption 6 (Kernel smoother): (i) If x = (x1, ..., xp), let K (x) = K̃ (x1) ...K̃ (xp)

where K̃ is a symmetric continuous density of bounded variation on R. The Fourier

Transform ˆ̃K of K̃ is positive, integrable and non-increasing on [0,∞).

(ii) The bandwidth h belongs to an interval Hn = [hmin, hmax], n ≥ 1, such that

hmax → 0 and nh3p
min → ∞.

Assumption 6-(i) holds, for instance, for normal, Laplace or Cauchy densities. The

condition non-increasing Fourier Transform for ˆ̃K will serve only for deriving our asymp-

totic equivalence results uniformly in the bandwidth (see, for instance, the proof of Lemma

A.7 in the Appendix). Concerning the range for the bandwidth, in view of equation (A.6)

in the Appendix, it is clear that hmin may be taken of smaller rate if Assumption 4 (iv)

above and Assumption 7 below are made more restrictive. The following assumption will

allow to control the jumps of the Kaplan-Meier estimator; see also condition (1.6) of Stute

(1995) and Stute (1996). Below, a ∨ b denotes the maximum of a and b.
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Assumption 7Let qρ(x) = E
[

{|Y | + 1}C(Y )1/2+ρ | X = x
]

where

C(y) =

∫ y

−∞

dG(t)

[1 − H(t)][1 − G(t)]
∨ 1, y ∈ R,

with H(t) = P(T ≤ t). Then E[q2
ρ(X)] < ∞ for some 0 < ρ < 1/2.

The function C(·) also appears in Bose and Sen (2002) who derive an i.i.d. represen-

tation for Kaplan-Meier U−statistics that would have been useful for deriving our test

results. Unfortunately, they impose ρ = 1/2 (see Bose and Sen’s Theorem 1 and Remark

1) which is unrealistic in our framework.

4.2 Behavior of the tests under the null hypothesis

The following theorem gives an asymptotic representation of the statistics T SD
n and TWLS

n

under H0 stated in (2.1). The proof is postponed to the Appendix. To simplify notation,

below we replace the superscripts SD and WLS with 0 and 1, respectively. For instance,

we write Q0
n (resp. Q1

n) instead of QSD
n (resp. QWLS

n ). As before, θ̂ denotes θ̂SD or θ̂WLS.

Theorem 4.1 Let Assumptions 1 to 7 hold. Under H0, for β = 0 or 1

sup
h∈Hn

{

∣

∣

∣
nhp/2Qβ

n(θ̂) − nhp/2Q̃β
n(θ0)

∣

∣

∣
+

∣

∣

∣

∣

∣

Ṽ β
n (θ0)

V̂ β
n

− 1

∣

∣

∣

∣

∣

}

→ 0,

in probability, where

[

Ṽ β
n (θ0)

]2

=
2

n(n − 1)hp

∑

i6=j

[

Uβ
i (θ0)

]2 [

Uβ
j (θ0)

]2

K2
h (Xi − Xj) .

Moreover, under H0 and for β = 0 or 1

sup
h∈Hn

∣

∣

∣

∣

∣

T β
n (θ̂) − nhp/2Q̃β

n(θ0)

Ṽ β
n (θ0)

∣

∣

∣

∣

∣

= oP (1).

Corollary 4.2 Under Assumptions 1 to 7 the two tests defined in equation (3.8) have

asymptotic level α.

Remark 1. To estimate the variance nhp/2Q0
n(θ̂) we considered (3.9). Alternatively,

extending the idea behind (3.3) to the censoring framework, one may replace in (3.9) the

estimated squared residual Û0
i (θ̂)2 with a nonparametric estimate of σ∗ 2 (x) = V ar(Y ∗ |
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X = x). It is easy to check that V ar(Y ∗ | X) = E
[

U0 (θ0)
2 | X

]

under H0 and, in general,

V ar(Y ∗ | X) < E
[

U0 (θ0)
2 | X

]

if the model M is wrong. To estimate σ∗ 2 (·) , one can

use

σ̂∗ 2
n (x) =

∑n
i=1 Ŷ ∗ 2

i L((Xi − x)/bn)
∑n

i=1 L((Xi − x)/bn)
−

(

∑n
i=1 Ŷ ∗

i L((Xi − x)/bn)
∑n

i=1 L((Xi − x)/bn)

)2

, (4.3)

x ∈ X , with L a kernel and bn a bandwidth chosen independently of Hn. If

sup
x∈X

∣

∣σ̂∗ 2
n (x) − σ∗ 2(x)

∣

∣ → 0 (4.4)

in probability, we can redefine

[

V̂ 0
n

]2

=
2

n(n − 1)hp

∑

i6=j

σ̂∗ 2
n (Xi)σ̂

∗ 2
n (Xj)K

2
h (Xi − Xj) (4.5)

and the test statistic T 0
n(θ̂) accordingly. Since (4.4) and our assumptions imply V̂ 0

n − Ṽ 0
n =

oP (1) uniformly in h ∈ Hn, where here

[

Ṽ 0
n

]2

=
2

n(n − 1)hp

∑

i6=j

σ∗ 2(Xi)σ
∗ 2(Xj)K

2
h (Xi − Xj) , (4.6)

the new test statistic T 0
n(θ̂) has the same standard normal asymptotic law under H0 and

potentially leads to a more powerful test. Lopez and Patilea (2006) provide sufficient

conditions ensuring supx∈X |σ̂∗ 2
n (x) − σ∗ 2

n (x)| → 0, in probability, regardless of whether

H0 is true, where σ∗ 2
n (·) is defined like σ̂∗ 2

n (·) but with estimated synthetic observations Ŷ ∗
i

replaced with the true (unknown) ones Y ∗
i . To obtain (4.4), their result can be completed

by the arguments for i.i.d. data like in Horowitz and Spokoiny (2001) or Guerre and

Lavergne (2005) allowing to deduce supx∈X |σ∗ 2
n (x) − σ∗ 2(x)| → 0 in probability. In the

WLS approach, the question of how to build an estimate of the variance of nhp/2Q1
n(θ̂) that

(theoretically) performs better than V̂ 1
n when H0 is not true seems harder and therefore

is left open.

Remark 2. The tests we propose depend on the choice of the smoothing parameter

h ∈ Hn. In section 5 we provide empirical evidence on the behavior of our tests with

different bandwidths. On the other hand, following a well-known data-driven method for

choosing the smoothing parameter, in the synthetic data approach we can define

T opt
n = max

h∈H1n

T 0
n(θ̂)

13



where the maximum is taken over a finite subset H1n ⊂ Hn. Typically, H1n is a geometric

grid in Hn and the number of elements in H1n increases as n → ∞. See Horowitz and

Spokoiny (2001). The resulting test is

“Reject H0 when T opt
n ≥ topt

α ”, (4.7)

where topt
α is the α−level critical value for T opt

n . Like in the non-censored case, this critical

value cannot be evaluated in applications because θ0 and the law of the errors εi are

unknown. Horowitz and Spokoiny (2001) proposed a simulation procedure for approxi-

mating the critical value topt
α . Their procedure can be adapted to our SD test when the

test statistic T 0
n(θ̂) is defined using the standard deviation estimate V̂ 0

n introduced by

equation (4.5). The detailed investigation of this issue will be considered elsewhere.

4.3 Behavior of the tests under the alternatives

Consider a sequence of measurable functions λn(x), n ≥ 1, and the sequence of alternatives

H1n : Yin = f (θ0, Xi) + λn(Xi) + εi, 1 ≤ i ≤ n. (4.8)

For simplicity, assume that there exists some constant Mλ such that for all n ≥ 1, 0 ≤
|λn(·)| ≤ Mλ < ∞.

Assumption 8 (i) The censoring times C1, ..., Cn represent an independent sample from

the continuous distribution function G (the same for each n) and are independent of the

variables Y1n, ..., Ynn with continuous distribution function F (n).

(ii) For each n, P(Y1n ≤ C1 | X1, Y1n) = P(Y1n ≤ C1 | Y1n).

