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come    

Block thresholding for a density estimation problem

with a change-point

MOTIVATIONS

The standard density estimation problem can be formulated as follows. Let n ∈ N * and (X i ) i∈{1,...,n} be an i.i.d. sample from a distribution with density function f . The goal is to estimate the density function f based on the sample. In the statistical literature, various estimation techniques have been studied. We refer to the books of Devroye and Györfi [START_REF] Devroye | Nonparametric Density Estimation: The L 1 View[END_REF], Silverman [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF], Efromovich [START_REF] Efromovich | Nonparametric Curve Estimation: Methods, Theory and Applications[END_REF], Härdle et al. [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF] and Tsybakov [START_REF] Tsybakov | Introduction à l'estimation nonparamétrique[END_REF].

In this paper, we consider a different density estimation problem inspired from models for control charts (type Shewhart). Let n ∈ N * and T n ∈ N * . Let (X i,r ) (i,r)∈{1,...,n}×{1,...,T n } be independent random variables. For each r ∈ {1, ..., T n }, (X i,r ) i∈{1,...,n} is an i.i.d. sample from a distribution with density function f r . We suppose that there exists η n ∈ {1, ..., T n -1} such that

• for any r ∈ {1, ..., η n }, we have f r = f , Preprint submitted to Elsevier Science

• for any r ∈ {η n + 1, ..., T n }, we have f r = h = f and E(X 1,η n ) = E(X 1,η n +1 ).

The integer η n and the function f are unknown. The goal is to estimate f from (X i,r ) (i,r)∈{1,...,n}×{1,...,Tn} .

We make the two following assumptions.

(H1) We assume that lim n→∞ n -1 log T n = 0. Thus T n and, a fortiori, η n , can be really greater than n.

(H2) We assume that, for any r ∈ {1, ..., T n }, X 1,r (Ω) = [0, 1] and that there exists a known constant

K > 0 such that sup x∈[0,1] |f (x)| ≤ K < ∞.
To estimate f , one can only use the variables (X i,1 ) i∈{1,...,n} and take a standard density estimator (kernel, wavelets, ...). However, if we consider all the variables (X i,r ) (i,r)∈{1,...,n}×{1,...,ηn} , we gain informations on f . Its estimation can be significantly improved. This motivates the construction of a plug-in estimator of f described as follows. Firstly, we estimate η n via (X i,r ) (i,r)∈{1,...,n}×{1,...,T n } . Let η n be the corresponding estimator. Then, we estimate f by a density estimator f n constructed from (X i,r ) (i,r)∈{1,...,n}×{1,..., ηn} . In this study, we adopt the wavelet methodology. The considered estimator uses a L p version of the local block thresholding rule known under the name of BlockShrink. It has been initially developed for the standard density estimation under L 2 risk by Hall et al. [START_REF] Hall | On the minimax optimality of block thresholded wavelet estimators[END_REF][START_REF] Hall | Block thresholding rules for curve estimation using kernel and wavelet methods[END_REF] and recently improved by Cai and Chicken [START_REF] Cai | Block thresholding for density estimation: local and global adaptivity[END_REF]. The L p version of this thresholding rule, more general, has been introduced by Picard and Tribouley [START_REF] Picard | Adaptive confidence interval for pointwise curve estimation[END_REF].

To measure the performances of f n , we consider the minimax approach under the L p risk with p ≥ 1 (not only p = 2) over wide range of smoothness spaces: the Besov balls. We aim to evaluate the smallest bound w n such that sup

f ∈B s π,r (M ) E f n -f p p ≤ w n ,
where, for any m ∈ L p ([0, 1]), m p p = 1 0 |m(x)| p dx and B s π,r (M ) is the Besov ball (to be defined in Section 2). In this study, we prove that w n is of the form

w n = C(nη n ) -α (log(nη n )) β ,
where C is a constant independent of f and n, α ∈]0, 1[, β ∈ [0, 1[ and α, β only depend on s, π, r, s and p. It is near optimal in the minimax sense. The proof is based on several auxiliary results including one proved by Chesneau [START_REF] Chesneau | Wavelet estimation via block thresholding: A minimax study under the lp risk[END_REF]. The originality of w n resides in the presence of η n in its expression: more η n is large, more w n is small. This illustrates the fact that our estimator takes into account all the pertinent observations for the estimation of f . The rest of the paper is organized as follows. In Section 2, we present wavelets and Besov balls. The estimators are defined in Section 3. Section 4 is devoted to the main result. The proofs are postponed in Section 5.

