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A Computational Model for Simulating Text Comprehension

. It is intended to help psycholinguists investigate the way humans comprehend texts.

Introduction

This paper describes the architecture of a computer program which aims at simulating the process by which humans comprehend texts, that is, construct a coherent representation of the meaning of the text through processing in turn all sentences. This program is based on psycholinguistic theories about human memory and text comprehension processes, namely the construction-integration model [START_REF] Kintsch | Comprehension: A paradigm for cognition[END_REF], the Latent Semantic Analysis theory of knowledge representation [START_REF] Landauer | A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge[END_REF] and the predication algorithms [START_REF] Kintsch | Predication[END_REF][START_REF] Lemaire | Contextuel Effects on Metaphor Comprehension: Experiment and Simulation[END_REF]. It is not a natural language processing tool, although this community may benefit from its ideas. It is not either the best program ever for automatically analyzing texts. It is rather designed for mimicking as close as possible human beings, and especially children, reading texts. It was intended to help psycholinguists implement theories, test ideas and identify relevant cognitive variables. For these reasons, this program is largely modular and parameterizable, so that researchers can use it as a tool for exploring the cognitive processes underlying human text comprehension.

It is worth noting that for the sake of comprehension, we will not present the full architecture at one go, but rather describe first the core of the architecture, then different modules which aim at improving the initial system. The first module is a model of semantic memory.

LSA: a Model of Semantic Memory

Principle

As major models of text comprehension have shown (Construction-Integration, [START_REF] Kintsch | The role of knowledge in discourse comprehension: A construction integration model[END_REF]Landscape model, van den Broek, Risden, Fletcher, & Thurlow, R. 1996 or resonance model, [START_REF] Gerrig | The readiness is all: The functionality of memory-based text processing[END_REF][START_REF] Myers | Accessing the discourse representation during reading[END_REF]), comprehending a text cannot be done with the only information present in the text (Caillies, Denhière, & Jhean-Larose, 2001;McNamara & Kintsch, 1996;[START_REF] Rizella | Retrieval of concepts in script-based texts and narratives: The influence of general world knowledge[END_REF]. Readers need to rely on their world's knowledge. Actually, cognitive theories of text comprehension assert that readers would automatically activate concepts while reading [START_REF] Kintsch | Comprehension: A paradigm for cognition[END_REF][START_REF] Van Den Broek | The landscape model of reading: Inferences and the on-line construction of a memory representation[END_REF]. Therefore, a simulation has to be based on a computational model of semantic memory that would be able to provide semantic associates for any word, thus simulating the automatic activation of concepts in memory [START_REF] Caillies | The interaction between textual structures and prior knowledge: Hypotheses, data and simulation[END_REF]Tapiero & Denhière, 1995). Associates are obviously not predefined, they depend on the reader's knowledge. In order to simulate text comprehension for different kinds of readers, expert or novice in a given domain, adults or children at various ages, we could not rely on a predefined set of associates for every word (not to mention the fact that such association norms do not exist for all words) (Caillies, Denhière, & Kintsch, 2001). Ideally, we would need to construct word similarities from the same kind of stimuli humans experience: that way, we would get word similarities for medical experts, word similarities for an average teenager, word similarities for a 7-year old child, etc. Since the perceptual experience that humans rely on cannot yet be captured by a computational model, we restricted our input to the linguistic experience, which, albeit not perfect, appears to play an important role in the construction of word meaning [START_REF] Landauer | On the computational basis of learning and cognition: Arguments from LSA[END_REF]. We used Latent Semantic Analysis [START_REF] Deerwester | Indexing by Latent Semantic Analysis[END_REF][START_REF] Landauer | Learning and representing verbal meaning: Latent Semantic Analysis[END_REF][START_REF] Landauer | A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge[END_REF], a computational model of word similarities which is based on the automatic analysis of huge corpora, roughly reproducing the kind of text people have been exposed to. The underlying idea is that the meaning of words can be inferred from the contexts in which these words occur in raw texts, provided that enough data is available [START_REF] Landauer | On the computational basis of learning and cognition: Arguments from LSA[END_REF]. This is similar to what human people do: it seems that most of the words we know, we learn by reading [START_REF] Glenberg | Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning[END_REF][START_REF] Landauer | A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge[END_REF]). The reason is that most words appear almost only in written form and that direct instruction seems to play a limited role. Therefore, we would learn the meaning of words mainly from raw texts, by mentally constructing their meaning through repeated exposure to appropriate contexts (Kintsch, to appear; Denhière, Lemaire, Bellissens, & Jhean-Larose, to appear). LSA analyzes the co-occurrence of words in large corpora to draw semantic similarities. In order to facilitate the measurement of similarities between words, LSA relies on very simple structures to represent word meanings: all words are represented as high-dimensional vectors. The meaning of a word is not defined per se, but rather determined by its relationships with all others. For instance, instead of defining the meaning of bicycle in an absolute manner (by its properties, function, role, etc., like in semantic networks for instance), it is defined by its degree of association to other words (e.g., very close to bike, close to pedals, ride, wheel, but far from duck, eat, etc.). Once again, this semantic information can be drawn from raw texts. The problem is how to go from these raw texts to a formal representation of word meanings. One way to tackle it would be to rely on direct co-occurrences within a given unit of context. A usual unit is the paragraph which is both computationally easy to identify and of reasonable size. We would say that:

