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Abstract

We consider a density estimation problem with a change-point. We develop an
adaptive wavelet estimator constructed from a block thresholding rule. Adopting
the minimax point of view under the L

p risk (with p ≥ 1) over Besov balls, we
prove that it is near optimal.
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1 MOTIVATIONS

The standard density estimation problem can be formulated as follows. Let
n ∈ N

∗ and (Xi)i∈{1,...,n} be an i.i.d. sample from a distribution with density
function f . The goal is to estimate the density function f based on the sample.
In the statistical literature, various estimation techniques have been studied.
We refer to the books of Devroye and Györfi [5], Silverman [13], Efromovich
[6], Härdle et al. [9] and Tsybakov [14].

In this paper, we consider a different density estimation problem inspired
from models for control charts (type Shewhart). Let n ∈ N

∗ and Tn ∈ N
∗.

Let (Xi,r)(i,r)∈{1,...,n}×{1,...,Tn} be independent random variables. For each r ∈
{1, ..., Tn}, (Xi,r)i∈{1,...,n} is an i.i.d. sample from a distribution with density
function fr. We suppose that there exists ηn ∈ {1, ..., Tn − 1} such that

• for any r ∈ {1, ..., ηn}, we have fr = f ,
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• for any r ∈ {ηn + 1, ..., Tn}, we have fr = h 6= f and E(X1,ηn) 6= E(X1,ηn+1).

The integer ηn and the function f are unknown. The goal is to estimate f
from (Xi,r)(i,r)∈{1,...,n}×{1,...,Tn}.

We make the two following assumptions.

(H1) We assume that limn→∞ n−1 log Tn = 0. Thus Tn and, a fortiori, ηn,
can be really greater than n.

(H2) We assume that, for any r ∈ {1, ..., Tn}, X1,r(Ω) = [0, 1] and that
there exists a known constant K > 0 such that supx∈[0,1] |f(x)| ≤ K < ∞.

To estimate f , one can only use the variables (Xi,1)i∈{1,...,n} and take a standard
density estimator (kernel, wavelets, ...). However, if we consider all the vari-
ables (Xi,r)(i,r)∈{1,...,n}×{1,...,ηn}, we gain informations on f . Its estimation can be
significantly improved. This motivates the construction of a plug-in estimator
of f described as follows. Firstly, we estimate ηn via (Xi,r)(i,r)∈{1,...,n}×{1,...,Tn}.
Let η̂n be the corresponding estimator. Then, we estimate f by a density es-
timator f̃n constructed from (Xi,r)(i,r)∈{1,...,n}×{1,...,η̂n}

. In this study, we adopt
the wavelet methodology. The considered estimator uses a L

p version of the
local block thresholding rule known under the name of BlockShrink. It has
been initially developed for the standard density estimation under L

2 risk by
Hall et al. [8, 7] and recently improved by Cai and Chicken [1]. The L

p version
of this thresholding rule, more general, has been introduced by Picard and
Tribouley [12].

To measure the performances of f̃n, we consider the minimax approach under
the L

p risk with p ≥ 1 (not only p = 2) over wide range of smoothness spaces:
the Besov balls. We aim to evaluate the smallest bound wn such that

sup
f∈Bs

π,r(M)
E

(
‖f̃n − f‖p

p

)
≤ wn,

where, for any m ∈ L
p([0, 1]), ‖m‖p

p =
∫ 1
0 |m(x)|pdx and Bs

π,r(M) is the Besov
ball (to be defined in Section 2). In this study, we prove that wn is of the form

wn = C(nηn)−α(log(nηn))β,

where C is a constant independent of f and n, α ∈]0, 1[, β ∈ [0, 1[ and α, β
only depend on s, π, r, s and p. It is near optimal in the minimax sense. The
proof is based on several auxiliary results including one proved by Chesneau
[3]. The originality of wn resides in the presence of ηn in its expression: more
ηn is large, more wn is small. This illustrates the fact that our estimator takes
into account all the pertinent observations for the estimation of f .

The rest of the paper is organized as follows. In Section 2, we present wavelets
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and Besov balls. The estimators are defined in Section 3. Section 4 is devoted
to the main result. The proofs are postponed in Section 5.