Notice that the second part of this assumption is always true if C is independent of

ε and X. Now, for each n define Tin = Yin ∧ Ci and δin = 1{Yin≤Ci}, i = 1, ..., n, and let

H(n) denote the distribution function of T1n, ..., Tnn, that is H(n)(y) = P (T1n ≤ y). Let us

point out that the two test statistics we propose rely on the Kaplan-Meier estimator that

is computed from the observations (Tin, δin) , i = 1, ..., n. If λn (·) changes with n, the law

of the observations is different for each n. Therefore, in order to control the jumps of the

Kaplan-Meier estimator and the conditional variance of the residuals Uβ
i (θ) we need the

following assumption.

14



Assumption 9 (i) There exist some constants cinf , csup such that for each x ∈ X

0< cinf ≤E
[

ε2 |X = x
]

≤ E
[{

1 + ε2
}

{1− G(Y1n)}−1 |X = x
]

≤ csup <∞.

(ii) There exists some constant M such that ∀n ≥ 1, E [{1+ ε4} γ(Y1n)4] ≤ M < ∞
where γ(Y1n) = δ1n{1 − G(Y1n)}−1.

(iii) Let F
(n)
Y |X=x(y) = P (Y1n ≤ y | X1 = x) and

q(n)
ρ (x) =

∫

{|y| + 1}C(n)(y)1/2+ρdF
(n)
Y |X=x(y)

where

C(n)(y) =

∫ y

−∞

dG(t)

[1 − H(n)(t)][1 − G(t)]
∨ 1.

There exist 0 < ρ < 1/2 and a function qρ(x) with E[q2
ρ(X)] < ∞ such that for all n,

0 ≤ q
(n)
ρ ≤ qρ.

Let V̂ β
n (θ)2 be the estimator obtained after replacing θ̂ with θ on the right-hand side

of (3.9). Once again, our purpose is to transfer the problem of consistency against the

alternatives H1n in the classical i.i.d. framework. The first step in this transfer is realized

in a general setup in the following lemma proved in the Appendix. Next, we will be

more specific on the type of alternatives considered in order to derive the asymptotic

consistency.

Lemma 4.3 Let Assumptions 4-(i) and (ii), 5, 6, 8 and 9-(ii) and (iii) hold true. Then,

under the alternatives H1n, for β = 0 or 1

∣

∣

∣
Qβ

n(θ) − Q̃β
n(θ)

∣

∣

∣
≤

[

Q̃β
n(θ) + Rn1

]1/2

R
1/2
n2 − Rn3 + Rn2 − Rn4

with supθ∈Θ, h∈Hn

{

hp |Rn1| + |Rn2| + hp/2 |Rn3| + |Rn4|
}

= OP (n−1).

4.3.1 Consistency against a fixed alternative

Consider the alternative

H1 : Y = m(X) + ε,

where E (ε | X) = 0 a.s. and, for simplicity, we assume 0 ≤ |m(·)| ≤ Mλ < ∞ for some

constant Mλ. The following assumption identifies the limit of θ̂ the SD or WLS estimator

and states that the regression model is wrong.
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Assumption 10 There exists θ̄ an interior point of Θ such that

for any θ ∈ Θ \ {θ̄}, 0<E

[

{

m(X)−f
(

θ̄, X
)}2

]

<E
[

{m(X)−f (θ, X)}2] .

Theorem 4.4 Let Assumption 10, Assumption 9-(i) and the assumptions of Lemma 4.3

hold true. Under H1, for β = 0 or 1

sup
h∈Hn

∣

∣

∣
Qβ

n(θ̂)−E

[

{

m(X)−f
(

θ̄, X
)}2

g(X)
]
∣

∣

∣
=oP (1) and sup

h∈Hn

|V̂ β
n − c|=oP (1),

where c > 0 is some constant. Consequently, the tests in (3.8) are consistent.

See the Appendix for the proof. It is worthwhile to notice that the limit of Qβ
n(θ̂)

under the alternative H1 does not depend on the censoring and is the same for β = 0 or

β = 1. However, the limits of the standard deviations V̂ β
n depend on β and the degree

of censoring in the data (see Lemma A.8). In general, our tests lose power if the degree

of censoring increases. Moreover, looking at the limits of V̂ β
n for β = 0 and β = 1, one

notices that none of the two tests is more powerful than the other, that means depending

on the law of (Y,C), either the SD or WLS test will perform better.

4.3.2 Consistency against Pitman local alternatives

Let λ(·) be a measurable function of X and consider the sequence of alternatives

H1n : Yin = f (θ0, Xi) + rnλ(Xi) + εi, 1 ≤ i ≤ n,

with rn ↓ 0 when n → ∞. For simplicity, we will assume that

λ(·) is a bounded function and E [λ(X)∇θf (θ0, X)] = 0. (4.9)

The latter condition will make θ̂− θ0 = OP (n−1/2). See Lemma A.8. The following result,

proved in the Appendix, implies that our tests are consistent against the local alternatives

H1n, if rn decreases slower than n−1/2h−p/4.

Theorem 4.5 Let Assumption 9-(i), the assumptions of Lemma 4.3 and condition (4.9)

hold true. Under H1n, for β = 0 or 1 the test statistics T β
n (θ̂) converge in law to a normal

distribution N(µ, 1) with µ > 0, provided that rn = n−1/2h−p/4.
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4.3.3 Consistency against a sequence of smooth alternatives

Here, we provide conditions under which our tests are consistent against alternatives

H1n like in (4.8) defined by functions λn(·) in a Hölder smoothness class that vanish as

n ↑ ∞. The regularity s of the Hölder class is supposed known and the rate to which the

functions λn(·) approach zero can be made arbitrarily close to the optimal rate of testing

n−2s/(4s+p), when s > 5p/4. We have to be more restrictive on the regularity s (the usual

condition being s ≥ p/4, see Horowitz and Spokoiny, 2001) because of our conditions on

the left endpoint of the bandwidth range Hn. See Assumption 6-(ii) and the subsequent

comments. For L > 0, define the Hölder class C(L, s) as

C(L, s) = {f(·) : |f(x1)−f(x2)| ≤ L|x1 − x2|s, ∀x1, x2 ∈ X} , for s ∈ (0, 1],

while for s > 1, C(L, s) is the class of functions having the [s]-th partial derivatives in

C(L, s − [s]), where [s] denotes the integer part of s. As a corollary of the following

theorem, the optimal rate of testing parametric mean-regressions when s is known is not

altered by the censorship, provided that s > 5p/4. The proof of the theorem is postponed

to the Appendix.

Theorem 4.6 Let Assumption 9-(i) and the assumptions of Lemma 4.3 hold. Moreover,

the density g(·) is bounded from below by a positive constant. Let κn, n ≥ 1 be a sequence

of positive real numbers. Consider a sequence of functions λn(·) such that for all n ≥ 1,

λn(·) ∈ C(L, s) for some known s > 5p/4 and some L > 0. Moreover, E [λ2
n (X)] → 0 as

n → ∞ and for each n ≥ 1, E[λn (X)∇θf (θ0, X)] = 0 and

‖λn‖n :=

[

n−1

n
∑

i=1

λ2
n(Xi)

]1/2

≥ κnn− 2s
4s+p . (4.10)

If h is of order n− 2/(4s+p), the tests defined in (3.8) are consistent against the alternatives

H1n defined by the functions λn(·) whenever κn diverges.

Remark 2 (continued). In Theorem 4.6 we supposed that the regularity s is known and

thus the rate of the bandwidth that allows to detect departures from the null hypothesis

like in (4.10) is known. More generally, it would be useful to have a data-driven selection

procedure for h that adapts to the unknown smoothness of the functions λn(·) and that
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allows these functions to converge to zero at a rate which is arbitrarily close to the

fastest possible rate. In the case of non-censored responses, if s is unknown but s ≥
p/4, the optimal rate of testing is (n−1

√
log log n)2s/(4s+p), see for instance Horowitz and

Spokoiny (2001). The maximum test procedure (4.7) represents a potential solution in the

synthetic data testing approach. Consider the test statistic built with the true synthetic

observations and the estimate of the parameter θ0, that is T̃ 0
n(θ̂) = nhp/2Q̃0

n(θ̂)/Ṽ 0
n with

Ṽ 0
n defined like in (4.6). Suppose that under the alternatives H1n defined by functions

λn(·) like in Theorem 4.6 with some suitable κn ↑ ∞, we have

lim
n→∞

P

(

max
h∈H1n

T̃ 0
n(θ̂) ≥ tbα

)

= 1, (4.11)

where tbα is some suitable critical value. Then, by Lemma 4.3, it is expected that

P

(

maxh∈H1n
T 0

n(θ̂) ≥ tbα

)

→ 1. In view of the proof of Theorem 4.6, we argue that any

κn such that κn [log log n]−s/(4s+p) → ∞ ensures condition (4.11) when H1n is a geometric

grid like in Horowitz and Spokoiny (2001). The detailed investigation of these issues will

be considered elsewhere.

