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Cet article a pour but de montrer l'utilisation des réseaux bayésiens statiques et dynamiques dans le domaine de la localisation des défaillances (diagnostic) et de l'anticipation ou de la prédiction des éventuelles dégradations pouvant affecter un système dynamique. Dans le premier cas, les réseaux bayésiens statiques sont utilisés pour calculer les probabilités a posteriori de ou des causes les plus probables d'une anomalie observée (observation ou évidence). Dans le second cas, les réseaux bayésiens dynamiques sont utilisés pour tenir compte de la dynamique du système et permettre de prédire son comportement futur en fonction de son état actuel et d'autres variables ou contraintes exogènes.

ABSTRACT. This paper deals with fault diagnosis and prognosis in dynamic systems by using static and dynamic bayesian networks. In the first case, static bayesian networks are used to compute the a posteriori probabilities of the most probable causes of an observed abnormal situation on the system (called evidence or observation). In the second case, dynamic bayesian networks are used in order to take into account the system's dynamic and to predict its future behaviour according to its actual state and other exogeneous variables or constraints.

Introduction

La complexité de plus en plus croissante des systèmes industriels, ajoutée aux contraintes liées à la compétitivité et à la législation en vigueur en terme de respect de l'environnement, ont poussé les industriels et la communauté scientifique à chercher des solutions pouvant rendre ces systèmes plus performants, plus compétitifs et plus sûrs. L'un des points sur lesquels les travaux de recherche sont orientés est la maintenance conditionnelle dans laquelle sont menés des travaux sur le diagnostic et le pronostic de défaillances. Le diagnostic de défaillances des systèmes industriels a pour rôle de détecter et de localiser les défaillances qui surviennent sur le système et aussi d'identifier les causes de ces défaillances. Effectuer un diagnostic de défaillances sur un système donné c'est identifier le mode de fonctionnement dans lequel il se trouve. Les premières méthodes de diagnostic furent basées sur la redondance de matériels jugés critiques pour le fonctionnement du système. La redondance matérielle est très répandue dans les domaines où la sûreté de fonctionnement est cruciale pour la sécurité des personnes et de l'environnement, comme dans l'aéronautique ou le nucléaire. Les principaux inconvénients de la redondance matérielle sont liés aux coûts dus à la multiplication des éléments ainsi que l'encombrement et aux poids supplémentaires qu'elle génère. Le développement des calculateurs numériques permet aujourd'hui la mise en oeuvre, dans le milieu industriel, des méthodes modernes de l'automatique et de l'intelligence artificielle. Cette nouvelle approche permet d'éliminer en partie, voire même en totalité, la redondance matérielle pour le diagnostic des systèmes industriels. Globalement, on distingue deux approches de diagnostic [START_REF] Isermann | Model-based fault-detection and diagnosis -status and applications ))[END_REF], [START_REF] Isermann | Supervision : fault-detection and fault-diagnosis methods. An introduction ))[END_REF], [START_REF] Toscano | Commande et diagnostic des systèmes dynamiques[END_REF] : l'approche quantitative utilisant principalement des modèles analytiques (espace de parité, observateurs, estimation des paramètres, etc.), et l'approche qualitative faisant appel à des méthodes sans modèles analytiques (basées essentiellement sur les techniques de l'intelligence artificielle) [START_REF] Piechowiak | Intelligence artificielle et diagnostic ))[END_REF]. Dans la première approche, quantitative, il est indispensable d'avoir un modèle mathématique des phénomènes physiques qui s'y déroulent pour réaliser un diagnostic. La qualité des résultats obtenus dépend alors fortement de la qualité du modèle obtenu. Cependant, il es très difficile, voire même impossible dans certains cas, d'obtenir un modèle qui traduise fidèlement le comportement du système. La seconde approche, qualitative, est quant à elle exploite les données disponibles pour faire de l'apprentissage ou encore, l'expertise qu'on a du système pour construire des règles. Mais, dans le cas où la base de données est incomplète ou insignifiante, ou encore si plusieurs cas sont possibles (explosion combinatoire), ces méthodes deviennent difficilement applicables et peuvent conduire à des conclusions erronées. Dans le cas des systèmes complexes où des connaissances expertes sont disponibles, il est possible