WAVELETS AND BESOV BALLS

We consider an orthonormal wavelet basis generated by dilations and translations of a compactly supported "father" wavelet φ and a compactly supported "mother" wavelet ψ. For the purposes of this paper, we use the periodized wavelet bases on the unit interval. For any x ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2 j -1}, let φ j,k (x) = 2 j/2 φ(2 j xk) and ψ j,k (x) = 2 j/2 ψ(2 j xk) be the elements of the wavelet basis and

φ per j,k (x) = l∈Z φ j,k (x -l), ψ per j,k (x) = l∈Z ψ j,k (x -l),
their periodized version. There exists an integer τ such that the collection

ζ defined by ζ = {φ per τ,k , k = 0, ..., 2 τ -1; ψ per j,k , j = τ, ..., ∞, k = 0, ..., 2 j -1} constitutes an orthonormal basis of L 2 ([0, 1]).
In what follows, the superscript "per" will be suppressed from the notations for convenience. For any integer l ≥ τ , a function f ∈ L 2 ([0, 1]) can be expanded into a wavelet series as

f (x) = 2 l -1 k=0 α l,k φ l,k (x) + ∞ j=l 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where α l,k = 1 0 f (t)φ l,k (t)dt and β j,k = 1 0 f (t)ψ j,k (t)dt. For further details about wavelet bases on the unit interval, we refer to Cohen et al. [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF].

Let us now define the Besov balls. Let

M ∈ (0, ∞), s ∈ (0, ∞), π ∈ [1, ∞] and r ∈ [1, ∞]. Let us set β τ -1,k = α τ,k .
We say that a function f belongs to the Besov balls B s π,r (M ) if and only if there exists a constant M * > 0 such that the associated wavelet coefficients satisfy

   ∞ j=τ -1   2 j(s+1/2-1/π)   2 j -1 k=0 |β j,k | π   1/π    r    1/r ≤ M * .
For a particular choice of parameters s, π and r, these sets contain the Hölder and Sobolev balls. See Meyer [START_REF] Meyer | Wavelets and Operators[END_REF].

ESTIMATOR

For any κ > 0, set

A n (κ) = r ∈ {1, ..., T n }; n i=1 (X i,r -X i,r+1 ) ≥ κ n log(nT n ) . (3.1)
We estimate η n by the random integer

η n (κ) = min A n (κ). (3.2)
This estimator satisfies

P ( η n (κ) = η n ) ≥ 1 -2η n (nT n ) -h(κ)
, where h(κ) = κ 2 /(32 + 3 -1 8κ). See Proposition 4.1 below. A suitable value for κ will be specified later.

We are now in the position to describe the considered estimator of f . As mentioned in Section 1, it can be viewed as a generalization of the L p version of the "BlockShrink estimator" initially developed under L 2 risk by Hall et al. [START_REF] Hall | On the minimax optimality of block thresholded wavelet estimators[END_REF][START_REF] Hall | Block thresholding rules for curve estimation using kernel and wavelet methods[END_REF] and Cai and Chicken [START_REF] Cai | Block thresholding for density estimation: local and global adaptivity[END_REF]. For its L p form, see Picard and Tribouley [START_REF] Picard | Adaptive confidence interval for pointwise curve estimation[END_REF].

Let p ≥ 1 and u ∈ {1, ..., T n }. Let j 1 (u) and j 2 (u) be the integers defined by j 1 (u) = ⌊((p ∨ 2)/2) log 2 (log(nu))⌋ and j 2 (u) = ⌊log 2 (nu/ log(nu))⌋. Here, p ∨ 2 = max(p, 2) and the quantity ⌊a⌋ denotes the whole number part of a. For any j ∈ {j 1 (u), ..., j 2 (u)}, set L(u) = ⌊(log(nu)) (p∨2)/2 ⌋ and A j (u) = {1, ..., ⌊2 j L(u) -1 ⌋}. For any K ∈ A j (u), we consider the set