5 Empirical studies

To investigate the finite sample properties of our tests and to compare them to the al-

ternative tests of Stute et al. (2000), we conducted several simulation and real data

experiments. The results are presented below.

5.1 Simulation experiments

The regression model considered in simulations was Y = θ01 + θ02X + ε with X uniformly

distributed on the interval [−
√

3,
√

3] and ε a standard normal residual term. A linear

regression function appears, for instance, in the so-called accelerated failure time (AFT)

model that has found considerable interest in the survival data literature. The true

parameters are (θ01, θ02) = (1, 3) and C has an exponential distribution of mean µ. The

parameter µ served to control the proportion of censored observations that was fixed to

30%, 40% or 50%.
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Figure 1: Rejection probabilities for T
SD
n , T

WLS
n , Dn (Stute 1) and W

2

n (Stute 2) test statistics with

cosine alternatives.

First, the linear regression model was tested against alternatives with the form

H1 : Yi = θ01 + θ02Xi + d cos(2π(Xi/
√

3)) + εi, 1 ≤ i ≤ n,

with d ∈ {0.5, 1, ..., 2.5, 3}. The way the alternatives were defined rendered the amount of

censoring practically stable on the null and under the alternatives. The levels considered

were α = 0.05 and α = 0.1. We took n = 100 and n = 200 and for each sample size

we generated 5000 samples. We used a gaussian kernel and the bandwidth h = 0.1 for

the kernel-based tests. The test statistic T SD
n (resp. TWLS

n ) was built using the estimator

θ̂SD (resp. θ̂WLS). The critical values for our tests were those given by the standard

normal law while for the tests proposed by Stute et al. (2000) we followed their bootstrap

procedure (with 5000 bootstrap samples). The asymptotic distribution of test statistics

Dn and W 2
n used by Stute et al. (2000) depend on the asymptotic distribution of the

estimator of θ0. To focus the attention on the performances of the testing approaches, we

computed the values of Dn and W 2
n using the true values of the parameters θ01, θ02. This

resulted in improved rejection probabilities under the null and under the alternatives for

the corresponding tests. The results of the simulations are presented in Figure 1. To save

space, only the results for α = 0.05 are reported, the case α = 0.1 being very similar. This

first empirical investigation shows that in the setup considered, the test based on TWLS
n
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outperforms the test built with T SD
n and the tests obtained with the weighted marked

empirical process approach of Stute et al. (2000). The level of the WLS kernel-based test

is satisfactory close to the nominal level for all probabilities of censoring considered. On

contrary, the level of the SD-based test drastically deteriorates when the probability of

censoring increases. With a few minor exceptions, the rejection probabilities under the

alternatives are higher or much higher for the kernel-based tests than for the tests based

on the marked empirical process approach.
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Figure 2: Rejection probabilities for T
SD
n , T

WLS
n , Dn (Stute 1) and W

2

n (Stute 2) test statistics with

quadratic alternatives.

The literature on nonparametric models checks contains evidence that sine and cosine

alternatives are easily detected by smoothing based procedures. To provide a fair compar-

ison between the alternative approaches, we considered a second simulation experiment

where the same linear regression model was tested against the alternatives

H1 : Yi = θ01 + θ02Xi + d(X2
i − 1) + εi, 1 ≤ i ≤ n, (5.1)

with d ∈ {0.25, 0.5, ..., 1.25, 1.5}. The level was α = 0.05. We took the same sample sizes

(n = 100 and n = 200) and 5000 replications for each sample size. The bandwidth was

h = 0.1. The test statistics and the critical values were calculated as in the first example.

The results of this second experiment are presented in Figure 2. The performances of
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empirical process based tests are now always better than those of SD-based test. The

WLS kernel-based test is still the best procedure when 30% or 40% of responses are

censored. The tests of Stute et al. (2000) have slightly better power when half of the

lifetimes Y are censored, but their rejection probability under the null hypothesis is less

satisfactory. Meanwhile, the standard normal critical values are still satisfactory for our

WLS test.

As pointed out by a referee, it is important to have some insight on the performances

of the kernel-based tests when the bandwidth h changes. To investigate this issue, we

considered the same linear regression model and sample sizes as before and a quadratic

alternative like in (5.1) with d = 1. For each sample size 5000 replications were used. The

bandwidths selected to compute TWLS
n and T SD

n were h ∈ {0.025, 0.05, ..., 0.325, 0.35}.
These bandwidth values are quite common for smoothing with samples like those gener-

ated here. The results obtained with TWLS
n are depicted in Figure 3. One could notice the

almost stable rejection probabilities under the null and under the alternative for a wide

range of bandwidths. We obtained a similar picture (not reported herein) confirming the

failure of the SD-based test for the whole range of bandwidths considered. These results

provide useful guidance for the applications.
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Figure 3: Rejection probabilities for WLS kernel-based test under the null and under a quadratic

alternative when the bandwidth h varies.
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Finally, in view of the poor performances of the SD-based test, one may want to use

the bootstrap for calibrating the critical values. When the response Y is not censored, a

classical bootstrap procedure consists in drawing n i.i.d. random variables ωi independent

from the original sample with E(ωi) = 0, E(ω2
i ) = 1, and E(ω4

i ) < ∞, and to generate

bootstrap observations of Y as Y
(b)
i = f(θ̂, Xi)+ τ̂n(Xi)ωi, i = 1, ..., n. Here, τ̂ 2

n(·) is a non

parametric estimator of the conditional variance of Yi given Xi. A bootstrap test statistic

is built from the bootstrap sample as was the original test statistic. When this scheme is

repeated many times, the empirical (1− α)th quantile of the bootstrapped test statistics

gives the bootstrap critical value. This critical value is then compared to the initial test

statistic. See, for instance, Guerre and Lavergne (2005).

Table 1: Rejection probabilities with standard normal critical values (WLS and SD

columns) and bootstrap critical values (SD bootstrap column) – quadratic alternative

n deviation censoring SD SD bootstrap WLS

100 d = 0 40% 0.168 0.07 0.039

50% 0.661 0.223 0.055

d = 0.75 40% 0.242 0.163 0.486

50% 0.696 0.401 0.225

d = 1.5 40% 0.31 0.277 0.932

50% 0.726 0.584 0.703

200 d = 0 40% 0.126 0.063 0.045

50% 0.554 0.128 0.051

d = 0.75 40% 0.161 0.115 0.728

50% 0.643 0.333 0.343

d = 1.5 40% 0.268 0.249 0.998

50% 0.701 0.565 0.939

When Y is censored, by property (2.3), E[Y | X] (resp. E[Y 2 | X]) is equal to

E[δ{1 − G(T−)}−1T | X] (resp. E[δ{1 − G(T−)}−1T 2 | X]) and thus the conditional

variance of Y can still be estimated from data. The additional difficulty with censored

data is that one also needs bootstrap samples for the censoring times Ci in order to build
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bootstrap samples for Ti = Yi ∧ Ci and δi = 1{Yi≤Ci}. Bootstrap censoring times could

be generated, for instance, using the Kaplan-Meier estimator of G. With at hand the

bootstrap observations T
(b)
i and δ

(b)
i , one could follow the classical bootstrap methodology

and compute bootstrap critical values for the T SD
n test statistic. The study of the asymp-

totic validity of this procedure in the presence of censoring will be undertaken elsewhere.

Here, we investigate the empirical properties of this bootstrap procedure when the alter-

natives (5.1) are considered. For simplicity, the conditional variance of Y is supposed to

be known. The number of replications was 1000 and for each replication 399 bootstrap

samples were generated. We used the bandwidths h ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. The

results are presented in Table 1 for the case where 40% and 50% of the responses were

censored, h = 0.1 and α = 0.05. The results for the other bandwidths were quite similar.