d'utiliser un outil graphique bien adapté : les réseaux bayésiens [START_REF] Pearl | Probabilistic reasoning in intelligent systems : Networks of plausible inference[END_REF], [START_REF] Naïm | Réseaux bayésiens[END_REF]. Ces derniers permettent de représenter graphiquement cette connaissance en tenant compte des incertitudes. Dans la première partie de cet article nous verrons comment les réseaux bayésiens statiques sont utilisés pour faire du diagnostic (de la localisation principalement) sur un moteur électrique à aimant permanent. Il s'agit principalement d'exploiter la structure graphique du modèle obtenu et d'utiliser les algorithmes d'in-férence existants pour calculer des probabilité a posteriori de l'état des composants du système suite à une ou plusieurs observations (appelées évidences). Contrairement au diagnostic, le pronostic de défaillances est un domaine de recherche relativement récent auquel la communauté scientifique commence à accorder une importance croissante. Plusieurs définitions du pronostic sont proposées dans la littérature. Ainsi, la norme ISO 13381-1 : 2004(ISO, 13381-1, 2004) définit le pronostic comme étant l'estimation de la durée de fonctionnement avant défaillance et du risque d'existence ou d'apparition ultérieure d'un ou de plusieurs modes de défaillance. Le rôle du processus de pronostic est alors d'estimer la probabilité qu'une défaillance survienne à un instant donné, ou encore de prédire le temps résiduel avant défaillance (communément appelé RUL pour Remaining Useful Life). Cela permet donc l'aide à la prise de décision et à la planification d'actions de maintenance pour éviter l'immobilisation du système et augmenter sa disponibilité et sa fiabilité. Les méthodes de pronostic peuvent être classées selon trois approches [START_REF] Byington | Prognostic Enhancements to diagnostic Systems for Improved Condition-based maintenance ))[END_REF] : le pronostic basé sur un modèle physique, le pronostic guidé par les données et le pronostic basé sur les données de retour d'expérience. Les méthodes à base de modèle physique de dégradation donnent des résultats précis (à condition de disposer d'un modèle précis) mais, en terme d'applicabilité, ces méthodes sont les moins répandues. En effet, obtenir le modèle de dégradation demande des moyens et coûte donc cher. De plus, le modèle obtenu est propre à un type de composant, matériau ou machine donné ; et ne peut donc pas être généralisé. Les méthodes utilisant des données capteurs ou opérateurs se situent au milieu de la pyramide (voir [START_REF] Byington | Prognostic Enhancements to diagnostic Systems for Improved Condition-based maintenance ))[END_REF]) en termes de précision, de coût et d'applicabilité. Dans la deuxième partie de cet article, nous proposons une procédure pour construire un modèle de pronostic pour des systèmes dynamiques en utilisant deux outils : les bond graphs (BG) [START_REF] Karnopp | Systems Dynamics : A Unified Approach[END_REF] et les Réseaux Bayésiens Dynamiques (RBD) [START_REF] Murphy | Dynamic Bayesian Networks : Representation, Inference and Learning[END_REF]. Les premiers sont utilisés pour représenter la dynamique du système et pour extraire le modèle analytique correspondant (fonction de transfert, représentation d'état), et les seconds permettent une représentation plus générale des connaissances qu'on a du système en intégrant des variables exogènes (actions de maintenance, avis d'experts, etc.). Le présent article est organisé comme suit : la section 2 est dédiée à l'utilisation des réseaux bayésiens statiques en diagnostic de défaillances, plus particulièrement une application sur la localisation de défaillances sur un moteur électrique à aimants permanents. Ensuite, à la section 3, nous présenterons une procédure pour construire un modèle de pronostic à partir d'une description physique d'un système donné. Cette procédure sera illustrée sur un exemple de système consistant en la suspension d'un quart de véhicule. Enfin, nous terminerons par une conclusion.

Diagnostic de défaillances par réseaux bayésiens statiques

Le but de cette section n'est pas de présenter toute la théorie de diagnostic par réseaux bayésiens statiques, mais plutôt de donner une application de ces derniers dans la localisation de défaillances pouvant survenir sur un moteur électrique synchrone à aimants permanents. Les lecteurs intéressés par l'aspect théorique peuvent consulter [START_REF] Sheppard | A Bayesian Approach to Diagnosis and Prognosis Using Built-In Test ))[END_REF] ou encore [START_REF] Mecharaoui | Bayesian based fault diagnosis : application to an electrical motor ))[END_REF].

