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Abstract
This paper describes the architecture of a computer program which aims at simulating the process
by which humans comprehend texts, that is, construct a coherent representation of the meaning of
the text through processing in turn all sentences. This program is based on psycholinguistic theories
about  human  memory  and  text  comprehension  processes,  namely  the  construction-integration
model  (Kintsch,  1998),  the  Latent  Semantic  Analysis  theory  of  knowledge  representation
(Landauer & Dumais,  1997) and the predication algorithms (Kintsch, 2001, Lemaire & Bianco,
2003). It is intended to help psycholinguists investigate the way humans comprehend texts.

1  Introduction
This paper describes the architecture of a computer program which aims at simulating the process
by which humans comprehend texts, that is, construct a coherent representation of the meaning of
the text through processing in turn all sentences. This program is based on psycholinguistic theories
about  human  memory  and  text  comprehension  processes,  namely  the  construction-integration
model  (Kintsch,  1998),  the  Latent  Semantic  Analysis  theory  of  knowledge  representation
(Landauer & Dumais,  1997) and the predication algorithms (Kintsch, 2001, Lemaire & Bianco,
2003). It is not a natural language processing tool, although this community may benefit from its
ideas. It is not either the best program ever for automatically analyzing texts. It is rather designed
for mimicking as close as possible human beings, and especially children, reading texts.  It  was
intended  to  help  psycholinguists  implement  theories,  test  ideas  and  identify  relevant  cognitive
variables.  For  these  reasons,  this  program  is  largely  modular  and  parameterizable,  so  that
researchers  can  use  it  as  a  tool  for  exploring  the  cognitive  processes  underlying  human  text
comprehension.

It is worth noting that for the sake of comprehension, we will not present the full architecture at
one go, but rather describe first the core of the architecture, then different modules which aim at
improving the initial system. The first module is a model of semantic memory.

2  LSA: a Model of Semantic Memory

2.1  Principle

As major models of text comprehension have shown (Construction-Integration,  Kintsch,  1988 ;
Landscape  model,  van den Broek,  Risden,  Fletcher,  & Thurlow,  R.  1996 or  resonance  model,
Gerrig & McKoon, 1998, Myers & O’Brien, 1998)), comprehending a text cannot be done with the
only  information  present  in  the  text  (Caillies,  Denhière,  & Jhean-Larose,  2001;  McNamara  &
Kintsch,  1996;  Rizella  &  O’Brien,  2002).  Readers  need  to  rely  on  their  world's  knowledge.
Actually, cognitive theories of text comprehension assert that readers would automatically activate
concepts  while  reading  (Kintsch,  1998;  van  den  Broek,  Young  Tzeng,  &  Linderholm,  1999).
Therefore, a simulation has to be based on a computational model of semantic memory that would
be able to provide semantic associates for any word, thus simulating the automatic activation of
concepts  in  memory  (Caillies  &  Denhière,  2001;  Tapiero  &  Denhière,  1995).  Associates  are
obviously  not  predefined,  they  depend  on  the  reader's  knowledge.  In  order  to  simulate  text
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comprehension for different kinds of readers, expert or novice in a given domain, adults or children
at various ages, we could not rely on a predefined set of associates for every word (not to mention
the fact  that  such association norms do not exist for all  words)  (Caillies,  Denhière, & Kintsch,
2001). Ideally, we would need to construct word similarities from the same kind of stimuli humans
experience: that way, we would get word similarities for medical experts, word similarities for an
average teenager, word similarities for a 7-year old child, etc. Since the perceptual experience that
humans rely on cannot yet be captured by a computational model, we restricted our input to the
linguistic  experience,  which,  albeit  not  perfect,  appears  to  play  an  important  role  in  the
construction of word meaning (Landauer, 2002).

We used Latent Semantic Analysis (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990;
Landauer, 1998; Landauer & Dumais, 1997), a computational model of word similarities which is
based on the automatic analysis of huge corpora, roughly reproducing the kind of text people have
been  exposed  to.  The  underlying  idea  is  that  the  meaning  of  words  can  be  inferred from the
contexts in which these words occur in raw texts, provided that enough data is available (Landauer,
2002). This is similar to what human people do: it seems that most of the words we know, we learn
by reading (Glenberg & Robertson, 2000; Landauer & Dumais, 1997;). The reason is that most
words appear almost only in written form and that direct instruction seems to play a limited role.
Therefore, we would learn the meaning of words mainly from raw texts, by mentally constructing
their  meaning through repeated exposure to appropriate contexts (Kintsch,  to appear;  Denhière,
Lemaire, Bellissens, & Jhean-Larose, to appear).

LSA analyzes the co-occurrence of words in large corpora to draw semantic similarities. In order
to facilitate the measurement of similarities between words, LSA relies on very simple structures to
represent word meanings: all words are represented as high-dimensional vectors. The meaning of a
word is not defined per se, but rather determined by its relationships with all others. For instance,
instead of defining the meaning of bicycle in an absolute manner (by its properties, function, role,
etc., like in semantic networks for instance), it is defined by its degree of association to other words
(e.g., very close to bike, close to pedals, ride, wheel, but far from duck, eat, etc.). Once again, this
semantic information can be drawn from raw texts.