Let us notice that the bootstrap critical values improve the rejection probability of the

SD-based test under the null hypothesis. However, the WLS kernel-based test, applied

with the standard normal critical values, is still the best procedure.

5.2 Real data application

We now illustrate our test procedures using data from the Stanford Heart Transplant

program between October 1967 and February 1980. During this period, 184 of the 249

patients admitted to the program received a heart transplantation. Patients alive beyond

February 1980 were considered censored. For purposes of comparison with the empirical

investigations of Stute et al. (2000), Miller and Halpern (1982) and Wei et al. (1990), we

concentrate our analysis on the subsample of 152 patients who had complete tissue typing

and survived at least 10 days. Among the 152 cases, 55 were censored, that is 36.18%.

The parametric regression model tested is the linear regression for log10 of time to death

versus age and age squared. The covariates were standardized and three values were used

for the bandwidth h (0.15, 0.2 and 0.25). We also used three different bandwidths (0.18,

0.36 and 0.54) for the nonparametric estimate of the conditional variance of the response

that is needed to generate bootstrap samples. Here, only the results corresponding to the

value 0.36 are presented, the other results being similar. The kernel was gaussian and

399 bootstrap samples were used for calibrating the SD-based test. The p−values are
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reported in Table 2.

We see that the p−value of the SD-based test obtained with the bootstrap is much

larger than the p−value obtained with standard normal asymptotic approximation. Wei

et al. (1990) and Stute et al. (2000) came to the conclusion that the linear model that

we test here cannot be rejected (the p−value obtained by Wei et al. was 0.67, while the

p−values of Dn and W 2
n statistics of Stute et al. were 0.8413 and 0.8793, respectively).

Our results confirm this conclusion.

Table 2: P−values of the SD, SD bootstrap and WLS tests with Stanford Heart Trans-

plant Data

Test h = 0.15 h = 0.2 h = 0.25

SD 0.03 0.03 0.027

WLS 0.652 0.748 0.798

SD bootstrap 0.185 0.198 0.228

Appendix

First, we prove some technical lemmas. We refer to Nolan and Pollard (1987) for the

definition of Euclidean classes of functions. Below, M , c, c1, ... are constants that may

be different from line to line.

A.1 Technical lemmas

The point (ii) of the following lemma provides a bound for the difference between the

weights Win and the ideal weights one would obtain if G were known. Here, for each

sample size n, the lifetimes Y are supposed independent with a same law which may

depend on n. This generality is needed under alternatives changing with the sample size.

Lemma A.1 Let Y1n, ..., Ynn be an independent sample from a continuous distribution

function F (n), n ≥ 1. Independent of these, let C1, ..., Cn be an independent sample from

a continuous distribution function G (the same for each n). Let Tin = Yin ∧ Ci and
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δin = 1{Yin≤Ci}, i = 1, ..., n, and for each n, let H(n) denote the distribution function of

T1n, ..., Tnn. Denote γ (Tin) = δin [1 − G (Tin)]−1 and let T(n)n = max1≤i≤n Tin. Then,

i)

sup
1≤i≤n

1 − Ĝ(Tin−)

1 − G(Tin)
= OP (1) and sup

1≤i≤n

1 − G(Tin)

1 − Ĝ(Tin−)
= OP (1) ; (A.1)

ii) Under Assumption 9, for all 0 ≤ α ≤ 1/2 and η > 0,

|nWin − γ (Tin)| ≤ δin

1 − G (Tin)
{C(n) (Tin)}α+η × OP

(

n−α
)

,

where the OP (n−α) factor does not depend on i.

Proof. For the sake of simplicity, we only consider the case Yin = Yi and Tin = Ti. The

general proof can be found in Lopez and Patilea (2006).

i) Since by assumption P (Yi = Ci) = 0, we can redefine 1 − δi = 1{Ci≤Yi} and study

Ĝ as the Kaplan-Meier estimator of the lifetimes Ci in presence of the censoring times

Yi. The first part of (A.1) follows from Theorem 3.2.4 in Fleming and Harrington (1991).

The second part follows for instance as a consequence of Theorem 2.2 in Zhou (1991).

ii) Fix η > 0 arbitrarily. Since
∫ τH

a
C−1−2η(y)dC(y) < ∞, for some a > 0, apply

Theorem 1 in Gill (1983) to see that

sup
y≤T(n)

[C (y)]−1/2−η |Z(y)| = OP (1), (A.2)

where Z =
√

n{Ĝ − G}{1 − G}−1 is the Kaplan-Meier process. Next, the proof can be

completed by using the definitions of Win and γ(·) and elementary algebra.

Let Ah be the n × n symmetric matrix with generic element

aij(h) = [hpn(n − 1)]−1 Kh(Xi − Xj)1{i6=j}. (A.3)

Lemma A.2 Let v1, ..., vn and w1, ..., wn be sequences of real numbers. Suppose that

Assumptions 4 (i)-(ii) and 6 (ii) hold true. If

U(h) =
1

n2hp

∑

1≤i6=j≤n

viwjKh(Xi − Xj),

then

sup
h∈Hn

|U(h)| ≤ OP (1)

[

1

n

n
∑

i=1

v2
i

]1/2 [

1

n

n
∑

i=1

w2
i

]1/2

.
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For the proof of this result, recall that for any n−dimensional vectors z1, z2, |z′1Ahz2| ≤
‖Ah‖2‖z1‖‖z2‖. Guerre and Lavergne (2005) proved that ‖Ah‖2 = OP (n−1) under the

assumptions of Lemma A.2, while Lopez and Patilea (2006) showed that this order in

probability holds uniformly in h ∈ Hn. These facts prove Lemma A.2.

Lemma A.3 Let X1, X2, ... be a sample as in Assumption 4-(i) and (ii) and let Assump-

tion 6 hold true. For each n ≥ 1, let u1n, ..., unn be a sequence of random variables that

are independent given X1, ..., Xn. For each n and i, the law of uin given X1, ..., Xn depends

only on Xi. Assume E (uin | Xi) = 0 and E (u2
in | Xi) = σ2

n (Xi) and suppose that for each

x and n we have 0 ≤ σ2
n (x) ≤ σ2

n < ∞. Then

1

n (n − 1)

∑

1≤i 6=j≤n

uinujn
1

hp
Kh (Xi − Xj) = σ2

nOP

(

n−1h−p/2
)

. (A.4)

Let λn (·) , n ≥ 1 be a sequence of measurable functions and let

Un =
1

n (n − 1)

∑

1≤i 6=j≤n

λn (Xi) ujn
1

hp
Kh (Xi − Xj) .

If Ah is defined as in (A.3) and ‖λn‖2
n denotes n−1

∑n
i=1 λ2

n(Xi), then

E [|Un| | X1, ..., Xn] ≤ c σnn1/2 ‖Ah‖2 ‖λn‖n

for some finite constant c independent of n and of the sequence λn (·) , n ≥ 1.

Proof. By elementary calculus, the variance of the degenerate U−statistic in (A.4) is of

order n−2h−p and thus we obtain stated rate from Chebyshev’s inequality. Next, following

Guerre and Lavergne (2005, Lemma 3), let

λn (Xi) =
1

n (n − 1)

n
∑

j=1,i 6=j

λn (Xj)
1

hp
Kh(Xi − Xj).

By Marcinkiewicz-Zygmund inequality and Jensen inequality

E

[
∣

∣

∣

∣

∣

n
∑

i=1

uinλn (Xi)

∣

∣

∣

∣

∣

| X1, ..., Xn

]

≤ c E





(

n
∑

i=1

u2
inλ

2

n (Xi)

)1/2

| X1, ..., Xn





≤ c

[

n
∑

i=1

E
(

u2
in |Xi

)

λ
2

n (Xi)

]1/2

≤ c σn

[

n
∑

i=1

λ
2

n (Xi)

]1/2

≤c σnn1/2‖Ah‖2 ‖λn‖n,

where c is a constant independent of n and of the sequence λn (·) , n ≥ 1.
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A.2 Proofs

This section starts with several lemmas that will be used in the proof of Theorem 4.1.