Description du système

Un moteur synchrone à aimants permanents (voir figure 1) est composé principalement d'un rotor et d'un stator qui génère le mouvement de rotation transmis par l'arbre à la charge. Le stator est alimenté par un signal triphasé qui crée un champs rotatif. Grâce aux aimants permanents, le rotor tourne à la même vitesse que celle du champs rotatif crée par le stator.

Figure 1. Moteur synchrone à aimants permanents

L'objectif principal de cette application est de réaliser un diagnostic de défaillances sur le mouvement de rotation de l'arbre du moteur (on s'intéressera à la disponibilité ou non du mouvement de rotation).

Modélisation

Pour construire le réseau bayésien statique, qui sera utilisé dans l'étape de diagnostic, nous avons exploité une base de données fournie par un expert du système, qui inclue une décomposition fonctionnelle du moteur électrique dans son ensemble. A partir de cette base de données, nous avons extrait les relations causales qui existent entre les différents noeuds (représentant les composants) du graphe (étape qualitative de construction du modèle final) et ensuite, nous avons estimé les probabilités conditionnelles relatives à chacun des noeuds du graphe (étape quantitative). La décomposition fonctionnelle existante du moteur a été utilisée dans ce qui suit pour identifier les différents noeuds du modèle graphique correspondant ainsi que les relations causales qui existent entre eux. Après cette étape qualitative, nous avons procédé à la construction du réseau bayésien utilisé en diagnostic des éventuelles défaillances pouvant affecter les composants impliqués dans le mouvement de rotation de l'arbre (voir figure 2).

Une fois la structure graphique du réseau bayésien obtenue, nous l'avons quantifié en estimant les probabilités marginales a priori et les probabilités conditionnelles de [START_REF] Naïm | Réseaux bayésiens[END_REF]. Ces valeurs peuvent ensuite être modifiées en fonction de nouvelles observations ou des résultats de simulation. Les calculs sur le réseau bayésien de la figure 2 sont manuellement fastidieux à faire. Pour contourner cette difficulté, nous avons fait appel à l'utilisation du logiciel BayesiaLab pour calculer les probabilités jointes, marginales et conditionnelles. BayesiaLab est un logiciel adapté pour la modélisation, l'apprentissage et l'analyse des réseaux bayésiens. Cependant, il existe d'autres logiciels ou boîtes à outils qui traitent des réseaux bayésiens (BNT : Bayesian Networks Toolbox, Hugin, NETICA, etc.) et qui peuvent être utilisés avec succès.

Localisation de défaillances

Des simulations effectuées sur le modèle graphique final obtenu ont permis de localiser les défaillances pouvant survenir sur le système. Il s'agit de calculer les probabilité conditionnelles a posteriori pour chaque mode de chaque noeud du réseau. Dans ce qui suit, deux scénarios sont considérés : le mode de fonctionnement nominal et la présence d'une défaillance.

Mode de fonctionnement nominal :

Ce scénario correspond au mode de fonctionnement nominal du moteur (le mouvement de rotation est supposé disponible). Le réseau bayésien relatif à ce mode est donné à la figure 3.

Dans ce mode, étant donné qu'aucune anomalie n'est observée, la probabilité jointe du système complet est égale à 1. Des probabilités marginales sont calculées 3) montrent que la probabilité concernant la disponibilité du mouvement de rotation est de 92.71% et que celles du stator, du rotor et de l'arbre de transmission (mode OK) sont égales à 99.49%, 95.92% and 98.88% ; respectivement.

Localisation d'une défaillance :

Nous considérons dans ce scénario que le mouvement de rotation de l'arbre de rotation n'est pas disponible (P (M vtRot = N on) = 1). De plus, nous supposons qu'il existe un capteur qui permet de mesurer le spectre vibratoire (noeud SV sur le réseau de la figure 2). Dans le cas où de fortes vibrations sont détectées (observation ou évidence), la probabilité du noeud SV change et devient donc une certitude P (SV = Elevé) = 1. L'actualisation du réseau bayésien conduit à de nouveaux résultats de simulation donnés à la figure 4. Ces résultats montrent dans ce cas que le rotor serait la cause la plus probable du dysfonctionnement. En effet, de fortes vibrations peuvent causer d'une part, des dégradations au niveau des roulements et d'autre part, un mal positionnement des masses d'équilibre qui, à leur tour, causent la dégradation du rotor. Cela justifie donc la probabilité que le rotor soit la cause la plus probable de l'indisponibilité du mouvement de rotation (P (rotor =dégradé|M vtRot = N on, SV =Elevé) ≈ 0.87).