2 WAVELETS AND BESOV BALLS

We consider an orthonormal wavelet basis generated by dilations and transla-
tions of a compactly supported ”father” wavelet φ and a compactly supported
”mother” wavelet ψ. For the purposes of this paper, we use the periodized
wavelet bases on the unit interval. For any x ∈ [0, 1], any integer j and any
k ∈ {0, . . . , 2j − 1}, let φj,k(x) = 2j/2φ(2jx − k) and ψj,k(x) = 2j/2ψ(2jx − k)
be the elements of the wavelet basis and

φper
j,k (x) =

∑

l∈Z

φj,k(x − l), ψper
j,k (x) =

∑

l∈Z

ψj,k(x − l),

their periodized version. There exists an integer τ such that the collection ζ
defined by ζ = {φper

τ,k , k = 0, ..., 2τ − 1; ψper
j,k , j = τ, ...,∞, k = 0, ..., 2j − 1}

constitutes an orthonormal basis of L
2([0, 1]). In what follows, the superscript

”per” will be suppressed from the notations for convenience. For any integer
l ≥ τ , a function f ∈ L

2([0, 1]) can be expanded into a wavelet series as

f(x) =
2l−1∑

k=0

αl,kφl,k(x) +
∞∑

j=l

2j−1∑

k=0

βj,kψj,k(x), x ∈ [0, 1],

where αl,k =
∫ 1
0 f(t)φl,k(t)dt and βj,k =

∫ 1
0 f(t)ψj,k(t)dt. For further details

about wavelet bases on the unit interval, we refer to Cohen et al. [4].

Let us now define the Besov balls. Let M ∈ (0,∞), s ∈ (0,∞), π ∈ [1,∞] and
r ∈ [1,∞]. Let us set βτ−1,k = ατ,k. We say that a function f belongs to the
Besov balls Bs

π,r(M) if and only if there exists a constant M∗ > 0 such that
the associated wavelet coefficients satisfy




∞∑

j=τ−1


2j(s+1/2−1/π)




2j−1∑

k=0

|βj,k|π



1/π



r


1/r

≤ M∗.

For a particular choice of parameters s, π and r, these sets contain the Hölder
and Sobolev balls. See Meyer [10].

3 ESTIMATOR

For any κ > 0, set
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An(κ) =

{
r ∈ {1, ..., Tn};

∣∣∣∣∣

n∑

i=1

(Xi,r − Xi,r+1)

∣∣∣∣∣ ≥ κ
√

n log(nTn)

}
. (3.1)

We estimate ηn by the random integer

η̂n(κ) = minAn(κ). (3.2)

This estimator satisfies P (η̂n(κ) = ηn) ≥ 1 − 2ηn(nTn)−h(κ), where h(κ) =
κ2/(32 + 3−18κ). See Proposition 4.1 below. A suitable value for κ will be
specified later.

We are now in the position to describe the considered estimator of f . As
mentioned in Section 1, it can be viewed as a generalization of the L

p version
of the ”BlockShrink estimator” initially developed under L

2 risk by Hall et al.
[8, 7] and Cai and Chicken [1]. For its L

p form, see Picard and Tribouley [12].

Let p ≥ 1 and u ∈ {1, ..., Tn}. Let j1(u) and j2(u) be the integers defined
by j1(u) = ⌊((p ∨ 2)/2) log2(log(nu))⌋ and j2(u) = ⌊log2(nu/ log(nu))⌋. Here,
p ∨ 2 = max(p, 2) and the quantity ⌊a⌋ denotes the whole number part of
a. For any j ∈ {j1(u), ..., j2(u)}, set L(u) = ⌊(log(nu))(p∨2)/2⌋ and Aj(u) =
{1, ..., ⌊2jL(u)−1⌋}. For any K ∈ Aj(u), we consider the set

Uj,K(u) = {k ∈ {0, ..., 2j − 1}; (K − 1)L(u) ≤ k ≤ KL(u) − 1}.