The problem is how to go from these raw texts to a formal representation of word meanings. One
way to tackle it would be to rely on direct co-occurrences within a given unit of context. A usual
unit is the paragraph which is both computationally easy to identify and of reasonable size. We
would say that:

R1: words are similar if they occur in same paragraphs.

Therefore, we would count the number of occurrences of each word in each paragraph. Suppose we
rely on a 5,000-paragraph corpus. Each word would be represented by 5,000 values, that is by a
5,000 dimension vector. For instance:

avalanche: (0,1,0,0,0,0,1,0,2,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,0…)
snow: (0,2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,2,1,1,0,1,0,0,0,0,0,0…)

This means that the word avalanche appears once in the 2nd paragraph, once in 7th, twice in the 9th,
etc. One could see that, given the previous rule, both words are quite similar: they co-occur quite
often. A simple cosine between the two vectors can measure the degree of similarity. However, this
rule does not work well (Landauer, 2002; Perfetti, 1998): two words should be considered similar
although they do no co-occur. For instance, Burgess and Lund (1998) mentioned the two words
road and street that almost never co-occur in their huge corpus although they are almost synonyms.
In a 24 million word French corpus from the daily newspaper  Le Monde in 1999, we found 131
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occurrences of Internet, 94 occurrences of web, but no co-occurrences at all. However, both words
are strongly associated. The reason why two words are associated in spite of no co-occurrences
could  be  that  both  co-occur  with  a  third  one.  For  instance,  if  you  mentally  construct  a  new
association between  computer and quantum from a set of texts you have read, you will probably
construct as well an association between microprocessor or  quantum although they might not co-
occur, just because of the existing strong association between computer and microprocessor. The
relation between computer and quantum is called a second-order co-occurrence. Psycholinguistic
researches on mediated priming have shown that the association between two words can be done
through a third one (Livesay & Burgess, 1997; Lowe & McDonald, 2000), even if the reason for
that  is  in debate (Chwilla & Kolk,  2002). Let's go a little  further.  Suppose that  the association
between computer and quantum was also a second-order association, because of another word that
co-occurred with both words, say science. In that case, microprocessor and quantum are said to be
third-order co-occurring elements. In the same way, we can define 4th-order co-occurrences, 5th-
order co-occurrences, etc. Kontostathis and Pottenger (2002) analyzed such connectivity paths in
several corpora and found the existence of these high-order co-occurrences.

French & Labiouse (2002) think that the previous rule might  still work for synonyms because
writers tend not to repeat words, but use synonyms instead. However, defining semantic similarity
only from direct co-occurrence is probably a serious restriction. Therefore, another rule would be:

R1*: words are similar if they occur in similar paragraphs.
T
his is a much better rule. Consider the following two paragraphs:

Bicycling is a very pleasant sport. It helps keeping a good health.
For your fitness, you could practice biking. It is very nice and good to your body.

Bicycling and biking appear in similar paragraphs. If this is repeated over a large corpus, it would
be reasonable to consider them similar, even if they never co-occur within a paragraph. Now we
need to define paragraph similarity.  We could say that two paragraphs would be similar  if  they
share words, but that would be restrictive: as illustrated in the previous example, two paragraphs
should be considered similar although they do not have words in common (functional words are
usually not taken into account). Therefore, the rule is:

R2: paragraphs are similar if they contain similar words.

Rules 1* and 2 constitute a circularity, but this can be solved by a specific mathematical procedure
called singular  value decomposition,  which is applied to the occurrence matrix.  This is  exactly
what LSA does. LSA consists in reducing the huge dimensionality of direct word co-occurrences to
its best N dimensions. All words are then represented as N-dimensional vectors. Empirical tests
have  shown  that  performances  are  maximal  for  N around  300  for  the  whole  general  English
language (Bellegarda, 2000; Landauer, Foltz, & Laham, 1998) but this value can be smaller for
specific  domains  (Dumais,  2003).  We  will  not  describe  the  mathematical  procedure  which  is
presented in details elsewhere (Deerwester et al., 1990; Landauer et al., 1998). The fact that word
meanings  are  represented  as  vectors  leads  to  two  consequences.  First,  it  is  straightforward  to
compute  the  semantic  similarity  between  words,  which  is  usually  the  cosine  between  the
corresponding  vectors,  although others  similarity  measures  can be used.  Examples  of  semantic
similarities between words from a 12.6 million word corpus are (Landauer, 2002): 

cosine(doctor, physician) = .61
cosine(red, orange) = .64
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Like many tests in the literature, we checked whether LSA can be considered as a good model of
semantic  memory.  We want  LSA to provide good associates  for  any  given  word,  in  order  the
simulate  the  mental  activation  of  concepts  while  processing  a  word.  Because  of  its  vector
representation, LSA can easily return the closest neighbors of a given word.