R1: words are similar if they occur in same paragraphs.

Therefore, we would count the number of occurrences of each word in each paragraph. Suppose we rely on a 5,000-paragraph corpus. Each word would be represented by 5,000 values, that is by a 5,000 dimension vector. For instance: avalanche: (0,1,0,0,0,0,1,0,2,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,0…) snow:

(0,2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,2,1,1,0,1,0,0,0,0,0,0…) This means that the word avalanche appears once in the 2 nd paragraph, once in 7 th , twice in the 9 th , etc. One could see that, given the previous rule, both words are quite similar: they co-occur quite often. A simple cosine between the two vectors can measure the degree of similarity. However, this rule does not work well [START_REF] Landauer | On the computational basis of learning and cognition: Arguments from LSA[END_REF][START_REF] Perfetti | The limits of co-occurrence: tools and theories in language research[END_REF]: two words should be considered similar although they do no co-occur. For instance, Burgess and Lund (1998) mentioned the two words road and street that almost never co-occur in their huge corpus although they are almost synonyms. In a 24 million word French corpus from the daily newspaper Le Monde in 1999, we found 131 occurrences of Internet, 94 occurrences of web, but no co-occurrences at all. However, both words are strongly associated. The reason why two words are associated in spite of no co-occurrences could be that both co-occur with a third one. For instance, if you mentally construct a new association between computer and quantum from a set of texts you have read, you will probably construct as well an association between microprocessor or quantum although they might not cooccur, just because of the existing strong association between computer and microprocessor. The relation between computer and quantum is called a second-order co-occurrence. Psycholinguistic researches on mediated priming have shown that the association between two words can be done through a third one (Livesay & [START_REF] Burgess | Modeling parsing constraints with high-dimensional context space[END_REF]Lowe & McDonald, 2000), even if the reason for that is in debate [START_REF] Chwilla | Three-step priming in lexical decision[END_REF]). Let's go a little further. Suppose that the association between computer and quantum was also a second-order association, because of another word that co-occurred with both words, say science. In that case, microprocessor and quantum are said to be third-order co-occurring elements. In the same way, we can define 4 th -order co-occurrences, 5 thorder co-occurrences, etc. [START_REF] Kontostathis | Detecting Patterns in the LSI Term-Term Matrix[END_REF] analyzed such connectivity paths in several corpora and found the existence of these high-order co-occurrences. [START_REF] French | Four problems with extracting human semantics from large text corpora[END_REF] think that the previous rule might still work for synonyms because writers tend not to repeat words, but use synonyms instead. However, defining semantic similarity only from direct co-occurrence is probably a serious restriction. Therefore, another rule would be:

R1*: words are similar if they occur in similar paragraphs. T his is a much better rule. Consider the following two paragraphs:

Bicycling is a very pleasant sport. It helps keeping a good health. For your fitness, you could practice biking. It is very nice and good to your body.

Bicycling and biking appear in similar paragraphs. If this is repeated over a large corpus, it would be reasonable to consider them similar, even if they never co-occur within a paragraph. Now we need to define paragraph similarity. We could say that two paragraphs would be similar if they share words, but that would be restrictive: as illustrated in the previous example, two paragraphs should be considered similar although they do not have words in common (functional words are usually not taken into account). Therefore, the rule is: R2: paragraphs are similar if they contain similar words.