For any u ∈ {1, ..., Tn}, we define f̂n(x; u), x ∈ [0, 1], by

f̂n(x; u) =
2j1(u)−1∑

k=0

α̂j1(u),k(u)φj1(u),k(x)

+
j2(u)∑

j=j1(u)

∑

K∈Aj(u)

∑

k∈Uj,K(u)

β̂j,k(u)1{̂bj,K(u)≥dn−1/2}ψj,k(x), (3.3)

where d is a constant independent of f and n, b̂j,K(u) = (L−1 ∑
k∈Uj,K(u) |β̂j,k(u)|p)1/p,

α̂j1(u),k(u) = (nu)−1
n∑

i=1

u∑

r=1

φj1(u),k(Xi,r), β̂j,k(u) = (nu)−1
n∑

i=1

u∑

r=1

ψj,k(Xi,r).

(3.4)

We finally consider the estimator

f̃n(x) = f̂n (x; η̂n(κ∗)) , (3.5)

where η̂n(κ∗) is defined by (3.2), κ∗ = t−1 (2p + 1) and t is the function defined
by t(x) = x2/(8 + 3−14x), x ∈ [0,∞[.
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Let us mention that f̃n does not require any a priori knowledge on f and ηn

in its construction. It is adaptive.

Remark. For any u ∈ {1, ..., Tn}, the sets Aj(u) and Uj,K(u) are chosen such
that ∪K∈Aj(u)Uj,K(u) = {0, ..., 2j − 1}, Uj,K(u) ∩ Uj,K′(u) = ∅ for any K 6= K ′

with K, K ′ ∈ Aj(u), and |Uj,K(u)| = L(u).

4 RESULTS

4.1 MAIN RESULT

Theorem 4.1 below determines the rates of convergence achieved by the esti-
mator f̃n under the L

p risk (with p ≥ 1) over Besov balls.

Theorem 4.1 Consider the density model described in Section 1 and the es-
timator f̃n defined by (3.5). Then there exists a constant C > 0 such that, for
any π ∈ [1,∞], r ∈ [1,∞], s ∈ (1/π,∞), and d and n large enough, we have

sup
f∈Bs

π,r(M)
E

(
‖f̃n − f‖p

p

)
≤ Cωn,

where

ωn =





(nηn)−α1p(log(nηn))α1p1{p>π} , when ǫ > 0,

((nηn)−1 log(nηn))α2p(log(nηn))(p−π/r)+1{ǫ=0} , when ǫ ≤ 0,

with α1 = s/(2s + 1), α2 = (s − 1/π + 1/p)/(2(s − 1/π) + 1) and ǫ = πs +
2−1(π − p).

Now, let us briefly discuss the optimal nature of ωn. Using standard lower
bound techniques, we can prove that there exists a constant c > 0 such that

inf
f̃

sup
f∈Bs

π,r(M)
E

(
‖f̃ − f‖p

p

)
≥ cvn,

where inf
f̃

denotes the infimum over all the possible estimators f̃ of f and

vn = (nηn)−α1p when ǫ > 0 and vn = ((nηn)−1 log(nηn))α2p when ǫ ≤ 0.
The proof is similar to the proof of the lower bound for the standard density
estimation problem with nηn i.i.d. variables. Further details can be found in
the book of Härdle et al. [9] (Section 10.4). Since ωn is equal to vn up to
logarithmic terms, it is near optimal in the minimax sense. Moreover, one can
show that it is better than those achieved by the conventional term-by-term
thresholding estimators (hard, soft,...). The main difference is for the case
{π ≥ p} where there is no extra logarithmic term.
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4.2 AUXILIARY RESULTS

The proof of Theorem 4.1 is based on several auxiliary results.

Statistical properties satisfied by the set An(κ) and the estimator η̂n(κ) are
presented in Proposition 4.1 below.

Proposition 4.1 Let κ > 0, An(κ) be defined by (3.1) and η̂n(κ) be defined
by (3.2). Then

• we have

P (ηn ∈ An(κ)) ≥ 1 − 2(nTn)−h(κ),

where h(κ) = κ2/(32 + 3−18κ).
• for any m ∈ {1, ..., Tn} − {ηn}, we have

P (m ∈ An(κ)) ≤ 2(nTn)−t(κ),

where t(κ) = κ2/(8 + 3−14κ).
• we have

P (η̂n(κ) = ηn) ≥ 1 − 2ηn(nTn)−h(κ),

where h(κ) = κ2/(32 + 3−18κ).