Lemma A.4 Let the assumptions of Theorem 4.1 hold and fix ζ ∈ (0, 1/2) arbitrarily.

Under H0, for β = 0 or 1, suph∈Hn
hζ

∣

∣

∣
Qβ

n(θ̂)−Qβ
n (θ0)

∣

∣

∣
= OP (n−1).

Proof. By definition Ûβ
i (θ̂)−Ûβ

i (θ0) = (nWin)β [f(θ̂, Xi)−f(θ0, Xi)], where by convention

(nWin)β = 1 for β = 0 and (nWin)β = nWin for β = 1. A similar convention applies for

γβ (Ti) . Write

Qβ
n(θ̂) = Qβ

n (θ0) + 2
∑

i6=j

Ûβ
i (θ0) (nWjn)β [f(θ̂, Xj) − f(θ0, Xj)]aij(h)

+
∑

i 6=j

(

n2WinWjn

)β
[f(θ̂, Xi) − f(θ0, Xi)][f(θ̂, Xj) − f(θ0, Xj)]aij(h)

= Qβ
n (θ0) + 2Qβ

n1(θ̂, θ0) + Qβ
n2(θ̂, θ0).

By Assumption 5, there exists some constant c independent of h such that

∣

∣

∣
Qβ

n2(θ̂, θ0)
∣

∣

∣
≤ c‖θ̂ − θ0‖2 ×

∑

i6=j

(nWin)β (nWjn)β aij(h) = OP (n−1)

≤ OP (1) ‖θ̂ − θ0‖2
∑

i6=j

γβ (Ti) γβ (Tj) aij(h),

where for the second inequality we used the first part of equation (A.1). As E [γ2 (T )] < ∞
(by Assumption 4-(iv)) and θ̂ − θ0 = OP (n−1/2) (see Delecroix et al. 2006), Lemma A.2

implies suph∈Hn

∣

∣

∣
Qβ

n2

(

θ̂, θ0

)
∣

∣

∣
= OP (n−1) .

To investigate Qβ
n1, let

Q̃β
n1(θ̂, θ0) =

∑

i6=j

Uβ
i (θ0)γ

β (Tj) [f(θ̂, Xj) − f(θ0, Xj)]aij(h).

By Taylor expansion, Assumption 5(i), Lemma A.2 and E[Uβ
i (θ0)

2 + γβ(T )2] < ∞,

Q̃β
n1

(

θ̂, θ0

)

=
(θ̂ − θ0)

′

n(n − 1)hp

∑

i6=j

{

Uβ
i (θ0)γ

β (Tj)

×∇θf(θ0, Xj)Kh(Xi − Xj)
}

+ ‖θ̂ − θ0‖2OP (1)

= h−p(θ̂ − θ0)
′S̃β

n1(h) + ‖θ̂ − θ0‖2OP (1),
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with the OP (1) factor independent of h. For the zero mean U−process S̃β
n1(h) apply

the Hoeffding decomposition and write it as a sum of degenerate U−processes of order

2 and 1, say S̃β
n11(h) and S̃β

n12(h), indexed by families defined by h that are Euclidean

for square integrable envelopes (this property is ensured by the bounded variation of the

kernel K̃, Lemma 22-(ii) of Nolan and Pollard 1987, and Lemma 5 of Sherman 1994). By

Corollary 4 of Sherman (1994), the rate of the uniform convergence of S̃β
n11(h) is OP (n−1).

Deduce suph∈Hn
h−p|S̃β

n11(h)| = OP (n−1/2). On the other hand, h−pS̃β
n12(h) writes like

n−1
∑n

i=1 Uβ
i (θ0)φi with

φi = E[γβ (Tj)∇θf(θ0, Xj)h
−pKh(Xi − Xj) | Xi].

Notice that |φi| ≤ M , for some constant M . Let hL ≤ hmin ≤ hL−1 < ... < h1 < h0 = hmax

a grid of bandwidths with hl = hl−1h
c
max, 1 ≤ l ≤ L, and c > 0 to be chosen below. By

definition Hn ⊂ ⋃L
l=1 Hl, where Hl = [hl, hl−1]. Fix arbitrarily α ∈ (0, 1) such that

1 − ζ/p < α. For each l = 1, ..., L, by the definition of Hl and Sherman’s (1994) Main

Corollary

E

[

sup
h∈Hl

|n1/2hζ−pS̃β
n12(h)|

]

≤ hζ−p
l E

[

sup
h∈Hl

|n1/2S̃β
n12(h)|

]

≤ Λ1h
ζ−p
l

[

E sup
h∈Hl

{h2p 1

2n

2n
∑

i=1

Uβ
i (θ0)

2φ2
i }α

]1/2

≤ Λ2h
ζ−(1−α)p
l

(

hl−1

hl

)αp
[

1

2n

2n
∑

i=1

Uβ
i (θ0)

2

]α/2

= hal
max OP (1),

where Λ1, Λ2 are constants that depend on α and τ (and p) but not on n and l and

al = 1+{l [ζ − (1 − α) p] − pα} c. The Euclidean property for a square integrable envelope

required in Sherman’s Main Corollary is ensured by the bounded variation of the kernel

K̃, Lemma 22-(ii) of Nolan and Pollard (1987) and Lemma 5 of Sherman (1994). Take c

such that 1+(ζ − p) c > 0. Looking at the sum of the geometric series with common ratio

h
[ζ−(1−α)p]c
max and starting term h

1+(ζ−p)c
max , deduce that E

[

suph∈Hn
|n1/2hζ−pS̃β

n12(h)|
]

→ 0.

This and Chebyshev’s inequality provide the order of hζ−pS̃β
n12(h) uniformly in h ∈ Hn.

Collecting results and using ‖θ̂ − θ0‖h−p
min = oP (1),

sup
h∈Hn

hζ
∣

∣

∣
Q̃β

n1

(

θ̂, θ0

)
∣

∣

∣
= OP (n−1).
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Next, rewrite

Qβ
n1(θ̂, θ0) = Q̃β

n1

(

θ̂, θ0

)

+
∑

i6=j

[Ûβ
i (θ0) − Uβ

i (θ0)]γ
β (Tj) [f(θ̂, Xj) − f(θ0, Xj)]aij(h)

+
∑

i6=j

Uβ
i (θ0)

[

(nWjn)β−γβ (Tj)
]

[f(θ̂, Xj)−f(θ0, Xj)]aij(h)

+
∑

i6=j

[Ûβ
i (θ0)−Uβ

i (θ0)]
[

(nWjn)β−γβ (Tj)
]

[f(θ̂, Xj)−f(θ0, Xj)]aij(h)

= Q̃β
n1

(

θ̂, θ0

)

+ Q̃β
n11 + Q̃β

n12 + Q̃β
n13.

To show the negligibility of Q̃β
n11 to Q̃β

n13 we can no longer use the quick argument of

Lemma A.2 because the random variables we have to manipulate are no longer square

integrable. Indeed, by definition

Ûβ
i (θ0) − Uβ

i (θ0) = [nWin − γ (Ti)] [Ti − βf(θ0, Xi)]

and the problem comes from the bound of |nWin − γ (Ti)| given by Lemma A.1 which

contains C(Ti)
α+η (with η > 0), a quantity that is not square integrable if we need to take

α = 1/2. To show the negligibility of Q̃β
n11 to Q̃β

n13, apply Lemma A.1 with α = 1/2 and η

equal to ρ from Assumption 7, and use Taylor expansion to bound |f(θ̂, Xj) − f(θ0, Xj)|
by a constant times ‖θ̂ − θ0‖. Hence, Q̃β

n11 to Q̃β
n13 are bounded by

OP (n−1) ×
∑

i6=j

γ (Ti) |Ti − βf (θ0, Xi)|
[C (Ti)]

−(1/2+ρ)
γβ (Tj) aij(h) = OP (n−1) × Bn1,

OP (n−1) ×
∑

i 6=j

γ (Ti)

[C (Ti)]
−(1/2+ρ)

γβ (Tj) aij(h) = OP (n−1) × Bn2,

and

OP (n−1)×
∑

i6=j

γ(Ti)aij(h)

[C(Ti)]−(1/2+ρ)

(

Ĝ (Tj−)− G (Tj)

1 − G (Tj)
γ (Tj)

)β

= OP (n−1)×Bn3,

respectively. It is easy to see that E(Bnj) ≤ c, j = 1, 2, 3, for some constant c in-

dependent of n and h ∈ Hn. Deduce that for j = 1, 2, 3, Bnj = OP (1). Lopez and

Patilea (2006) showed that these orders hold uniformly in h ∈ Hn. Collecting results,

suph∈Hn
hγ|Qβ

n1(θ̂, θ0)| = OP (n−1).
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Lemma A.5 Let the assumptions of Theorem 4.1 hold true. If τ < τH and

Qβ
n1 (τ) =

1

n(n − 1)hp

∑

i 6=j

[

Ûβ
i − Uβ

i

]

1{Ti≤τ}U
β
j Kh (Xi − Xj) , β = 0, 1,

then for any ζ ∈ (0, 1/2), suph∈Hn
hζ

∣

∣

∣
Qβ

n1 (τ)
∣

∣

∣
= OP (n−1).