Rules 1* and 2 constitute a circularity, but this can be solved by a specific mathematical procedure called singular value decomposition, which is applied to the occurrence matrix. This is exactly what LSA does. LSA consists in reducing the huge dimensionality of direct word co-occurrences to its best N dimensions. All words are then represented as N-dimensional vectors. Empirical tests have shown that performances are maximal for N around 300 for the whole general English language [START_REF] Bellegarda | Exploiting Latent Semantic Information in statistical language modeling[END_REF][START_REF] Landauer | An introduction to Latent Semantic Analysis[END_REF] but this value can be smaller for specific domains [START_REF] Dumais | Data-driven approaches to information access[END_REF]. We will not describe the mathematical procedure which is presented in details elsewhere [START_REF] Deerwester | Indexing by Latent Semantic Analysis[END_REF][START_REF] Landauer | An introduction to Latent Semantic Analysis[END_REF]. The fact that word meanings are represented as vectors leads to two consequences. First, it is straightforward to compute the semantic similarity between words, which is usually the cosine between the corresponding vectors, although others similarity measures can be used. Examples of semantic similarities between words from a 12.6 million word corpus are [START_REF] Landauer | On the computational basis of learning and cognition: Arguments from LSA[END_REF]: cosine(doctor, physician) = .61 cosine(red, orange) = .64

Like many tests in the literature, we checked whether LSA can be considered as a good model of semantic memory. We want LSA to provide good associates for any given word, in order the simulate the mental activation of concepts while processing a word. Because of its vector representation, LSA can easily return the closest neighbors of a given word.

Corpus

Actually, LSA by itself is useless. It needs to be applied to a corpus. We have several corpora but the one which is the most elaborated is a child corpus that we carefully designed in order to reproduce as close as possible the kind of texts children are exposed to (Denhière & Lemaire, 2004). We controlled the amount and nature of texts, leading to a 3.2 million word corpus, composed of stories and tales for children (~1,6 million words), children productions (~800,000 words), reading textbooks (~400,000 words) and children encyclopedia (~400,000 words). We tested whether the closest neighbors of a given word correspond to the words that are activated in memory by children. We relied on verbal association norms (de La Haye, 2003) that were defined in the following way: two-hundred inducing words (144 nouns, 28 verbs and 28 adjectives) were proposed to 9-year-old to 11-year-old children. For each word, participants had to provide the first word that came to their mind. This resulted in a list of words, ranked by frequency. For instance, given the word cartable (satchel), results are the following for 9-year-old children:

-école (school): 51% -sac (bag): 12% -affaires (stuff): 6% ... -classe (class): 1% -sacoche (satchel): 1% -vieux (old): 1%

This means that 51% of the children answered the word école (school) when given the word cartable (satchel). The two words are therefore strongly associated for 9-year-old children. These association values were compared with the LSA cosine between word vectors: we selected the three best-ranked words as well as the three worst-ranked (like in the previous example). We then measured the cosines between the inducing word and the best ranked, the 2 nd best-ranked, the 3 rd best ranked, and the mean cosine between the inducing word and the 3 worst-ranked. Results are presented in Table 1.

<Insert table 1 about here >

Student tests show that all differences are significant (p < .03). This means that our semantic space is not only able to distinguish between the strong and weak associates, but can also discriminate the first-ranked from the second-ranked and the latter from the third-ranked.

Measure of correlation with human data is also significant (r(1184 =.39, p<.001). Actually, two factors might have lowered this result. First, although we tried to mimic what a child has been exposed to, we could not control all word frequencies within the corpus. Therefore, some words might have occurred with a low frequency in the corpus, leading to an inaccurate semantic representation. When the previous comparison was performed on the 20% most frequent words, the correlation was much higher (r(234 =.57, p<.001).

The second factor is the participant agreement: when most children provide the same answer to an inducing word, there is a high agreement, which means that both words are very strongly associated. However, there are cases when there is almost no agreement: for instance the three first answers to the word bruit (noise) are crier (to shout) (9%), entendre (to hear) (7%) and silence (silence) (6%). It is not surprising that the model corresponds better to the children data in case of a high agreement, since this denotes a strong association that should be reflected in the corpus. In order to select answers whose agreement was higher, we measured their entropy. The formula is the following:

A low entropycorresponds to a high agreement and vice versa. When we selected the 20% items with the lowest entropy, the correlation also raised (r(234)=.48, p<.001).

All these results show that the association degree between words defined by the cosine measure within the semantic space seems to correspond quite well to the children judgment of association. LSA applied to our children corpus is an acceptable model of semantic memory.

In order to simulate adult comprehension, we also built another semantic space based on the previous children corpus plus a newspaper corpus and a literature corpus. This adult corpus is therefore composed of about 13 million words: a 3 million word children corpus, plus a 5 million word corpus from the French daily newspaper Le Monde, plus a 5 million word corpus composed of French novels. This corpus was processed by LSA and a 300 dimension semantic space was built. This semantic space was used to analyze the example test of section 6.