Corpus

Actually, LSA by itself is useless. It needs to be applied to a corpus. We have several corpora but
the  one  which is  the  most  elaborated  is  a  child  corpus  that  we carefully  designed in  order  to
reproduce as close as possible the  kind of texts  children are  exposed to (Denhière & Lemaire,
2004).  We  controlled  the  amount  and  nature  of  texts,  leading  to  a  3.2  million  word  corpus,
composed of  stories and tales for children (~1,6 million words), children productions (~800,000
words), reading textbooks (~400,000 words) and children encyclopedia (~400,000 words). 

We  tested  whether  the  closest  neighbors  of  a  given  word  correspond  to  the  words  that  are
activated in memory by children. We relied on verbal association norms (de La Haye, 2003) that
were defined in  the  following way:  two-hundred inducing words  (144 nouns,  28 verbs  and 28
adjectives) were proposed to 9-year-old to 11-year-old children. For each word, participants had to
provide the first word that came to their mind. This resulted in a list of words, ranked by frequency.
For instance, given the word cartable (satchel), results are the following for 9-year-old children:

- école (school): 51%
- sac (bag): 12%
- affaires (stuff): 6%
...
- classe (class): 1%
- sacoche (satchel): 1%
- vieux (old): 1%

This  means  that  51% of  the  children  answered  the  word  école (school)  when given  the  word
cartable (satchel). The two words are therefore strongly associated for 9-year-old children. These
association values  were compared with the  LSA cosine between word vectors:  we selected the
three best-ranked words as well as the three worst-ranked (like in the previous example). We then
measured the cosines between the inducing word and the best ranked, the 2nd best-ranked, the 3rd

best ranked, and the mean cosine between the inducing word and the 3 worst-ranked. Results are
presented in Table 1.

<Insert table 1 about here >

Student tests show that all differences are significant (p < .03). This means that our semantic space
is not only able to distinguish between the strong and weak associates, but can also discriminate the
first-ranked from the second-ranked and the latter from the third-ranked.

Measure of correlation with human data is also significant (r(1184 =.39, p<.001). Actually, two
factors might have lowered this result.  First, although we tried to mimic what a child has been
exposed to, we could not control all word frequencies within the corpus. Therefore, some words
might  have  occurred  with  a  low  frequency  in  the  corpus,  leading  to  an  inaccurate  semantic
representation. When the previous comparison was performed on the 20% most frequent words, the
correlation was much higher (r(234 =.57, p<.001).
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The second factor is the participant agreement: when most children provide the same answer to an
inducing  word,  there  is  a  high  agreement,  which  means  that  both  words  are  very  strongly
associated. However, there are cases when there is almost no agreement: for instance the three first
answers to the word  bruit (noise) are  crier (to shout) (9%),  entendre (to hear) (7%) and  silence
(silence) (6%). It is not surprising that the model corresponds better to the children data in case of a
high agreement, since this denotes a strong association that should be reflected in the corpus. In
order to select answers whose agreement was higher, we measured their entropy. The formula is
the following:

A low entropycorresponds to a high agreement and vice versa. When we selected the 20% items
with the lowest entropy, the correlation also raised (r(234)=.48, p<.001).

All these results show that the association degree between words defined by the cosine measure
within the semantic space seems to correspond quite well to the children judgment of association.
LSA applied to our children corpus is an acceptable model of semantic memory.

In order  to  simulate  adult  comprehension,  we also built  another  semantic  space based  on the
previous  children corpus plus  a newspaper  corpus and a  literature corpus.  This adult  corpus is
therefore composed of about 13 million words: a 3 million word children corpus,  plus a 5 million
word corpus from the French daily newspaper Le Monde, plus a 5 million word corpus composed
of French novels. This corpus was processed by LSA and a 300 dimension semantic space was
built. This semantic space was used to analyze the example test of section 6.

3  A Model of Text Comprehension
Now that we have a good model of semantic memory, we need a model of text comprehension on
top of it. That model should describe the process by which a set of sentences is transformed into a
coherent representation of the overall meaning of the text. The theoretical model we are using is the
construction-integration model (Kintsch, 1998). Discourse comprehension is viewed as an iterative
two-step process. First, the current proposition (or set of propositions) leads to the construction of a
network of concepts that either belong to the proposition or are activated from semantic memory.
This network is added to another network, called the macrostructure, resulting from the analysis of
the prior part of the text and representing the main information so far. Second, the integration step
selects the relevant concepts from this network, by means of a spreading activation mechanism,
leading to the new macrostructure. The process is then repeated until the whole text is processed. 

We will now present our operationalization of that model in a computer program. Consider a text
composed of these two sentences:

The bee is sucking nectar from a flower. Then it brings the nectar back to the hive to be
turned into honey.

The main process of text comprehension occurs on a specific structure called working memoryi.
This structure contains the key elements of the sentences previously processed as well the elements
of the current  sentence.  As we mentioned before,  the reader would also activate concepts from
semantic memory. For instance, the word bee would activate words like honey, hive or sting. Three
kinds of elements are therefore gathered in working memory: the previous ones, the current ones

entropy item
answer

freq answer . log
1

freq answer
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and a set of associates. Since not all of them are coherent with the context, the integration step
selects the most relevant ones, that is those that are loosely connected to others. For instance, sting
is not strongly associated to most other words and has to be dismissed. This integration step is
performed by means of a spreading activation mechanism which is run until the system becomes
stable.