Proposition 4.2 below investigates the performances of the non adaptive esti-
mator f̂n(x; ηn) via the minimax approach under the L

p risk (with p ≥ 1) over
Besov balls.

Proposition 4.2 Consider the density model described in Section 1 and the
estimator f̂n(x; ηn) defined by (3.3). Then there exists a constant C > 0 such
that, for any π ∈ [1,∞], r ∈ [1,∞], s ∈ (1/π,∞), and d and n large enough,
we have

sup
f∈Bs

π,r(M)
E

(
‖f̂n(.; ηn) − f‖p

p

)
≤ Cωn,

where ωn is defined as in Theorem 4.1.

By definition of ηn, the variables (Xi,r)(i,r)∈{1,...,n}×{1,...ηn} are i.i.d. with proba-
bility density function f . By (H2), we have supx∈[0,1] |f(x)| ≤ K < ∞. There-
fore, the proof of Proposition 4.2 is similar to those of Chesneau [2, Theorem
4.1] with nηn i.i.d. variables (and the weight function w(x) = 1). It is a conse-
quence of a general result proved by Chesneau [3, Theorem 4.2]. The crucial
points are some statistical properties satisfied by the estimators α̂j,k(u) and

β̂j,k(u) defined by (3.4) (moment inequality and concentration inequality). For
the particular case p = 2, we refer to Cai and Chicken [1, Theorem 1].
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5 PROOFS

In this section, C denotes a positive constant which can take different values
for each mathematical term. It is independent of f and n.

Proof of Theorem 4.1. We have

E

(
‖f̃n − f‖p

p

)
=

Tn∑

u=1

E

(
‖f̂n(.; u) − f‖p

p1{η̂n(κ∗)=u}
)

= A + B, (5.1)

where

A = E

(
‖f̂n(.; ηn) − f‖p

p1{η̂n(κ∗)=ηn}
)

and

B =
∑

u∈{1,...,Tn}−{ηn}

E

(
‖f̂n(.; u) − f‖p

p1{η̂n(κ∗)=u}
)

.

The upper bound for A. It follows from Proposition 4.2 that, if f ∈ Bs
π,r(M),

A ≤ E

(
‖f̂n(.; ηn) − f‖p

p

)
≤ Cωn, (5.2)

where ωn is the desired rate of convergence.

The upper bound for B. By (H2), we have supx∈[0,1] |f(x)| ≤ K < ∞. Us-

ing the elementary inequalities : ‖f̂n(.; u) − f‖p
p ≤ (‖f̂n(.; u)‖p + ‖f‖p)

p ≤
2p−1(‖f̂n(.; u)‖p

p + ‖f‖p
p) ≤ 2p−1(‖f̂n(.; u)‖p

p + Kp), we obtain

B ≤ 2p−1
∑

u∈{1,...,Tn}−{ηn}

E

((
‖f̂n(.; u)‖p

p + Kp
)

1{η̂n(κ∗)=u}
)

. (5.3)

Since ‖φj,k‖p = ‖φ‖p2
j(1/2−1/p) and ‖ψj,k‖p = ‖ψ‖p2

j(1/2−1/p), the Minkowski
inequality yields

‖f̂n(.; u)‖p
p ≤

( 2j1(u)−1∑

k=0

∣∣∣α̂j1(u),k(u)
∣∣∣ ‖φj1(u),k‖p

+
j2(u)∑

j=j1(u)

∑

K∈Aj(u)

∑

k∈Uj,K(u)

∣∣∣β̂j,k(u)
∣∣∣ 1{̂bj,K(u)≥dn−1/2}‖ψj,k‖p

)p

≤C
( 2j1(Tn)−1∑

k=0

∣∣∣α̂j1(u),k(u)
∣∣∣ 2j1(Tn)(1/2−1/p) +

j2(Tn)∑

j=j1(1)

2j−1∑

k=0

∣∣∣β̂j,k(u)
∣∣∣ 2j(1/2−1/p)

)p

.