A Model of Text Comprehension

Now that we have a good model of semantic memory, we need a model of text comprehension on top of it. That model should describe the process by which a set of sentences is transformed into a coherent representation of the overall meaning of the text. The theoretical model we are using is the construction-integration model [START_REF] Kintsch | Comprehension: A paradigm for cognition[END_REF]. Discourse comprehension is viewed as an iterative two-step process. First, the current proposition (or set of propositions) leads to the construction of a network of concepts that either belong to the proposition or are activated from semantic memory. This network is added to another network, called the macrostructure, resulting from the analysis of the prior part of the text and representing the main information so far. Second, the integration step selects the relevant concepts from this network, by means of a spreading activation mechanism, leading to the new macrostructure. The process is then repeated until the whole text is processed. We will now present our operationalization of that model in a computer program. Consider a text composed of these two sentences:

The bee is sucking nectar from a flower. Then it brings the nectar back to the hive to be turned into honey. The main process of text comprehension occurs on a specific structure called working memory i . This structure contains the key elements of the sentences previously processed as well the elements of the current sentence. As we mentioned before, the reader would also activate concepts from semantic memory. For instance, the word bee would activate words like honey, hive or sting. Three kinds of elements are therefore gathered in working memory: the previous ones, the current ones entropy item answer freq answer . log 1 freq answer and a set of associates. Since not all of them are coherent with the context, the integration step selects the most relevant ones, that is those that are loosely connected to others. For instance, sting is not strongly associated to most other words and has to be dismissed. This integration step is performed by means of a spreading activation mechanism which is run until the system becomes stable.

Working memory is thus continuously updated while the text is processed, containing the main information from what has been processes so far. It is worth noting that some of these words are not part of the text, like honey, they are sort of inferences that readers make by means of their semantic memory. What is true for words is also true for propositions, which are subsets of sentences. For instance, the previous text contains the following propositions:

-P1: sucking(bee,nectar,flower) -P2: bring(bee,nectar,hive) -P3: turn(nectar,honey) -P4: for(P2,P3) A proposition may also activates associates and can also be propagated as a key feature of the overall meaning and occasionally ruled out if it becomes secondary. To sum up, each proposition is processed in turn. Inferences are gathered from semantic memory. An integration of this new information and the previous one is realized in order to get a new state of working memory. Figure 1 displays the flow of information for each proposition (episodic memory will be presented later).

<insert Figure 1 about here> A French translation of the previous example was simulated by our program (without taking into account the predication algorithm and the episodic memory which will be presented in the next sections), using the previous French model of semantic memory. We now present the English translation. The first proposition is sucking(bee,nectar,flower). It activates the following elements: insect, larva, fly, hive, honey, wasp, buzz, bouquet, violet, petal, gather, blossom. Semantic similarities between all pairs of words are then computed, leading to a big semantic network. The most relevant elements (the most coherent with all others) are selected by the integration step. The working memory then contains the following elements (as well as their activation values):

sucking(bee,nectar,flower) (nectar,honey). Semantic similarities between all of these words and propositions is computed. Since both propositions occur in the same input stream, a 1.0 link is created between the last two propositions to represent their strong connection in the text. The first one activates the following elements:

worker, hive, honey, wasp, buzz, fly and the second one activates: take, mineral, meaning, sugar, living, hive, bee, bear, bear cub, pheasant Together with the previously activated elements, it leads to the following set of elements:

sucking (bee,nectar,flower), bee, flower, hive, bouquet, buzz, honey, petal, wasp, violet, bring (bee,nectar,hive), worker, fly, turn(nectar, honey), take, mineral, meaning sugar, living, bear, bear cub, pheasant

The most activated elements from this set are selected. The working memory is then:

sucking(bee,nectar,flower) 1.00 bring(bee,nectar,hive) .997 bee

.949 hive

.868 turn (nectar,honey) .813 honey

.805 buzz .612 The next set of propositions is considered, its elements and its associates are added to the working memory, etc. After each new set of propositions is analyzed, working memory represents sort of a synthesis of the information processed so far.

Episodic memory

We are now presenting a new structure: episodic memory. Prior elements that are removed from working memory are meant to be no longer necessary but they are still kept in a specific memory which keeps track of all elements that once appeared in working memory. They can even be retrieved from working memory in case they become relevant with respect to the text content. Elements are stored with an activation value which may vary over time, depending on whether they appear again or not in working memory. A decay function tends to lower these values over time, thus simulating a sort of forgetting mechanism.