Working memory is thus continuously updated while the text is processed, containing the main
information from what has been processes so far. It is worth noting that some of these words are
not part  of the text, like  honey, they are sort of inferences that readers make by means of their
semantic memory.

What is true for words is also true for propositions, which are subsets of sentences. For instance,
the previous text contains the following propositions:

– P1: sucking(bee,nectar,flower)
– P2: bring(bee,nectar,hive)
– P3: turn(nectar,honey)
– P4: for(P2,P3)

A proposition may also activates associates and can also be propagated as a key feature of the
overall meaning and occasionally ruled out if it becomes secondary. 

To sum up, each proposition is processed in turn. Inferences are gathered from semantic memory.
An integration of this new information and the previous one is realized in order to get a new state
of  working memory.  Figure 1 displays  the  flow of information  for  each proposition (episodic
memory will be presented later).

<insert Figure 1 about here>

A French translation of the previous example was simulated by our program (without taking into
account the predication algorithm and the episodic memory which will be presented in the next
sections),  using  the  previous  French  model  of  semantic  memory.  We now present  the  English
translation. The first proposition is sucking(bee,nectar,flower). It activates the following elements: 

insect, larva, fly, hive, honey, wasp, buzz, bouquet, violet, petal, gather, blossom.

Semantic  similarities  between all  pairs  of  words  are  then computed,  leading  to  a  big semantic
network.  The  most  relevant  elements  (the  most  coherent  with  all  others)  are  selected  by  the
integration  step.  The  working  memory  then  contains  the  following  elements  (as  well  as  their
activation values):

– sucking(bee,nectar,flower) 1.000
– bee   .903
– flower    .852
– hive     .778
– bouquet     .677
– buzz     .634
– honey     .615
– petal   .607
– wasp   .606
– violet   .605

The second group of propositions is then added to working memory. It is  bring(bee,nectar,hive)
and  turn(nectar,honey). Semantic  similarities  between  all  of  these  words  and  propositions  is
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computed. Since both propositions occur in the same input stream, a 1.0 link is created between the
last two propositions to represent their  strong connection in the text.  The first one activates the
following elements:

worker, hive, honey, wasp, buzz, fly
and the second one activates:

take, mineral, meaning, sugar, living, hive, bee, bear, bear cub, pheasant
Together with the previously activated elements, it leads to the following set of elements:

sucking(bee,nectar,flower), bee, flower, hive, bouquet, buzz, honey, petal, wasp, violet, bring
(bee,nectar,hive),  worker,  fly,  turn(nectar,  honey),  take,  mineral,  meaning  sugar,  living,
bear, bear cub, pheasant

The most activated elements from this set are selected. The working memory is then:
– sucking(bee,nectar,flower) 1.00
– bring(bee,nectar,hive) .997
– bee   .949
– hive   .868
– turn(nectar,honey)   .813
– honey   .805
– buzz   .612

The next set of propositions is considered, its elements and its associates are added to the working
memory, etc. After each new set of propositions is analyzed, working memory represents sort of a
synthesis of the information processed so far.

4  Episodic memory
We are now presenting a new structure: episodic memory. Prior elements that are removed from
working memory are meant to be no longer necessary but they are still kept in a specific memory
which  keeps  track  of  all  elements  that  once  appeared  in  working  memory.  They can  even  be
retrieved from working memory in  case  they become relevant  with respect  to the  text  content.
Elements are stored with an activation value which may vary over time, depending on whether they
appear again or not in working memory. A decay function tends to lower these values over time,
thus simulating a sort of forgetting mechanism.

4.1  From working memory to episodic memory

Episodic  memory  is  defined  by  means  of  three  functions,  whose  goal  is  to  determine  the
activation values (between 0 and 1). These functions are applied every time an element of working
memory is stored in episodic memory:
– the  first  one indicates  the  new value  of  a concept  that  did  not  exist  previously in  episodic

memory.  By  default,  the  new value  is  the  activation  value  of  the  concept  in  the  working
memory.

– the second one defines the new value of a concept that was already in episodic memory. In that
case, the new value should be higher than both existing values because of the conjunction of the
two memory traces. By default, the new value is valueWM + valueEM.(1 – valueWM).

– the third one is a decay function that indicates how to lower all activation values over time. By
default, all values are changed to 90% of their original values after each construction-integration
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cycle.

4.2  From episodic memory to working memory

During  the  construction  phase,  episodic  memory  can  also  provide  elements  that  are  added  to
working memory if  they are  close  to  the  text  elements  being processed.  This  is  similar  to  the
inference mechanism that gathered elements from semantic memory. 