Proof. If wβ
i = δi [Ti − βf(θ0, Xi)] [1 − G (Ti)]

−2 we can write Qβ
n1 (τ) = Qβ

n11 (τ) +

Qβ
n12 (τ) with

Qβ
n11 (τ) =

1

n(n − 1)hp

∑

i6=j

[

Ĝ (Ti−) − G (Ti)
]

1{Ti≤τ}w
β
i Uβ

j Kh (Xi − Xj)

Qβ
n12 (τ) =

1

n(n − 1)hp

∑

i6=j

[

Ĝ (Ti−) − G (Ti)
]2

1 − Ĝ (Ti−)
1{Ti≤τ}w

β
i Uβ

j Kh (Xi − Xj) .

By Theorem 2.1 of Gill (1983), supi[Ĝ (Ti−) − G (Ti)]
21{Ti≤τ} = OP (n−1). (The fact that

the left endpoint of the support of the variables Ti may be −∞ is of no consequence since

we only consider Ĝ and G at the sample points.) Meanwhile, sup1≤i≤n G (Ti)1{Ti≤τ} ≤
G (τ) < 1. These facts, Lemma A.2 and Assumption 4-(iv) imply

sup
h∈Hn

∣

∣

∣
Qβ

n12 (τ)
∣

∣

∣
≤ OP (n−1)

(

1

n

n
∑

i=1

[

wβ
i

]2
)1/2 (

1

n

n
∑

i=1

[

Uβ
i

]2
)1/2

=OP (n−1).

To handle Qβ
n11 (τ) , we use the uniform i.i.d. representation of the Kaplan-Meier estima-

tor, see Major and Rejtő (1988, Theorem 1):

Ĝ (t−) − G (t) =
1

n

n
∑

k=1

ψ (Tk, t) + Rn(t)

with supt≤τ |Rn(t)| = OP (n−1) and for each t ≤ τ,

E [ψ (Tk, t)] = 0 (A.5)

and |ψ (Tk, t)| ≤ M1 for some constant M1 independent of t (but depending on τ). Now,

we can write

Qβ
n11 (τ) =

1

n2(n − 1)hp

∑

i6=j 6=k

ψ (Tk, Ti)1{Ti≤τ}w
β
i Uβ

j Kh (Xi − Xj)

+
1

n

1

n(n − 1)hp

∑

i6=j

ψ (Ti, Ti)1{Ti≤τ}w
β
i Uβ

j Kh (Xi − Xj)

+
1

n

1

n(n−1)hp

∑

i 6=j

1{Ti≤τ}w
β
i ψ (Tj, Tj) Uβ

j Kh (Xi−Xj) + {remainder}

= (n − 2) n−1Qβ
n111 (τ) + n−1Qβ

n112 (τ) + n−1Qβ
n113 (τ) + OP (n−1).
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By Lemma A.2, the fact that ψ (·, ·) is bounded and wβ
i , Uβ

j are square integrable,

sup
h∈Hn

{
∣

∣

∣
Qβ

n112 (τ)
∣

∣

∣
+

∣

∣

∣
Qβ

n113 (τ)
∣

∣

∣

}

= OP (1).

For Qβ
n111 (τ), which is a U−process of order 3, apply the Hoeffding decomposition and

write it as the sum of two degenerate U−processes

Qβ
n1111 (τ) = Qβ

n111 (τ) − Qβ
n1112 (τ)

and Qβ
n1112 (τ) = n−1(n − 1)−1

∑

j 6=k φjkU
β
j , where

φjk = E

[

ψ (Tk, Ti)1{Ti≤τ}w
β
i h−pKh (Xi − Xj) | Xj, Tk

]

.

Notice that |φjk| ≤ M2 for some constant M2. The fact that E

[

Uβ
j | Xj

]

= 0 a.s. and the

property (A.5) make that the other terms in the Hoeffding decomposition of Qβ
n111 (τ) are

null. Corollary 4 of Sherman (1994) implies suph∈Hn
hp

∣

∣

∣
Qβ

n1111 (τ)
∣

∣

∣
= OP (n−3/2). Thus

sup
h∈Hn

∣

∣

∣
Qβ

n1111 (τ)
∣

∣

∣
= oP (n−1).

Next, fix ζ ∈ (0, 1/2) and α ∈ (0, 1) such that 1− ζ/p < α, and consider the intervals Hl

like in the proof of our Lemma A.4. For each Hl, by Sherman’s (1994) Main Corollary

E

[

sup
h∈Hl

|nhζQβ
n1112 (τ) |

]

≤ hζ−p
l E

[

sup
h∈Hl

|nhpQβ
n1112 (τ) |

]

≤ Λ1h
ζ−p
l

[

E sup
h∈Hl

{

h2p

4n2

∑

1≤j,k≤2n

φ2
jk

[

Uβ
j

]2
}α]1/2

≤ Λ2h
ζ−(1−α)p
l

(

hl−1

hl

)αp
[

1

2n

2n
∑

j=1

[

Uβ
j

]2
]α/2

= hal
max OP (1),

where Λ1, Λ2 are constants and al is like in the proof of Lemma A.4. Finally, sum over all

l to obtain nhζQβ
n1112 (τ) = oP (1) uniformly in h ∈ Hn.

Lemma A.6 Let the assumptions of Theorem 4.1 hold true and let

Qβ
n2 =

1

n(n − 1)hp

∑

i 6=j

[

Ûβ
i − Uβ

i

] [

Ûβ
j − Uβ

j

]

Kh (Xi − Xj) , β = 0, 1.

Then suph∈Hn

∣

∣

∣
Qβ

n2

∣

∣

∣
= OP (n−1).
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Proof. Apply Lemma A.1 with α = 1/2 to bound |Ûβ
i − Uβ

i |. Then,

∣

∣

∣
Qβ

n2

∣

∣

∣
≤ OP (n−1)

n(n − 1)

∑

i6=j

{|Ti|+1}γ(Ti)

[C(Ti)]−(1/2+ρ)
h−pKh(Xi−Xj)

{|Tj|+1}γ(Tj)

[C(Tj)]−(1/2+ρ)
.

By (2.3) and taking conditional expectations, the expectation of a term in the sum is

E

[ {|Y1| + 1}
[C(Y1)]−(1/2+ρ)

h−pKh (X1−X2)
{|Y2| + 1}

[C(Y2)]−(1/2+ρ)

]

=E
[

qρ(X1)qρ(X2)h
−pKh (X1−X2)

]

.

Since the last expectation is bounded, deduce that Qβ
n2 = OP (n−1). Moreover, this rate

holds uniformly in h ∈ Hn, see Lopez and Patilea (2006) for the details.

Lemma A.7 Let Qβ
n1 and Qβ

n1 (τ) be defined as in (A.7) and (A.7), respectively. Under

the assumptions of Theorem 4.1, for β = 0 or 1

sup
h∈Hn

hp/2
∣

∣

∣
Qβ

n1 (τ) − Qβ
n1

∣

∣

∣
= Cτ × OP (n−1),

with the OP (n−1) factor independent of τ and Cτ → 0 when τ ↑ τH .