From working memory to episodic memory

Episodic memory is defined by means of three functions, whose goal is to determine the activation values (between 0 and 1). These functions are applied every time an element of working memory is stored in episodic memory:

the first one indicates the new value of a concept that did not exist previously in episodic memory. By default, the new value is the activation value of the concept in the working memory.

the second one defines the new value of a concept that was already in episodic memory. In that case, the new value should be higher than both existing values because of the conjunction of the two memory traces. By default, the new value is valueWM + valueEM.(1 -valueWM).

the third one is a decay function that indicates how to lower all activation values over time. By default, all values are changed to 90% of their original values after each construction-integration cycle.

From episodic memory to working memory

During the construction phase, episodic memory can also provide elements that are added to working memory if they are close to the text elements being processed. This is similar to the inference mechanism that gathered elements from semantic memory. The idea is that all episodic memory elements that are similar enough to a concept of the current proposition and whose activation value is high enough are copied back into working memory. The two thresholds that govern this collection of elements are obviously parameterizable. This would be the case of a text that would present a topic X, then shifts to another topic Y which would lead to the removal of concepts related to X in working memory, then goes back to topic X. The current mechanism would then retrieve X-related concepts from episodic memory in order to simulate the fact that concepts can be linked in a text although they do not necessarily follow each other.

At the end of the text processing, episodic memory contains all the propositions from the text as well an indication of their importance. This model of the way the main information has been cognitively selected can be tested and compared to human data. In addition, since every state of episodic memory is memorized by the program, the evolution of activation values can be traced. The decay function tend to decrease activation values of unused elements over time, but, when an element appears once again in working memory, either because it occurs in the text or because it was called back by a similar element, its activation value raises. Evolution of activation values in episodic memory is not linear and depends on the propositions being processed. Once more, the fact that this structure is automatically produced on any kind of text is valuable for researchers willing to test and refine the model. Episodic memory is presented in Figure 1.

A Model of Predication

We now present an improvement on the previous models. When a word is processed, its neighbors are activated from semantic memory, as we mentioned earlier. The same occurs for propositions: neighbors of all words of the proposition should be activated. For instance, when you read the sentence "the plane flies to Paris", you mentally gather associates for plane, flies and Paris. However, only the neighbors of the predicate that are associated to the context need to be considered: you select associates like airport or sky, but not escape or fear because they are not related to the arguments, although they are close neighbors of fly. [START_REF] Kintsch | Predication[END_REF] shows that the LSA model can be used to provide a good semantic representation of a predicate-argument expression, if the specific role of the predicate is taken into account. The basic LSA representation does not make any distinction between A(B) and B(A) because the compositionally just consists in adding vectors: the vector representing a set of words is just the sum of the vectors of all words. This child is a sportsman has the exact same representation than This sportsman is a child, which in particular is a problem for dealing with metaphors [START_REF] Kintsch | Metaphor comprehension: A computational theory[END_REF]. To solve that problem, Kintsch suggested to construct a network composed of the predicate, the argument and a fixed number of neighbors of the predicate, and to apply the integration method to select only the neighbors that are associated to the predicate. Kintsch (to appear) provides a little illustrative example with only three neighbors. Suppose there are three neighbors of run: come, hopped and down. The sentence the horse runs will lead to a network composed of horse, run, come, hopped and down. Come will be the only neighbor that will be activated, because it is similar to both horse and run. In the contrary, with the sentence the color runs, only the neighbor down will be selected. The representation of the predicate/argument expression is therefore not just predicate+argument but predicate+argument+neighbor1+...+neighborn. We are not interested in the vector representation, but rather in the neighbors. Kintsch's algorithm can be a good starting point for our purpose. The problem is that this algorithm requires to set a number of neighbors beforehand: 20 for usual predicate-argument relations but up to 500 for some metaphors according to Kintsch's experiments. Since the nature of the predicate-argument relation cannot be automatically stated, we had to modify this predication algorithm to make it incremental [START_REF] Lemaire | Contextuel Effects on Metaphor Comprehension: Experiment and Simulation[END_REF]. It is this modified version which is included in the comprehension program we are presenting. Basically, if the input indicates which word is the predicate and which words are the arguments, the predication algorithm is used. It scans all neighbors of the predicate (using the model of semantic memory described earlier) until it finds three (or any other value of that parameter) of them that are similar enough (above a parameterizable threshold) to any of the arguments.