The idea is that all episodic memory elements that are similar enough to a concept of the current
proposition and whose activation value is high enough are copied back into working memory. The
two thresholds that govern this collection of elements are obviously parameterizable. This would
be the case of a text that would present a topic X, then shifts to another topic Y which would lead
to the removal of concepts related to X in working memory, then goes back to topic X. The current
mechanism would then retrieve X-related concepts from episodic memory in order to simulate the
fact that concepts can be linked in a text although they do not necessarily follow each other.

At the end of the text processing, episodic memory contains all the propositions from the text as
well  an  indication  of  their  importance.  This  model  of  the  way the main  information  has  been
cognitively selected can be tested and compared to human data. In addition, since every state of
episodic memory is memorized by the program, the  evolution of activation values can be traced.
The decay function tend to decrease activation values of unused elements over time, but, when an
element appears once again in working memory, either because it occurs in the text or because it
was called back by a similar element, its activation value raises. Evolution of activation values in
episodic memory is not linear and depends on the propositions being processed. Once more, the
fact that this structure is automatically produced on any kind of text is valuable for researchers
willing to test and refine the model. Episodic memory is presented in Figure 1.

5  A Model of Predication
We now present an improvement on the previous models. When a word is processed, its neighbors
are activated from semantic memory, as we mentioned earlier. The same occurs for propositions:
neighbors  of  all  words  of the proposition should be activated. For instance, when you read the
sentence  “the  plane  flies  to  Paris”,  you  mentally  gather  associates  for  plane,  flies and  Paris.
However,  only  the  neighbors  of  the  predicate  that  are  associated  to  the  context  need  to  be
considered: you select associates like  airport or  sky, but not  escape or  fear because they are not
related to the arguments, although they are close neighbors of  fly. Kintsch (2001) shows that the
LSA  model  can  be  used  to  provide  a  good  semantic  representation  of  a  predicate-argument
expression, if the specific role of the predicate is taken into account.

The basic LSA representation does not make any distinction between A(B) and B(A) because the
compositionally just consists in adding vectors: the vector representing a set of words is just the
sum of the vectors of all words.  This child is a sportsman has the exact same representation than
This sportsman is a child, which in particular is a problem for dealing with metaphors (Kintsch,
2000). To solve that problem, Kintsch suggested to construct a network composed of the predicate,
the argument and a fixed number of neighbors of the predicate, and to apply the integration method
to select only the neighbors that are associated to the predicate. Kintsch (to appear) provides a little
illustrative  example with only three  neighbors. Suppose there are three  neighbors of run:  come,
hopped and  down. The sentence  the horse runs will lead to a network composed of  horse,  run,
come, hopped and down. Come will be the only neighbor that will be activated, because it is similar



to appear in Behavior Research Methods, Instruments and Computers

to both  horse and run. In the contrary, with the sentence  the color runs, only the neighbor  down
will be selected.

The representation of the predicate/argument expression is therefore not just predicate+argument
but  predicate+argument+neighbor1+...+neighborn.  We  are  not  interested  in  the  vector
representation, but rather in the neighbors. Kintsch's algorithm can be a good starting point for our
purpose. The problem is that this algorithm requires to set a number of neighbors beforehand: 20
for usual predicate-argument relations but up to 500 for some metaphors according to Kintsch's
experiments. Since the nature of the predicate-argument relation cannot be automatically stated, we
had to modify this predication algorithm to make it incremental (Lemaire & Bianco, 2003). It is
this  modified  version  which  is  included  in  the  comprehension  program  we  are  presenting.
Basically, if the input indicates which word is the predicate and which words are the arguments, the
predication algorithm is used. It scans all neighbors of  the predicate (using the model of semantic
memory described earlier) until it finds three (or any other value of that parameter) of them that are
similar enough (above a parameterizable threshold) to any of the arguments.

For instance, in our favorite French semantic space, the closest neighbors of the predicate voler
(to fly) are the following:

– ailes (wings)
– oiseau (bird)
– vole (flies)
– plumes (feather)
– oiseaux (birds)
– aigle (eagle)
– vol (flight)
– ...

When the input is voler(avion) (fly(plane)), the following words are selected because they are also
similar to plane: ailes(wings), vole(flies) and vol(flight). However, when the input is voler(oiseau)
(fly(bird), the selected words are: ailes(wings), vole(flies) and plumes(feather)ii. The last version of
the system includes this algorithm.

The associates  of  a proposition  are  therefore  the  associates  of  the  predicate  according  to this
algorithm,  as  well  as  the  associates  for  all  arguments.  For  instance,  the  proposition  fly(plane)
would activate wings, flies, flight but also pilot, take off and passengers. The proposition fly(bird)
would rather activate wings, flies, feather but also wings, bill and plumage.

6  A Full Example
We  will  now present  a  full  example.  Suppose  we  want  simulate  the  comprehension  of  the

following text:
Un bûcheron se promenait dans la forêt lorsqu'il vit une lumière. Des arbres brûlaient. Le

bûcheron but l'eau de sa gourde et la cracha sur le feu. Le feu s'éteignit.
whose translation is:

A woodcutter was walking in the forest when he noticed a light. Trees were burning. The
woodcutter drank water from his flask and  spitted on the fire. The fire went out.