U j,K (u) = {k ∈ {0, ..., 2 j -1}; (K -1)L(u) ≤ k ≤ KL(u) -1}.
For any u ∈ {1, ..., T n }, we define f n (x; u), x ∈ [0, 1], by

f n (x; u) = 2 j 1 (u) -1 k=0 α j 1 (u),k (u)φ j 1 (u),k (x) + j 2 (u) j=j 1 (u) K∈A j (u) k∈U j,K (u) β j,k (u)1 { b j,K (u)≥dn -1/2 } ψ j,k (x), (3.3) 
where d is a constant independent of f and n, b j,K (u) = (L -1

k∈U j,K (u) | β j,k (u)| p ) 1/p , α j 1 (u),k (u) = (nu) -1 n i=1 u r=1 φ j 1 (u),k (X i,r ), β j,k (u) = (nu) -1 n i=1 u r=1 ψ j,k (X i,r ). (3.4)
We finally consider the estimator

f n (x) = f n (x; η n (κ * )) , (3.5) 
where η n (κ * ) is defined by (3.2), κ * = t -1 (2p + 1) and t is the function defined by t(x) = x 2 /(8

+ 3 -1 4x), x ∈ [0, ∞[.
Let us mention that f n does not require any a priori knowledge on f and η n in its construction. It is adaptive.

Remark. For any u ∈ {1, ..., T n }, the sets A j (u) and U j,K (u) are chosen such that ∪ K∈A j (u) U j,K (u) = {0, ..., 2 j -1}, U j,K (u) ∩ U j,K ′ (u) = ∅ for any K = K ′ with K, K ′ ∈ A j (u), and |U j,K (u)| = L(u).

RESULTS

MAIN RESULT

Theorem 4.1 below determines the rates of convergence achieved by the estimator f n under the L p risk (with p ≥ 1) over Besov balls.

Theorem 4.1 Consider the density model described in Section 1 and the estimator f n defined by (3.5). Then there exists a constant C > 0 such that, for

any π ∈ [1, ∞], r ∈ [1, ∞], s ∈ (1/π, ∞)
, and d and n large enough, we have

sup f ∈B s π,r (M ) E f n -f p p ≤ Cω n ,
where

ω n =    (nη n ) -α 1 p (log(nη n )) α 1 p1 {p>π} , when ǫ > 0, ((nη n ) -1 log(nη n )) α 2 p (log(nη n )) (p-π/r) + 1 {ǫ=0} , when ǫ ≤ 0,
with α 1 = s/(2s + 1), α 2 = (s -1/π + 1/p)/(2(s -1/π) + 1) and ǫ = πs + 2 -1 (πp). Now, let us briefly discuss the optimal nature of ω n . Using standard lower bound techniques, we can prove that there exists a constant c > 0 such that inf

f sup f ∈B s π,r (M ) E f -f p p ≥ cv n ,
where inf f denotes the infimum over all the possible estimators f of f and

v n = (nη n ) -α 1 p when ǫ > 0 and v n = ((nη n ) -1 log(nη n )) α 2 p when ǫ ≤ 0.
The proof is similar to the proof of the lower bound for the standard density estimation problem with nη n i.i.d. variables. Further details can be found in the book of Härdle et al. [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF] (Section 10.4). Since ω n is equal to v n up to logarithmic terms, it is near optimal in the minimax sense. Moreover, one can show that it is better than those achieved by the conventional term-by-term thresholding estimators (hard, soft,...). The main difference is for the case {π ≥ p} where there is no extra logarithmic term.

AUXILIARY RESULTS

The proof of Theorem 4.1 is based on several auxiliary results.

Statistical properties satisfied by the set A n (κ) and the estimator η n (κ) are presented in Proposition 4.1 below.

Proposition 4.1 Let κ > 0, A n (κ) be defined by (3.1) and η n (κ) be defined by (3.2). Then

• we have

P (η n ∈ A n (κ)) ≥ 1 -2(nT n ) -h(κ) ,
where h(κ) = κ 2 /(32 + 3 -1 8κ). • for any m ∈ {1, ..., T n } -{η n }, we have

P (m ∈ A n (κ)) ≤ 2(nT n ) -t(κ) ,
where t(κ) = κ 2 /(8 + 3 -1 4κ).

• we have

P ( η n (κ) = η n ) ≥ 1 -2η n (nT n ) -h(κ) ,
where h(κ) = κ 2 /(32 + 3 -1 8κ). Proposition 4.2 below investigates the performances of the non adaptive estimator f n (x; η n ) via the minimax approach under the L p risk (with p ≥ 1) over Besov balls. Proposition 4.2 Consider the density model described in Section 1 and the estimator f n (x; η n ) defined by (3.3). Then there exists a constant C > 0 such that, for any π ∈ [1, ∞], r ∈ [1, ∞], s ∈ (1/π, ∞), and d and n large enough, we have

sup f ∈B s π,r (M ) E f n (.; η n ) -f p p ≤ Cω n ,
where ω n is defined as in Theorem 4.1.