Pronostic de défaillances par RBDs

Introduction

Contrairement au diagnostic dont le rôle est de détecter et localiser des défaillances (après apparition), le pronostic a pour but de fournir une estimation sur la durée de vie résiduelle d'un système, composant ou machine. Il permet donc d'anticiper la défaillance pour mieux planifier les actions de maintenance. Dans cette section nous aborderons la notion de pronostic, les différentes approches existantes ainsi que l'utilisation des réseaux bayésiens dynamiques comme outil graphique permettant de construire un modèle de pronostic. Dans la littérature, plusieurs définitions ont été données à propos du pronostic [START_REF] Muller | Contribution à la maintenance prévisionnelle des systèmes de production par la formalisation d'un processus de pronostic[END_REF], [START_REF] Byington | Prognostic Enhancements to diagnostic Systems for Improved Condition-based maintenance ))[END_REF]. Cependant, une définition du pronostic industriel qui peut faire l'unanimité est celle donnée par la norme ISO 13381-1 : 2004 pour laquelle (( le pronostic correspond à l'estimation de la durée de fonctionnement avant défaillance et du risque d'existence ou d'apparition ultérieure d'un ou de plusieurs modes de défaillance )). En outre, le processus de pronostic est par nature entaché d'incertitude et doit être associé à une mesure de confiance. Ce dernier point a d'ailleurs été souligné par Provan [START_REF] Provan | Prognosis and condition-based monitoring : an open systems architecture ))[END_REF], selon lequel l'incertitude est centrale à toute définition du pronostic. Ceci s'explique par le fait que le pronostic implique une projection dans le future, et que toute future projection doit contenir quelques incertitudes, puisque le future ne peut être prédit avec certitude. En effet, le rôle principal d'un processus de pronostic est de déterminer la durée de vie résiduelle avant défaillance d'un composant ou d'un système, en fonction de son état actuel et du profil futur d'utilisation. Cette estimation dépend donc de plusieurs paramètres (conditions initiales, environnement d'exploitation, intervention de maintenance, etc.) et par conséquent, le résultat obtenu sur le RUL ne doit pas être une valeur absolue mais plutôt une distribution sur un intervalle donné. Les méthodes de pronostic peuvent être classées en trois catégories : les méthodes à base de modèle physique, les méthodes utilisant des données capteurs ou opérateurs, et enfin les méthodes à base de données de retour d'expérience. Pour plus de détails, les lecteurs peuvent se référer au livre écrit par [START_REF] Vachtsevanos | Intelligent Fault Diagnosis and Prognosis for Engineering Systems[END_REF]. Les méthodes basées sur un modèle physique supposent l'existence d'un modèle dynamique du système qui est fonction de la dégradation. Cette dernière peut être une variables continue dont l'évolution est déterminée par une loi déterministe ou stochastique. Ainsi, en simulant le comportement du système, représenté par un ensemble d'équations différentielles, on est capable de donner une estimation du RUL. Cela suppose bien évidement l'existence de méthodes de résolution de ces équations mais aussi la définition de seuils d'alarmes au delà desquels le système est supposé entrer dans un état de défaillance. L'avantage de ces méthodes réside dans la précision des résultats qu'elles fournissent. En effet, si on dispose d'un modèle mathématique de dégradation concernant un composant donné, il est plus facile d'estimer le RUL avec une certaine confiance. Leur inconvénient majeur est qu'il est d'une part, difficile et coûteux d'obtenir le modèle et d'autre part, chaque modèle est propre à une famille de composant ou de matériau (à noter que les modèles de dégradation développés jusqu'à présent s'appuient globalement sur des phénomènes de fatigue, d'usure ou encore de corrosion). Les méthodes à base de données reposent principalement sur l'exploitation des données fournies soit par les capteurs installés sur le système, soit par les différents opérateurs travaillant sur l'installation (observations, tests périodiques, vérifications, etc.). Ces méthodes sont basées sur l'exploitation de symptômes ou d'indicateurs de dégradations (valeur d'une grandeur physique comme la température par exemple, ou encore combinaison de plusieurs grandeurs physiques). L'évolution future de ces symptômes, réalisée par des techniques utilisant les outils de l'intelligence artificielle, des méthodes statistiques ou encore des estimateurs d'état, permet de calculer le temps restant avant l'apparition d'une défaillance (en admettant que les seuils des différents modes de fonctionnement du système sont préalablement définis). Les méthodes de cette approche de pronostic ont l'avantage de ne plus souffrir du manque de modèle analytique de la dégradation et sont donc plus simple à mettre en oeuvre que les méthodes à base de modèle physique de dégradation. Cependant, en terme de précision elles donnent des résultats moins précis que ceux la première approche. La troisième et dernière approche de pronostic est celle utilisant les données de retour d'expérience. Le principe de cette approche repose sur l'exploitation d'une fonction de fiabilité ou d'un processus stochastique de détérioration dont les paramètres sont déterminés à partir d'expertise ou de données de retour d'expérience. Ces méthodes sont faciles à mettre en oeuvre si l'on dispose d'un volume de données de retour d'expérience suffisant et fiable pour chaque type de machine, système ou composant. En effet, une fois les paramètres de la loi de fiabilité obtenus, on peut à tout instant calculer le taux de défaillance par exemple, et donc, en fonction des conditions limites fixées, déterminer le RUL. Cependant, ces méthodes sont les moins précises et souffrent du manque de données de retour d'expérience (données incomplètes ou quasiment inexistantes, durée longue pour les obtenir, etc.). De plus, les lois de fiabilité obtenues sont propres à chaque type ou famille de composant ou machine et ne peuvent pas donc être généralisée. Le choix des réseaux bayésiens dynamiques pour la construction d'un modèle de pronostic est justifié par la possibilité de représenter sur un même graphe la dynamique du système et des informations exogènes (avis d'experts, actions engagées, état actuel du système, etc.).