Since we will illustrate the predication algorithm in this example, we need to split sentences into
propositions and indicate which word is the predicate. This cannot be done automatically for the
moment (however, the model can be run automatically if the predication algorithm is not used).
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Propositions are represented as sequences of words whose predicate is in first position. Inputs are
therefore:
1) walk/woodcutter/forest   notice/woodcutter/light
2) burn/trees
3) drink/woodcutter/water/flask spit/woodcutter/fire
4) go out/fire (go out is only one word in French)

The following is a translation of the output of the program:

*** SIMULATION OF TEXT COMPREHENSION (version 1.6.2) ***

Input? walk/woodcutter/forest notice/woodcutter/light
--------------------------
"walk/woodcutter/forest” added to working memory.
Looking for neighbors of walk:
   1. stroll (0.68) close to woodcutter and forest 
   2. meet (0.60) close to woodcutter and forest 
   3. pick (0.60) close to woodcutter and forest
woodcutter added to working memory. Looking for neighbors:
   1. ax (0.57)
   2. forest (0.53)
      firewood: too rare (.77 > .72)
   3. cottage (0.51)
forest added to working memory. Looking for neighbors:
   1. glade (0.77)
   2. oak (0.75)
   3. wood ( 0.74)
--------------------------
“notice/woodcutter/light” added to working memory.
Looking for neighbors of notice:
   1. objects (0.61) close to light 
   2. watch (0.57) close to light 
      commonly: too far from woodcutter and light
   3. area (0.56) close to light 
woodcutter added to working memory. Looking for neighbors:
   previously done
light added to working memory. Looking for neighbors:
   1. luminous (0.80)
   2. rays (0.78)
   3. shine (0.69) 
--------------------------
Constructing the 21x21 matrix...
Integrating... (9 cycles)

Activated  nodes:  walk/woodcutter/forest(1.00)  forest(.891)  stroll(.887)  oak
(.868) glade(.837) woodcutter(.816) wood(.772) notice/woodcutter/light(.770) pick
(.748)

Words like stroll, oak or glade are now part of working memory although they were not explicitly
mentioned in the sentence.  Unrelated words  like  objects or  shine were ruled out  from working
memory  since  their  activation  values  are  below  the  threshold. The  second  sentence  is  now
analyzed. As the reader will notice, episodic memory elements that are close to the current input
can be retrieved.

Input? burn/trees
"burn/trees” added to working memory.
   "rays" recoverable from episodic memory but too low (.450 < .75)
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   "light" recoverable from episodic memory but too low (.500 < .75)
   "ax" recoverable from episodic memory but too low (.533 < .75)
   "walk" recovered from episodic memory by “trees”. Added to WM.
   "oak" recovered from episodic memory by “trees”. Added to WM.
Looking for neighbors of burn:
      burns: too far from trees
      fire: too far from trees
      burning: too far from trees
   1. heat (0.56) close to trees
      extinguish: too far from trees
      steam: too far from trees
   2. flames (0.54) close to trees
   3. burned (0.53) close to trees 
trees added to working memory. Looking for neighbors:
   1. branches (0.90)
   2. trunks (0.87)
   3. leaves (0.82)
--------------------------
Constructing the 22x22 matrix...
Integrating... (6 cycles)
Activated  nodes:  burn/trees(1.00)  walk/woodcutter/forest(.981)  trees(.920)

forest(.900) trunks(.898) branches(.893) oak(.868) wood(.806) glade(.791) pick
(.766) leaves(.752)

Only  two propositions  are  kept  in  working  memory,  the  second one (notice/woodcutter/light)
disappeared. The third sentence is now analyzed.

Input ? drink/woodcutter/water/flask spit/woodcutter/fire
"drink/woodcutter/water/flask" added to working memory.
   "walk" recovered from episodic memory by “drink”. Added to WM.
   "stroll" recoverable from episodic memory but too low (.539 < .75)
   "ax" recoverable from episodic memory but too low (.480 < .75)
   "cottage” recoverable from episodic memory but too low (.474 < .75)
   "woodcutter" recovered from episodic memory by “flask”. Added to WM.
   "flames" recoverable from episodic memory but too low (.374 < .75)
Looking for neighbors of drink:
   1. drinks (0.74) close to water and flask
   2. hot (0.74) close to water and flask 
   3. drank (0.68) close to water and flask
woodcutter added to working memory. Looking for neighbors:
    1. ax (0.57)
   2. forest (0.53)
      firewood: too rare (.77 > .72)
   3. cottage (0.51)
water added to working memory. Looking for neighbors:
      shore: too rare (.94 > .72)
   1. drinkable (0.88)
      rat: too rare (.72 > .72)
   2. faucet (0.84)
   3. bucket (0.79)
flask added to working memory. Looking for neighbors:
      nibbling: too rare (.90 > .72)
   1. left (0.49)
   2. witch (0.49)
   3. potion (0.49)
--------------------------
“spit/woodcutter/fire” added to working memory.
   "burn" recoverable from episodic memory but too low (.424 < .75)
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   "heat" recoverable from episodic memory but too low (.291 < .75)
   "flames" recoverable from episodic memory but too low (.374 < .75)
   "walk" recovered from episodic memory by "woodcutter". Added to WM.
   "ax" recoverable from episodic memory but too low (.480 < .75)
   "burned" recoverable from episodic memory but too low (.411 < .75)
   "burn" recoverable from episodic memory but too low (.424 < .75)
Looking for neighbors of spit:
   1. inhale (0.65) close to fire
   2. lukewarm (0.63) close to fire 
      bleed: too far from woodcutter and fire
   3. spits (0.59) close to fire
woodcutter added to working memory. Looking for neighbors:
      previously done
fire added to working memory. Looking for neighbors:
   1. flames (0.71)
   2. burn (0.69)
   3. warm (0.65)
--------------------------
Constructing the 37x37 matrix...
Integrating... (8 cycles)
Activated nodes: walk/woodcutter/forest(1.00) drink/woodcutter/water/flask(.956)