Proof. Decompose

n − 1

n
hp/2[Qβ

n1(τ)−Qβ
n1] =

1

n2hp/2

∑

1≤i,j≤n

Uβ
i Kh (Xi−Xj)

(

Uβ
j −Ûβ

j

)

1{Tj>τ}

− K (0)

n2hp/2

n
∑

j=1

Uβ
j

(

Uβ
j − Ûβ

j

)

1{Tj>τ} = S1 − S2.

By the inverse Fourier transform and Cauchy-Schwarz inequality

|S1| ≤





∫

K̂ (hu)

∣

∣

∣

∣

∣

1

n

n
∑

j=1

(

Uβ
j − Ûβ

j

)

exp (2iπu′Xj)1{Tj>τ}

∣

∣

∣

∣

∣

2

du





1/2

×



hp

∫

K̂ (hu)

∣

∣

∣

∣

∣

1

n

n
∑

j=1

Uβ
j exp (−2iπu′Xj)

∣

∣

∣

∣

∣

2

du





1/2

= [S11]
1/2 [S12]

1/2 .

By the monotonicity of ˆ̃K, to obtain the uniform rate for S11 it suffices to take h = hmin

(see also Lemma A.2 in Lopez and Patilea, 2006). Now, by the Fourier transform,

S11 =
1

n2hp
min

∑

i6=j

(Uβ
i − Ûβ

i )1{Ti>τ}Khmin
(Xi − Xj) (Uβ

j − Ûβ
j )1{Tj>τ}

+
K (0)

n2hp
min

n
∑

j=1

(

Uβ
j − Ûβ

j

)2

1{Tj>τ} = S111 + S112.
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To handle S111, apply Lemma A.1 with α = 1/2. Then, |S111| is bounded by

OP (n−1)

n2hp
min

∑

i 6=j

{|Ti|+1}1{Ti>τ}γ(Ti)

[C(Ti)]−(1/2+ρ)
Khmin

(Xi−Xj)
{|Tj|+1}1{Tj>τ}γ(Tj)

[C(Tj)]−(1/2+ρ)
,

where the OP (n−1) rate does not depend on τ . By (2.3) and taking conditional expecta-

tions, the expectation of a term in the last sum is

E

[{|Y1| + 1}1{Y1>τ}

[C(Y1)]−(1/2+ρ)
Khmin

(X1 − X2)
{|Y2| + 1}1{Y2>τ}

[C(Y2)]−(1/2+ρ)

]

= E [qρ,τ (X1)qρ,τ (X2)Khmin
(X1 − X2)] → 0, when τ ↑ τH ,

where qρ,τ (x) = E[{|Y | + 1}1{Y >τ}C(Y )1/2+ρ | X = x]. Consequently, |S111| is bounded

by Cτ × OP (n−1) for some Cτ independent of n but tending to zero as τ ↑ τH . Next, to

bound S112, apply Lemma A.1 with α = 1/6. Then

|S112| ≤ 1

n2hp
min

n
∑

j=1

(

Uβ
j − Ûβ

j

)2

1{Tj>τ}K (0) (A.6)

≤ n−1/3h−p
minOP (n−1)

1

n

n
∑

j=1

γ (Tj)
2 {|Tj| + 1}2

[C(Tj)]−(1/3+2ρ/3)
.

By Hölder inequality, the expectation of the last empirical mean is bounded by

E
1/3

[

δ{|T | + 1}4[1 − G (T )]−3
]

E
2/3

[

{|T | + 1}C(T )1/2+ρ
]

,

which is finite under Assumptions 4-(iv) and 7. Finally, recall that nh3p
min → ∞. Collecting

results, suph∈Hn
S11 = Cτ × OP (n−1) . To handle S12, by the inverse Fourier transform

and Corollary 4 of Sherman (1994) we obtain

S12 =
1

n2

∑

i6=j

Uβ
i Uβ

j Kh (Xi − Xj) +
K (0)

n2

n
∑

j=1

[

Uβ
j

]2

= OP

(

n−1
)

,

and the rate OP (n−1) is uniform in h ∈ Hn. For S2, take absolute values, apply Lemma

A.1 with α = 1/4 and use n1/4h
p/2
min → ∞ to deduce suph∈Hn

|hp/2S2| = oP (n−1).

Proof of Theorem 4.1. Step 1. First, the assumptions ensure θ̂−θ0 = OP (n−1/2) (see,

e.g., Delecroix et al. 2006). Next, by Lemma A.4

sup
h∈Hn

hp/2
∣

∣

∣
Qβ

n(θ̂) − Qβ
n(θ0)

∣

∣

∣
= oP (n−1),
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and thus we reduce the original problem to the study of Qβ
n(θ0).

Step 2. Let us simplify notation: for β = 0 or 1 and i = 1, ..., n, write Uβ
i (resp. Ûβ

i )

instead of Uβ
i (θ0) (resp. Ûβ

i (θ0)). Now, decompose Qβ
n (θ0) = Q̃β

n (θ0)+2Qβ
n1 +Qβ

n2 where

Qβ
n1 =

1

n(n − 1)hp

∑

i6=j

[

Ûβ
i − Uβ

i

]

Uβ
j Kh (Xi − Xj)

Qβ
n2 =

1

n(n − 1)hp

∑

i6=j

[

Ûβ
i − Uβ

i

] [

Ûβ
j − Uβ

j

]

Kh (Xi − Xj) .

Fix τ < τH = inf{t : H(t) = 1} arbitrarily. To show that Qβ
n1 is negligible, first we study

a truncated version of this quantity, that is

Qβ
n1(τ) =

1

n(n − 1)hp

∑

i 6=j

[

Ûβ
i − Uβ

i

]

1{Ti≤τ}U
β
j Kh (Xi − Xj) . (A.7)

By Lemma A.5

sup
h∈Hn

∣

∣

∣
hp/2Qβ

n1(τ)
∣

∣

∣
= oP (n−1). (A.8)

Step 3. Since Qβ
n1(τH) = Qβ

n1, it remains to make τ ↑ τH . By Lemma A.7,

sup
h∈Hn

hp/2
∣

∣

∣
Qβ

n1 (τ) − Qβ
n1

∣

∣

∣
= Cτ × OP (n−1),

with the OP (n−1) factor independent of τ and Cτ tending to zero when τ ↑ τH . From the

Cramér-Slutsky argument from Theorem 1.1 of Stute (1995), deduce that

sup
h∈Hn

∣

∣

∣
nhp/2Qβ

n1

∣

∣

∣
= oP (1),

which leads to suph∈Hn

∣

∣

∣
nhp/2Qβ

n(θ0) − nhp/2Q̃β
n(θ0)

∣

∣

∣
= oP (1).

Step 4. Using arguments like those used in the previous proofs, it can be shown that

under H0, for β = 0 or 1,

sup
h∈Hn

∣

∣

∣
Ṽ β

n (θ0)/V̂
β
n − 1

∣

∣

∣
= oP (1) .

See Lopez and Patilea for the details. This completes the proof of the first part of the

theorem. The second part follows easily since Ṽ β
n (θ0) converges in probability to a strictly

positive limit and nhp/2Q̃β
n(θ0) is bounded in probability.
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Proof of Lemma 4.3. For i = 1, ..., n, let

U0
in =

δinTin

1 − G(Tin)
− f(θ,Xi), Û0

in =
δinTin

1 − Ĝ(Tin−)
− f(θ, Xi),

U1
in =

δin [Tin − f(θ, Xi)]

1 − G(Tin)
, Û1

in =
δin [Tin − f(θ, Xi)]

1 − Ĝ(Tin−)
,

By Lemma A.1 applied with α = 1/2 and the boundedness of f(·, ·), for β = 0 or 1

|Ûβ
in − Uβ

in| = |Rβ
in| ≤ OP (n−1/2)

δin

1 − G (Tin)
{|Tin| + 1}[C(n) (Tin)]1/2+η.