For instance, in our favorite French semantic space, the closest neighbors of the predicate voler (to fly) are the following:

ailes (wings) oiseau (bird) vole (flies) plumes (feather) oiseaux (birds) aigle (eagle) vol (flight) -... When the input is voler(avion) (fly(plane)), the following words are selected because they are also similar to plane: ailes(wings), vole(flies) and vol(flight). However, when the input is voler(oiseau) (fly(bird), the selected words are: ailes(wings), vole(flies) and plumes(feather) ii . The last version of the system includes this algorithm. The associates of a proposition are therefore the associates of the predicate according to this algorithm, as well as the associates for all arguments. For instance, the proposition fly(plane) would activate wings, flies, flight but also pilot, take off and passengers. The proposition fly(bird) would rather activate wings, flies, feather but also wings, bill and plumage.

A Full Example

We will now present a full example. Suppose we want simulate the comprehension of the following text:

Un bûcheron se promenait dans la forêt lorsqu'il vit une lumière. Des arbres brûlaient. Le bûcheron but l'eau de sa gourde et la cracha sur le feu. Le feu s'éteignit. whose translation is:

A woodcutter was walking in the forest when he noticed a light. Trees were burning. The woodcutter drank water from his flask and spitted on the fire. The fire went out. Since we will illustrate the predication algorithm in this example, we need to split sentences into propositions and indicate which word is the predicate. This cannot be done automatically for the moment (however, the model can be run automatically if the predication algorithm is not used).

Propositions are represented as sequences of words whose predicate is in first position. Inputs are therefore: 1) walk/woodcutter/forest notice/woodcutter/light 2) burn/trees 3) drink/woodcutter/water/flask spit/woodcutter/fire 4) go out/fire (go out is only one word in French) The following is a translation of the output of the program: -------------------------"walk/woodcutter/forest" added to working memory. Looking for neighbors of walk:

1. stroll (0.68) close to woodcutter and forest 2. meet (0.60) close to woodcutter and forest 3. pick (0.60) close to woodcutter and forest woodcutter added to working memory. Looking for neighbors:

1. ax (0.57) 2. forest (0.53) firewood: too rare (.77 > .72) 3. cottage (0.51) forest added to working memory. Looking for neighbors:

1. glade (0.77) 2. oak (0.75) 3. wood ( 0.74) --------------------------"notice/woodcutter/light" added to working memory. Looking for neighbors of notice:

1. objects (0.61) close to light 2. watch (0.57) close to light commonly: too far from woodcutter and light 3. area (0.56) close to light woodcutter added to working memory. Looking for neighbors:

previously done light added to working memory. Looking for neighbors:

1. luminous (0.80) 2. rays (0.78) 3. shine (0.69) ------------------------- Words like stroll, oak or glade are now part of working memory although they were not explicitly mentioned in the sentence. Unrelated words like objects or shine were ruled out from working memory since their activation values are below the threshold. The second sentence is now analyzed. As the reader will notice, episodic memory elements that are close to the current input can be retrieved.

Input? burn/trees "burn/trees" added to working memory.

"rays" recoverable from episodic memory but too low (.450 < .75)

"light" recoverable from episodic memory but too low (.500 < .75) "ax" recoverable from episodic memory but too low (.533 < .75) "walk" recovered from episodic memory by "trees". Added to WM. "oak" recovered from episodic memory by "trees". Added to WM.

Looking for neighbors of burn:

burns: too far from trees fire: too far from trees burning: too far from trees 1. heat (0.56) close to trees extinguish: too far from trees steam: too far from trees 2. flames (0.54) close to trees 3. burned (0.53) close to trees trees added to working memory. Looking for neighbors:

1. branches (0.90) 2. trunks (0.87) 3. leaves (0.82) ------------------------- Only two propositions are kept in working memory, the second one (notice/woodcutter/light) disappeared. The third sentence is now analyzed.

Input ? drink/woodcutter/water/flask spit/woodcutter/fire "drink/woodcutter/water/flask" added to working memory.

"walk" recovered from episodic memory by "drink". Added to WM. "stroll" recoverable from episodic memory but too low (.539 < .75) "ax" recoverable from episodic memory but too low (.480 < .75) "cottage" recoverable from episodic memory but too low (.474 < .75) "woodcutter" recovered from episodic memory by "flask". Added to WM. "flames" recoverable from episodic memory but too low (.374 < .75) Looking for neighbors of drink:

1. drinks (0.74) close to water and flask 2. hot (0.74) close to water and flask 3. drank (0.68) close to water and flask woodcutter added to working memory. Looking for neighbors:

1 --------------------------" ------------------------- ------------------------- At the end of the text, working memory contains the five main propositions and several related words. The model works pretty well since all related words are really coherent with the context. This is due to two factors: first, the semantic memory model (LSA) which mostly retrieves relevant words and second, the integration module which rules out the possible remaining irrelevant words.