forest(.908) wood(.903) oak(.887) drink(.876) woodcutter(.855) trunks(.855) pick
(.853)  flask(.847)  burn/trees(.840)  spit/woodcutter/fire(.834)  glade(.834)
branches(.796) trees(.789) walk(.789) bucket(.770) hot(.754) drinks(.711) potion
(.710) flames(.704) 

Four propositions and several related words (either being part of the text, like forest, or not, like
trees or flames) are in working memory. The last sentence is now analyzed.

Input? go out/fire
“go out/fire” added to working memory.
   "burn" recoverable from episodic memory but too low (.611 < .75)
   "shine" recoverable from episodic memory but too low (.311 < .75)
   "fire" recoverable from episodic memory but too low (.613 < .75)
   "burned" recoverable from episodic memory but too low (.370 < .75)
   "heat" recoverable from episodic memory but too low (.262 < .75)
   "warm" recoverable from episodic memory but too low (.546 < .75)
   "light" recoverable from episodic memory but too low (.405 < .75)
   "watch" recoverable from episodic memory but too low (.375 < .75)
   "spit" recoverable from episodic memory but too low (.617 < .75)
   "rays" recoverable from episodic memory but too low  (.365 < .75)
   "notice" recoverable from episodic memory but too low (.483 < .75)
   "ax" recovered from episodic memory. Added to WM.
Looking for neighbors of go out:
   1. light (0.64) close to fire
   fire: this word is already part of the proposition
   2. went out (0.56) close to fire
   3. flames(0.56) close to fire
fire added to working memory. Looking for neighbors:
   1. flames (0.71)
   2. burn (0.69)
   3. warm (0.65)
--------------------------
Constructing the 29x29 matrix...
Integrating... (7 cycles)
Activated  nodes:  walk/woodcutter/forest(1.00)  spit/woodcutter/fire(.867)
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burn/trees(.866) wood(.830) forest(.813) go out/fire(.807) oak(.803) woodcutter
(.749) trunks(.748) drink/woodcutter/water/flask(.740) glade(.727) branches(.703)
fire(.702) 

At the end of the text, working memory contains the five main propositions and several related
words.  The model works pretty well since all related words are really coherent with the context.
This is due to two factors: first, the semantic memory model (LSA) which mostly retrieves relevant
words and second, the integration module which rules out the possible remaining irrelevant words.

In addition to the last state of the working memory, our program provides the activation values of
all  words  and  propositions  for  each  cycle  (Table  2).  For  instance,  the  activation  value  of  the
proposition notice/woodcutter/light was .693 at the end of cycle 1, it increased to .750 at the end of
cycle  2,  then  decreased  afterwards.  This  data  compares  to  the  output  of  the  Landscape  model
(Linderholm, Virtue, Tzeng, & van den Broek, 2004) in which the activation value of concepts can
be traced from proposition to proposition. The main difference however is that our system is based
on a knowledge model (semantic memory): it can retrieve concepts that were not in the text and
can automatically draw connections between concepts based on their semantic similarities.

<insert table 2 about here>

7  Parameters
The program relies  on 19 parameters,  but  many simulations  have  allowed us  to  identify  good
default values for most of them. This section describes the most important parameters.

7.1  Word relevance

In LSA, weights are attached to words, in order to indicate the knowledge that LSA has about
words: this knowledge is dependent on the word frequency (LSA knows better words that occurred
frequently  in the corpus) and the context variability  (LSA knows better  words  that  occurred in
limited contexts than words that appeared in a large variety of contexts). Two parameters are used
to rule out words that are very frequent but  occur in a large number of contexts (like the or and)
and words that are too rare.

7.2  Construction phase 

The number of neighbors is a parameter. The semantic memory model can also be modified. LSA
is the default model but others like ICAN (Lemaire & Denhière, 2004) can be tested.

7.3  Concept selection in working memory

The selection of elements in working memory right after the integration phase can be done in
three ways:
– by selecting elements whose activation value is over a given value;
– by selecting the best N elements, N being a parameter;
– by selecting the best elements whose activation values add up to a given quantity of activation.