Since the wavelet basis is compactly supported, we have supx∈[0,1] |φj,k(x)| ≤
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‖φ‖∞2j/2 and supx∈[0,1] |ψj,k(x)| ≤ ‖ψ‖∞2j/2. It follows that
∣∣∣α̂j1(u),k(u)

∣∣∣ ≤
(nu)−1 ∑n

i=1

∑u
r=1

∣∣∣φj1(u),k(Xi,r)
∣∣∣ ≤ supx∈[0,1] |φj1(u),k(x)| ≤ C2j1(u)/2 ≤ C2j1(Tn)/2

and
∣∣∣β̂j,k(u)

∣∣∣ ≤ (nu)−1 ∑n
i=1

∑u
r=1 |ψj,k(Xi,r)| ≤ supx∈[0,1] |ψj,k(x)| ≤ C2j/2.

This yields

‖f̂n(.; u)‖p
p ≤C

(
2j1(Tn)(2−1/p) +

j2(Tn)∑

j=j1(1)

2j(2−1/p)
)p

≤ C2j2(Tn)(2p−1)

≤C(nTn)2p−1. (5.4)

Combining (5.3) and (5.4), and using the fact that, for any u ∈ {1, ..., Tn}, we
have {η̂n(κ∗) = u} ⊆ {u ∈ An(κ∗)}, we obtain

B ≤C(nTn)2p−1
∑

u∈{1,...,Tn}−{ηn}

P(η̂n(κ∗) = u)

≤C(nTn)2p sup
u∈{1,...,Tn}−{ηn}

P(u ∈ An(κ∗)).

The second point of Proposition 4.1 and the definition of κ∗ give

B ≤ C(nTn)2p(nTn)−t(κ∗) ≤ C(nTn)2p−t(κ∗) ≤ C(nTn)−1 ≤ Cωn, (5.5)

where ωn is the desired rate of convergence. Putting the inequalities (5.1),
(5.2) and (5.5) together, this completes the proof of Theorem 4.1.

✷

Proof of Proposition 4.1. First of all, let us present the Bernstein inequality.
See, for instance, Petrov [11].

Lemma 5.1 (Bernstein’s inequality) Let (Yi)i∈N∗ be independent random
variables such that, for any n ∈ N

∗ and any i ∈ {1, ..., n}, we have E(Yi) = 0
and |Yi| ≤ M < ∞. Then, for any λ > 0, and any n ∈ N

∗, we have

P

(∣∣∣∣∣

n∑

i=1

Yi

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
− λ2

2(d2
n + Mλ

3
)

)
,

where d2
n =

∑n
i=1 E(Y 2

i ).

• Proof of the first point. We have

P (ηn ∈ An(κ)) = P

(∣∣∣∣∣

n∑

i=1

(Xi,ηn − Xi,ηn+1)

∣∣∣∣∣ ≥ κ
√

n log(nTn)

)
.
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Set µn = E(X1,ηn) − E(X1,ηn+1). By definition of ηn, we have E(X1,ηn) 6=
E(X1,ηn+1). By (H1), we have limn→∞ n−1 log Tn = 0. Therefore, for a large

enough n, we have |µn| ≥ 2κ
√

n−1 log(nTn). Using the triangular inequal-

ity, we obtain the inclusion
{
|∑n

i=1 (Xi,ηn − Xi,ηn+1 − µn)| ≤ κ
√

n log(nTn)
}
⊆

{
|∑n

i=1(Xi,ηn − Xi,ηn+1)| ≥ κ
√

n log(nTn)
}
. It follows that

P (ηn ∈ An(κ))≥P

(∣∣∣∣∣

n∑

i=1

(Xi,ηn − Xi,ηn+1 − µn)

∣∣∣∣∣ ≤ κ
√

n log(nTn)

)

= 1 − P

(∣∣∣∣∣

n∑

i=1

(Xi,ηn − Xi,ηn+1 − µn)

∣∣∣∣∣ ≥ κ
√

n log(nTn)

)
.

(5.6)

By (H2), we have, for any i ∈ {1, ..., n}, Xi,ηn(Ω) = Xi,ηn+1(Ω) = [0, 1].
Therefore, for any i ∈ {1, ..., n}, |Xi,ηn − Xi,ηn+1 − µn| ≤ |Xi,ηn| + |Xi,ηn+1| +
E(|X1,ηn|) + E(|X1,ηn+1|) ≤ 4. Hence

∑n
i=1 E ((Xi,ηn − Xi,ηn+1 − µn)2) ≤ 16n.