By definition of η n , the variables (X i,r ) (i,r)∈{1,...,n}×{1,...ηn} are i.i.d. with probability density function f . By (H2), we have sup 

x∈[0,1] |f (x)| ≤ K < ∞.

PROOFS

In this section, C denotes a positive constant which can take different values for each mathematical term. It is independent of f and n.

Proof of Theorem 4.1. We have

E f n -f p p = Tn u=1 E f n (.; u) -f p p 1 { ηn(κ * )=u} = A + B, (5.1) 
where

A = E f n (.; η n ) -f p p 1 { ηn(κ * )=ηn} and B = u∈{1,...,T n}-{ηn} E f n (.; u) -f p p 1 { ηn(κ * )=u} .
The upper bound for A. It follows from Proposition 4.2 that, if f ∈ B s π,r (M ),

A ≤ E f n (.; η n ) -f p p ≤ Cω n , (5.2) 
where ω n is the desired rate of convergence. Since φ j,k p = φ p 2 j(1/2-1/p) and ψ j,k p = ψ p 2 j(1/2-1/p) , the Minkowski inequality yields

f n (.; u) p p ≤ 2 j 1 (u) -1 k=0 α j 1 (u),k (u) φ j 1 (u),k p + j 2 (u) j=j 1 (u) K∈A j (u) k∈U j,K (u) β j,k (u) 1 { b j,K (u)≥dn -1/2 } ψ j,k p p ≤ C 2 j 1 (Tn) -1 k=0 α j 1 (u),k (u) 2 j 1 (T n )(1/2-1/p) + j 2 (Tn) j=j 1 (1) 2 j -1 k=0 β j,k (u) 2 j(1/2-1/p) p .
Since the wavelet basis is compactly supported, we have sup

x∈[0,1] |φ j,k (x)| ≤ Set µ n = E(X 1,η n ) -E(X 1,η n +1
). By definition of η n , we have E(X 1,η n ) = E(X 1,η n +1 ). By (H1), we have lim n→∞ n -1 log T n = 0. Therefore, for a large enough n, we have |µ n | ≥ 2κ n -1 log(nT n ). Using the triangular inequality, we obtain the inclusion

| n i=1 (X i,η n -X i,η n +1 -µ n )| ≤ κ n log(nT n ) ⊆ | n i=1 (X i,ηn -X i,ηn+1 )| ≥ κ n log(nT n ) . It follows that P (η n ∈ A n (κ)) ≥ P n i=1 (X i,ηn -X i,ηn+1 -µ n ) ≤ κ n log(nT n ) = 1 -P n i=1 (X i,ηn -X i,ηn+1 -µ n ) ≥ κ n log(nT n ) .
(5.6) By (H2), we have, for any i ∈ {1, ..., n}, X i,ηn

(Ω) = X i,ηn+1 (Ω) = [0, 1]. Therefore, for any i ∈ {1, ..., n}, |X i,ηn -X i,ηn+1 -µ n | ≤ |X i,ηn | + |X i,ηn+1 | + E(|X 1,ηn |) + E(|X 1,ηn+1 |) ≤ 4. Hence n i=1 E ((X i,ηn -X i,ηn+1 -µ n ) 2 ) ≤ 16n.
The Bernstein inequality applied to the independent, uniformly bounded and centered random variables (X i,ηn -X i,ηn+1µ n ) i∈{1,...,n} implies that

P n i=1 (X i,ηn -X i,ηn+1 -µ n ) ≥ κ n log(nT n ) ≤ 2 exp     - κ n log(nT n ) 2 2 16n + 4κ √ n log(nTn) 3     = 2 exp   - κ 2 log(nT n ) 2 16 + 4κ 3 n -1 log(nT n )    .
Since, by (H1), for n large enough, n -1 log(nT n ) ≤ 1, we have

P n i=1 (X i,ηn -X i,ηn+1 -µ n ) ≥ κ n log(nT n ) ≤ 2(nT n ) -h(κ) , (5.7) 
where h(κ) = κ 2 /(32 + 3 -1 8κ).

Putting (5.6) and (5.7) together, we obtain

P (η n ∈ A n (κ)) ≥ 1 -2(nT n ) -h(κ) .
This proved the first point of Proposition 4.1.