7.4  Episodic memory

The way episodic memory works is controlled by two parameters:
– the minimum association value for items being retrieved from episodic memory;
– the minimum semantic  similarity with the cue word for items being retrieved from episodic
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memory.

7.5  User selection, tracing

A parameter can be set for researchers willing to trace the program step by step. Another one can
be used to control the selection of neighbors by hand and rule out possible irrelevant items. This
can be used when simulating  comprehension for  a given  text  for  which the  researcher  already
knows some associated words.

8  Conclusion
This  computer  program  is  intended  to  help  psycholinguists  investigate  the  way  humans

comprehend texts in relation with their level of prior relevant knowledge, the situation models used
and the structure of texts processed (Baudet & Denhière, 1991 ;  Crook & Myers, 2004 ; Denhière
at al., to appear ; McNamara, Kintsch, Songer & Kintsch, 1996; Voss & Silfies, 1996 ; Zwaan &
Radvansky,  1998).  Researchers  willing  to  explore  the  assets  and  limits  of  the  construction-
integration model or to compare its performances with other models such as the “landscape model”
(Linderholm, Virtue, Tzeng, & van den Broek, 2004) or the “resonance model” (O’Brien, Rizzella,
Albrecht, & Halleran, 1998) can test it on various texts quite easily. 

One main interest of this program is its exhaustive model of semantic memory, which can provide
associates for any word of the language. Because of a lack of such a model, previous simulations
could only be ran on a very limited number of texts. Researchers had to guess a few words that
could be associated to all text words, resulting in small and subjective results. Kintsch (2000) and
Bellissens & Denhière (2003) proposed the connection between CI and LSA, but they did not link
them in an automatic manner. 

The main limit of our model is its lack of a propositional parser that would allow free text inputs.
To date,  propositions had to be extracted by hand. However, the model does not need an exact
description of propositions, the text just needs to be splitted into predicate-arguments items. If the
splitting is not correct, some irrelevant words could be retrieved, but they will be probably ruled
out  by  the  robust  integration  step.  We  are  however  in  the  process  of  designing  a  rough
propositional parser which would give us the missing link.

This program is freely available from the first author for researchers willing to use it for academic
purpose.
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Table 1: Mean cosine between inducing word and various
associated words for 9-year-old children

Words Mean cosine with inducing word

Best-ranked words .26

2nd best-ranked words .23

3rd best ranked-words .19

3 worst-ranked words .11
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Table 2: activation values of all words and propositions

Words Cycle

1 2 3 4

go out .000 .000 .000 .536

go out/fire .000 .000 .000 .726

burned .000 .000 .000 .397

area .288 .259 .234 .210

light .000 .000 .000 .559

notice .596 .536 .483 .434

notice/woodcutter/light .693 .750 .675 .608

trees .000 .828 .867 .863

inhale .000 .000 .543 .488

woodcutter .735 .806 .875 .872

drink .000 .000 .789 .815

drink/woodcutter/water/flask .000 .000 .860 .867

wood .695 .847 .887 .883

drinks .000 .000 .640 .715

burned .000 .411 .370 .333

burns .000 .000 .611 .778

burn .000 .424 .381 .343

burn/trees .000 .900 .886 .886

branches .000 .804 .864 .864

shine .384 .346 .311 .280

drank .000 .000 .577 .519

oak .781 .874 .887 .880

heat .000 .291 .262 .236

hot .000 .000 .679 .747
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Words Cycle

cottage .527 .474 .681 .612

glade .754 .854 .878 .870

spits .000 .000 .401 .361

spit .000 .000 .617 .555

spit/woodcutter/fire .000 .000 .750 .870

pick .674 .831 .878 .865

water .000 .000 .616 .555

fire .000 .000 .613 .796

leaves .000 .677 .799 .719

flames .000 .374 .733 .819

forest .802 .882 .890 .882

flask .000 .000 .762 .829

ax .533 .480 .754 .809

light .500 .450 .405 .365

luminous .402 .362 .325 .293

objects .317 .285 .257 .231

left .000 .000 .562 .505

potable .000 .000 .472 .425

potion .000 .000 .639 .732

stroll .599 .539 .485 .437

walk .798 .835 .869 .857

walk/woodcutter/forest .900 .898 .900 .900

warm .000 .000 .546 .711

rays .450 .405 .365 .328

watch .463 .416 .375 .337

meet .502 .452 .407 .366
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Words Cycle

faucet .000 .000 .562 .506

bucket .000 .000 .693 .758

witch .000 .000 .548 .494

lukewarm .000 .000 .594 .534

trunks .000 .808 .875 .872
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Figure 1: Flow of information of the comprehension model



i For the sake of readability, we are using the notions of working memory or episodic memory but we do not claim to

cover exactly the meaning of these concepts in the psycholinguistic literature. Because of computational requirements,

these notions are simplified compared to their theoretical counterparts.

ii oiseau(bird) is not considered because it is already part of the proposition.