Now, simplify the notation Kh(Xi − Xj) to Kij and write

1

n2hp

∑

i6=j

{

Ûβ
inÛ

β
jn−Uβ

inU
β
jn

}

Kij =
2

n2hp

∑

i 6=j

Rβ
inU

β
jnKij +

1

n2hp

∑

i6=j

Rβ
inR

β
jnKij

= 2

∫

K̂ (hu)

(

1

n

n
∑

j=1

Uβ
jn exp (2iπu′Xj)

)(

1

n

n
∑

j=1

Rβ
jn exp (−2iπu′Xj)

)

du

− 2K (0)

n2hp

n
∑

j=1

Rβ
jnU

β
jn

+

∫

K̂ (hu)

∣

∣

∣

∣

∣

1

n

n
∑

j=1

Rβ
jn exp (2iπu′Xj)

∣

∣

∣

∣

∣

2

du − K (0)

n2hp

n
∑

j=1

[Rβ
jn]2.

The first integral can be bounded using Cauchy-Schwarz inequality and the bound of the

second integral. To show that the second integral is of order OP (n−1), apply Lemma A.1

with α = 1/2 and check that the expectation

E

[

1

hp
K12

γ(T1n){|T1n| + 1}
[C(n) (T1n)]

−(1/2+η)

γ(T2n){|T2n| + 1}
[C(n) (T2n)]

−(1/2+η)

]

(A.9)

is bounded, where γ(T1n) = δ1n[1−G (T1n)]−1. From Assumption 8-(ii), deduce that this

expectation equals

E

[

1

hp
K12E

[

|Y1n| + 1

[C(n) (Y1n)]
−(1/2+η)

| X1

]

E

[

|Y2n| + 1

[C(n) (Y2n)]
−(1/2+η)

| X2

]]

= E
[

h−pK12q
(n)
ρ (X1)q

(n)
ρ (X2)

]

and the last expectation is bounded by Assumption 9. The rest of the proof continues

with obvious arguments.

The proof of the following lemma is quite standard and is therefore omitted. It can

be found in Lopez and Patilea (2006).
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Lemma A.8 Let Assumptions 4-(i) to (iii), 5, 6, 8, 9 hold true and let θ̂ denote either

θSD or θWLS.

i) If for all n ≥ 1, E [λn(X)∇θf (θ0, X)] = 0 and 0 ≤ |λn(·)| ≤ Mλ < ∞ for some

constant Mλ and if E |λn(X)| → 0, under the alternatives H1n defined in (4.8), θ̂ − θ0 =

OP (n−1/2).

ii) If Assumption 10 hold, under the alternative H1, θ̂ − θ̄ = OP (n−1/2).

Proof of Theorem 4.4. Since supθ∈Θ

∣

∣Qβ
n(θ)

∣

∣ bounded in probability, Lemma 4.3

indicates that it remains to look at the limit of Q̃β
n(θ̂). By Taylor expansion, arguments

like those used in Lemma A.4 above and the fact that θ̂ − θ̄ = OP (n−1/2), we obtain

suph∈Hn

∣

∣

∣
Q̃β

n(θ̂) − Q̃β
n(θ̄)

∣

∣

∣
= oP (1). Now, since

Uβ(θ̄) =
{

[γ (Ti) − 1]
[

m(Xi) + εi − βf
(

θ̄, Xi

)]

+ εi

}

+
{

m(Xi) − f
(

θ̄, Xi

)}

and E [γ (Ti) | Xi] = 1, we can decompose Q̃β
n(θ̄) in three parts: a degenerate and a zero-

mean U−process of order 2 (indexed by h) that will negligible compared to the third

part
1

n(n − 1)hp

∑

i6=j

[

m(Xi) − f
(

θ̄, Xi

)] [

m(Xj) − f
(

θ̄, Xj

)]

Kh (Xi − Xj) .

which tends to E

[

{

m(X) − f
(

θ̄, X
)}2

g(X)
]

> 0. Moreover, for β = 0 or 1 the variances

[V̂ β
n ]2 converge to

2

∫

K2(u)du E
{

E
2
[

Uβ(θ̄)2 | X
]

g(X)
}

, (A.10)

uniformly in h ∈ Hn. It is easy to see that for β = 0 or β = 1,

E
[

Uβ(θ̄)2 | X
]

= E

[

{

Y − βf(θ̄, X)
}2 G (Y )

1 − G (Y )
| X

]

+ E
[

ε2 | X
]

+
[

m(X) − f
(

θ̄, X
)]2

,

and thus there is no general order between the limits in equation (A.10).

Proof of Theorems 4.5 and 4.6. Once again, Lemma 4.3 shows that we only need

to look at Q̃β
n(θ̂). Write Uβ

i (θ) = uin + vin + win + λn (Xi) + {f(θ0, Xi) − f (θ, Xi)} where
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uin = [γ (Tin) − 1] λn (Xi),

vin = β {γ (Tin) − 1} {f(θ0, Xi) − f (θ, Xi)} ,

win = γ (Tin) εi + (1 − β) [γ (Tin) − 1] f(θ0, Xi),

and notice that E (uin | Xi) = E (vin | Xi) = E (win | Xi) = 0 a.s. and there exists a

sequence of real numbers σ2
n tending to zero such that for each n ≥ 1, E (u2

in | Xi) ≤ σ2
n.

Using this decomposition of Uβ
i (θ) we can split Q̃β

n(θ̂) in several U−statistics of order 2.

By repeated applications of Taylor expansion and Lemma A.3, and using the fact that

θ̂ − θ0 = OP (n−1/2),

Q̃β
n(θ̂) =

1

n (n − 1)

∑

i6=j

winwjnKh (Xi − Xj) (A.11)

+
r2
n

n (n − 1)

∑

i6=j

λ (Xi) λ (Xj)
1

hp
Kh (Xi − Xj)

+OP

(

rnn−1/2
)

+ oP

(

n−1h−p/2
)

,

if λn (·) = rnλ (·) . Moreover, since
∣

∣

∣
Uβ

i (θ̂) − win

∣

∣

∣
≤ oP (1) [γ (Tin) + 1] with oP (1) inde-

pendent of i,

[

V̂ β
n (θ̂)

]2

− 2

n (n − 1) hp

2
∑

i6=j

w2
inw

2
jnK

2
h (Xi − Xj) = oP (1) . (A.12)

From this and Lemma 2.1-(i) of Guerre and Lavergne (2005), the first U−statistic on

the right-hand side of (A.11) multiplied by nhp/2 and divided by V̂ β
n (θ̂) converges in law

to a standard normal distribution. Since the second U−statistic in (A.11) (without the

r2
n factor) converges to E [λ2(X)g(X)] in probability, and V̂ β

n (θ̂) converges to a positive

finite constant in probability, the proof of Theorem 4.5 is complete. Similarly, under the
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condition (4.10), Q̃β
n(θ̂) can be decomposed

Q̃β
n(θ̂) =

1

n (n − 1)

∑

i6=j

winwjnKh (Xi − Xj)

+(θ̂ − θ0)
′ 2

n (n − 1)

∑

i6=j

λn (Xi)∇θf(θ0, Xj)
1

hp
Kh (Xi − Xj)

+
2

n (n − 1)

∑

i6=j

λn (Xi) wjn
1

hp
Kh (Xi − Xj)

+
1

n (n − 1)

∑

i6=j

λn (Xi)λn (Xj)
1

hp
Kh (Xi−Xj)+{smaller terms}

= Q̃β
na + 2(θ̂ − θ0)

′Q̃β
nb + 2Q̃β

nc + Q̃β
nd + {smaller terms}.

By Lemma A.3, Q̃β
na = OP (n−1h−p/2) and |Q̃β

nc| ≤ OP (n−1/2)‖λn‖n, while |Q̃β
nb| =

OP (1)‖λn‖n. Next, to obtain the rate of Q̃β
nd, we follow the lines of the proof of The-

orem 4 of Horowitz and Spokoiny (2001). See also Guerre and Lavergne (2005) and

Lavergne and Patilea (2006). That is, approximating λn(·) by a piecewise polynomial

function, we deduce

Q̃β
nd ≥ c{1 + oP (1)} [‖λn‖n − hs]2 ,

for some positive constant c, if λn(·) ∈ C(L, s) and the density g(·) is bounded away from

zero. For the standard deviation, use (A.12) to deduce that V̂ β
n (θ̂) = OP (1). Collecting

results and taking h of order n−2/(4s+p), for any constant c1 > 0, P(T β
n (θ̂) > c1) → 1 and

this proves Theorem 4.6.
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