In addition to the last state of the working memory, our program provides the activation values of all words and propositions for each cycle (Table 2). For instance, the activation value of the proposition notice/woodcutter/light was .693 at the end of cycle 1, it increased to .750 at the end of cycle 2, then decreased afterwards. This data compares to the output of the Landscape model [START_REF] Linderholm | Fluctuations in the availability of information during reading: Capturing cognitive processes using the Landscape model[END_REF] in which the activation value of concepts can be traced from proposition to proposition. The main difference however is that our system is based on a knowledge model (semantic memory): it can retrieve concepts that were not in the text and can automatically draw connections between concepts based on their semantic similarities.

<insert table 2 about here>

Parameters

The program relies on 19 parameters, but many simulations have allowed us to identify good default values for most of them. This section describes the most important parameters.

Word relevance

In LSA, weights are attached to words, in order to indicate the knowledge that LSA has about words: this knowledge is dependent on the word frequency (LSA knows better words that occurred frequently in the corpus) and the context variability (LSA knows better words that occurred in limited contexts than words that appeared in a large variety of contexts). Two parameters are used to rule out words that are very frequent but occur in a large number of contexts (like the or and) and words that are too rare.

Construction phase

The number of neighbors is a parameter. The semantic memory model can also be modified. LSA is the default model but others like ICAN (Lemaire & Denhière, 2004) can be tested.

Concept selection in working memory

The selection of elements in working memory right after the integration phase can be done in three ways:

by selecting elements whose activation value is over a given value; by selecting the best N elements, N being a parameter; by selecting the best elements whose activation values add up to a given quantity of activation.

Episodic memory

The way episodic memory works is controlled by two parameters: the minimum association value for items being retrieved from episodic memory; the minimum semantic similarity with the cue word for items being retrieved from episodic memory.

User selection, tracing

A parameter can be set for researchers willing to trace the program step by step. Another one can be used to control the selection of neighbors by hand and rule out possible irrelevant items. This can be used when simulating comprehension for a given text for which the researcher already knows some associated words.

Conclusion

This computer program is intended to help psycholinguists investigate the way humans comprehend texts in relation with their level of prior relevant knowledge, the situation models used and the structure of texts processed [START_REF] Baudet | Mental models and acquisition of knowledge from text: Representation and acquisition of functional systems[END_REF]Crook & Myers, 2004 ;Denhière at al., to appear ;[START_REF] Mcnamara | Are good texts always better? Interactions of text coherence, prior knowledge, and levels of understanding in learning from text[END_REF][START_REF] Voss | Learning from history texts: The interaction of knowledge and comprehension skill with text structure[END_REF][START_REF] Zwaan | Situation models in language comprehension and memory[END_REF]. Researchers willing to explore the assets and limits of the constructionintegration model or to compare its performances with other models such as the "landscape model" [START_REF] Linderholm | Fluctuations in the availability of information during reading: Capturing cognitive processes using the Landscape model[END_REF] or the "resonance model" (O'Brien, Rizzella, Albrecht, & Halleran, 1998) can test it on various texts quite easily. One main interest of this program is its exhaustive model of semantic memory, which can provide associates for any word of the language. Because of a lack of such a model, previous simulations could only be ran on a very limited number of texts. Researchers had to guess a few words that could be associated to all text words, resulting in small and subjective results. [START_REF] Kintsch | Metaphor comprehension: A computational theory[END_REF] and [START_REF] Bellissens | Retrieval from long-term working memory: A skilled use of semantic memory[END_REF] proposed the connection between CI and LSA, but they did not link them in an automatic manner. The main limit of our model is its lack of a propositional parser that would allow free text inputs. To date, propositions had to be extracted by hand. However, the model does not need an exact description of propositions, the text just needs to be splitted into predicate-arguments items. If the splitting is not correct, some irrelevant words could be retrieved, but they will be probably ruled out by the robust integration step. We are however in the process of designing a rough propositional parser which would give us the missing link.

This program is freely available from the first author for researchers willing to use it for academic purpose. For the sake of readability, we are using the notions of working memory or episodic memory but we do not claim to cover exactly the meaning of these concepts in the psycholinguistic literature. Because of computational requirements, these notions are simplified compared to their theoretical counterparts.

ii oiseau(bird) is not considered because it is already part of the proposition.