The Bernstein inequality applied to the independent, uniformly bounded and
centered random variables (Xi,ηn − Xi,ηn+1 − µn)i∈{1,...,n} implies that

P

(∣∣∣∣∣

n∑

i=1

(Xi,ηn − Xi,ηn+1 − µn)

∣∣∣∣∣ ≥ κ
√

n log(nTn)

)

≤ 2 exp


−

(
κ

√
n log(nTn)

)2

2
(
16n +

4κ
√

n log(nTn)

3

)




= 2 exp


− κ2 log(nTn)

2
(
16 + 4κ

3

√
n−1 log(nTn)

)


 .

Since, by (H1), for n large enough, n−1 log(nTn) ≤ 1, we have

P

(∣∣∣∣∣

n∑

i=1

(Xi,ηn − Xi,ηn+1 − µn)

∣∣∣∣∣ ≥ κ
√

n log(nTn)

)
≤ 2(nTn)−h(κ),

(5.7)

where h(κ) = κ2/(32 + 3−18κ).

Putting (5.6) and (5.7) together, we obtain

P (ηn ∈ An(κ)) ≥ 1 − 2(nTn)−h(κ).

This proved the first point of Proposition 4.1.
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• Proof of the second point. We have, for any m ∈ {1, ..., Tn} − {ηn},

P (m ∈ An(κ)) = P

(∣∣∣∣∣

n∑

i=1

(Xi,m − Xi,m+1)

∣∣∣∣∣ ≥ κ
√

n log(nTn)

)
. (5.8)

By (H2), we have, for any i ∈ {1, ..., n} and any m ∈ {1, ..., Tn}, Xi,m(Ω) =
Xi,m+1(Ω) = [0, 1]. Therefore, for any i ∈ {1, ..., n} and any m ∈ {1, ..., Tn} −
{ηn}, |Xi,m − Xi,m+1| ≤ |Xi,m|+|Xi,m+1| ≤ 2. Hence

∑n
i=1 E ((Xi,m − Xi,m+1)

2) ≤
4n. The Bernstein inequality applied to the independent, uniformly bounded
and centered random variables (Xi,m − Xi,m+1)i∈{1,...,n} implies that

P

(∣∣∣∣∣

n∑

i=1

(Xi,m − Xi,m+1)

∣∣∣∣∣ ≥ κ
√

n log(nTn)

)

≤ 2 exp


−

(
κ

√
n log(nTn)

)2

2
(
4n +

2κ
√

n log(nTn)

3

)




= 2 exp


− κ2 log(nTn)

2
(
4 + 2κ

3

√
n−1 log(nTn)

)


 .

Since, by (H1), for n large enough, n−1 log(nTn) ≤ 1, we have

P

(∣∣∣∣∣

n∑

i=1

(Xi,m − Xi,m+1)

∣∣∣∣∣ ≥ κ
√

n log(nTn)

)
≤ 2(nTn)−t(κ), (5.9)

where t(κ) = κ2/(8 + 3−14κ).

It follows from (5.8) and (5.9) that, for any m ∈ {1, ..., Tn} − {ηn},

P (m ∈ An(κ)) ≤ 2(nTn)−t(κ).

• Proof of the third point. It follows from the Bonferroni inequality that

P (η̂n(κ) = ηn) = P

(
∩ηn−1

m=1 {m 6∈ An(κ)} ∩ {ηn ∈ An(κ)}
)

≥
ηn−1∑

m=1

P(m 6∈ An(κ)) + P(ηn ∈ An(κ)) − (ηn − 1).

The two first points give
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P (η̂n(κ) = ηn)

≥ (ηn − 1)(1 − 2(nTn)−t(κ)) + 1 − 2(nTn)−t(κ) − (ηn − 1)

= 1 − 2(ηn − 1)(nTn)−t(κ)) − 2(nTn)−h(κ) ≥ 1 − 2ηn(nTn)−h(κ).

This completes the proof of Proposition 4.1.

✷
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