• Proof of the second point. We have, for any m ∈ {1, ..., T n } -{η n },

P (m ∈ A n (κ)) = P n i=1 (X i,m -X i,m+1 ) ≥ κ n log(nT n ) . (5.8) 
By (H2), we have, for any i ∈ {1, ..., n} and any m ∈ {1, ..., T n }, X i,m (Ω) = X i,m+1 (Ω) = [0, 1]. Therefore, for any i ∈ {1, ..., n} and any m ∈ {1, ..., T n } -{η n }, |X i,m -X i,m+1 | ≤ |X i,m |+|X i,m+1 | ≤ 2. Hence n i=1 E ((X i,m -X i,m+1 ) 2 ) ≤ 4n. The Bernstein inequality applied to the independent, uniformly bounded and centered random variables (X i,m -X i,m+1 ) i∈{1,...,n} implies that Since, by (H1), for n large enough, n -1 log(nT n ) ≤ 1, we have

P n i=1
(X i,m -X i,m+1 ) ≥ κ n log(nT n ) ≤ 2(nT n ) -t(κ) , (5.9)

where t(κ) = κ 2 /(8 + 3 -1 4κ).

It follows from (5.8) and (5.9) that, for any m ∈ {1, ..., T n } -{η n }, P (m ∈ A n (κ)) ≤ 2(nT n ) -t(κ) .

• Proof of the third point. It follows from the Bonferroni inequality that The two first points give

P ( η n (κ) = η n ) ≥ (η n -1)(1 -2(nT n ) -t(κ) ) + 1 -2(nT n ) -t(κ) -(η n -1) = 1 -2(η n -1)(nT n ) -t(κ) ) -2(nT n ) -h(κ) ≥ 1 -2η n (nT n ) -h(κ) .
This completes the proof of Proposition 4.1.

✷

  Therefore, the proof of Proposition 4.2 is similar to those of Chesneau [2, Theorem 4.1] with nη n i.i.d. variables (and the weight function w(x) = 1). It is a consequence of a general result proved by Chesneau[START_REF] Chesneau | Wavelet estimation via block thresholding: A minimax study under the lp risk[END_REF] Theorem 4.2]. The crucial points are some statistical properties satisfied by the estimators α j,k (u) and β j,k (u) defined by (3.4) (moment inequality and concentration inequality). For the particular case p = 2, we refer to Cai and Chicken [1,Theorem 1].

  i,m -X i,m+1 ) ≥ κ n log(nT n )

P- 1 m=1P

 1 ( η n (κ) = η n ) = P ∩ ηn-1 m=1 {m ∈ A n (κ)} ∩ {η n ∈ A n (κ)} ≥ ηn(m ∈ A n (κ)) + P(η n ∈ A n (κ)) -(η n -1).

  The upper bound for B. By (H2), we have supx∈[0,1] |f (x)| ≤ K < ∞. Using the elementary inequalities : f n (.; u)f p p ≤ ( f n (.; u) p + f p ) p ≤

	2 p-1 ( f n (.; u) p p + f p p ) ≤ 2 p-1 ( f n (.; u) p p + K p ), we obtain	
	B ≤ 2 p-1	u∈{1,...,Tn}-{ηn}	E	f n (.; u) p p + K p 1 { ηn(κ * )=u} .	(5.3)
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φ ∞ 2 j/2 and sup x∈[0,1] |ψ j,k (x)| ≤ ψ ∞ 2 j/2 . It follows that α j 1 (u),k (u) ≤

(5.4)

Combining (5.3) and (5.4), and using the fact that, for any u ∈ {1, ..., T n }, we have

The second point of Proposition 4.1 and the definition of κ * give

where ω n is the desired rate of convergence. Putting the inequalities (5.1), (5.2) and (5.5) together, this completes the proof of Theorem 4.1.

✷

Proof of Proposition 4.1. First of all, let us present the Bernstein inequality. See, for instance, Petrov [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF].

Lemma 5.1 (Bernstein's inequality) Let (Y i ) i∈N * be independent random variables such that, for any n ∈ N * and any i ∈ {1, ..., n}, we have E(Y i ) = 0 and |Y i | ≤ M < ∞. Then, for any λ > 0, and any n ∈ N * , we have

,

• Proof of the first point. We have

(X i,ηn -X i,ηn+1 ) ≥ κ n log(nT n ) .