*

  ** SIMULATION OF TEXT COMPREHENSION (version 1.6.2) *** Input? walk/woodcutter/forest notice/woodcutter/light -

Figure 1 :

 1 Figure 1: Flow of information of the comprehension model

  The second group of propositions is then added to working memory. It is bring(bee,nectar,hive) and turn

		1.000
	-bee	.903
	-flower	.852
	-hive	.778
	-bouquet	.677
	-buzz	.634
	-honey	.615
	-petal	.607
	-wasp	.606
	-violet	.605

spit/woodcutter/fire" added to working memory.

  

	"heat" recoverable from episodic memory but too low (.291 < .75)
	"flames" recoverable from episodic memory but too low (.374 < .75)
	"walk" recovered from episodic memory by "woodcutter". Added to WM.
	"ax" recoverable from episodic memory but too low (.480 < .75)
	"burned" recoverable from episodic memory but too low (.411 < .75)
	"burn" recoverable from episodic memory but too low (.424 < .75)
	Looking for neighbors of spit:
	1. inhale (0.65) close to fire
	2. lukewarm (0.63) close to fire
	bleed: too far from woodcutter and fire
	3. spits (0.59) close to fire
	woodcutter added to working memory. Looking for neighbors:
	previously done
	fire added to working memory. Looking for neighbors:
	1. flames (0.71)
	2. burn (0.69)
	3. warm (0.65)
	"burn" recoverable from episodic memory but too low (.424 < .75)

out/fire "go out/fire" added to working memory.

  Four propositions and several related words (either being part of the text, like forest, or not, like trees or flames) are in working memory. The last sentence is now analyzed.

			-		
	Constructing the 37x37 matrix...		
	Integrating... (8 cycles)		
	Activated nodes: walk/woodcutter/forest(1.00) drink/woodcutter/water/flask(.956)
	forest(.908) wood(.903) oak(.887) drink(.876) woodcutter(.855) trunks(.855) pick
	(.853)	flask(.847)	burn/trees(.840)	spit/woodcutter/fire(.834)	glade(.834)
	branches(.796) trees(.789) walk(.789) bucket(.770) hot(.754) drinks(.711) potion
	(.710) flames(.704)			
	Input? go "burn" recoverable from episodic memory but too low (.611 < .75)	
	"shine" recoverable from episodic memory but too low (.311 < .75)	
	"fire" recoverable from episodic memory but too low (.613 < .75)	
	"burned" recoverable from episodic memory but too low (.370 < .75)	
	"heat" recoverable from episodic memory but too low (.262 < .75)	
	"warm" recoverable from episodic memory but too low (.546 < .75)	
	"light" recoverable from episodic memory but too low (.405 < .75)	
	"watch" recoverable from episodic memory but too low (.375 < .75)	
	"spit" recoverable from episodic memory but too low (.617 < .75)	
	"rays" recoverable from episodic memory but too low (.365 < .75)	
	"notice" recoverable from episodic memory but too low (.483 < .75)	
	"ax" recovered from episodic memory. Added to WM.	
	Looking for neighbors of go out:		
	1. light (0.64) close to fire		
	fire: this word is already part of the proposition	
	2. went out (0.56) close to fire		
	3. flames(0.56) close to fire		
	fire added to working memory. Looking for neighbors:	
	1. flames (0.71)			
	2. burn (0.69)			
	3. warm (0.65)			

Table 1 :

 1 Mean cosine between inducing word and various associated words for 9-year-old children WordsMean cosine with inducing word

	Best-ranked words

Table 2 :

 2 activation values of all words and propositions

	Words		Cycle	
		1	2	3	4
	go out	.000 .000 .000 .536
	go out/fire	.000 .000 .000 .726
	burned	.000 .000 .000 .397
	area	.288 .259 .234 .210
	light	.000 .000 .000 .559
	notice	.596 .536 .483 .434
	notice/woodcutter/light	.693 .750 .675 .608
	trees	.000 .828 .867 .863
	inhale	.000 .000 .543 .488
	woodcutter	.735 .806 .875 .872
	drink	.000 .000 .789 .815
	drink/woodcutter/water/flask .000 .000 .860 .867
	wood	.695 .847 .887 .883
	drinks	.000 .000 .640 .715
	burned	.000 .411 .370 .333
	burns	.000 .000 .611 .778
	burn	.000 .424 .381 .343
	burn/trees	.000 .900 .886 .886
	branches	.000 .804 .864 .864
	shine	.384 .346 .311 .280
	drank	.000 .000 .577 .519
	oak	.781 .874 .887 .880
	heat	.000 .291 .262 .236
	hot	.000 .000 .679 .747

to appear in Behavior Research Methods, Instruments and Computers
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