Procédure de pronostic de défaillances

Dans cette section nous présentons une procédure pour construire un modèle de pronostic de défaillances en partant d'un modèle physique d'un système dynamique. Cette procédure s'appuie sur deux outils de modélisation que sont : les bond graphs et les réseaux bayésiens dynamiques. Le couplage de ces deux outils est justifié par le fait que lorsqu'on est confronté aux systèmes dynamiques, on a besoin dans un premier temps de générer le modèle dynamique sous forme analytique (BGs), et ensuite pour les besoins du pronostic de défaillances utiliser les RBDs pour représenter, en plus de la dynamique du système, d'autres variables ou contraintes telle que la prise en compte de l'état actuel (modes de fonctionnements) ou encore les éventuelles actions de maintenance réalisées sur le système. La procédure de pronostic proposée dans cet article est réalisée en cinq étapes :

-générer le modèle BG en causalité intégrale, -générer les résidus à partir du modèle BG en causalité dérivée, -construire le Graphe Causal Temporelle (GCT) en utilisant le modèle BG en causalité intégrale, -générer le RBD en exploitant la structure graphique du GCT et les informations des résidus, -simuler le RBD obtenu pour estimer le comportement futur du système et pour fournir des métriques de pronostic.

Le modèle BG est obtenu à partir de la représentation physique du système dynamique, en représentant les transferts de puissance entre les différents éléments physiques le constituant [START_REF] Karnopp | Systems Dynamics : A Unified Approach[END_REF]. Le modèle mathématique correspondant au comportement dynamique du système peut alors être déduit du modèle BG en causalité intégrale sous forme de fonction de transfert ou d'une représentation d'état. Les résidus sont générés à partir du modèle BG en causalité dérivée. Cette forme de causalité est préférée dans ce cas pour deux principales raisons. D'abord, à l'instant de détection d'une défaillance, les conditions initiales ne sont pas toujours connues ; ce qui rend les calculs impossibles. Ensuite, dans la phase de localisation, on a une observation des effets (la ou les défaillances) et on essaie d'identifier les causes de ces anomalies. Ainsi, les relations de causalité sont tout simplement inversées. Le GCT est obtenu à partir du modèle BG en causalité intégrale [START_REF] Mosterman | Monitoring, prediction and fault isolation in dynamic physical systems )[END_REF]. Ce graphe est une représentation qui capture les relations dynamiques locales entre les variables, et qui fournit une représentation plus explicite des relations entre les paramètres et les variables de comportement du système [START_REF] Lerner | Bayesian Fault Detection and Diagnosis in Dynamic Systems )[END_REF]. Dans cette contribution, le GCT est utilisé pour construire le RBD. Un RBD est une extension des réseaux bayésiens statiques. Ils permettent de modéliser des distributions de probabilité sur des ensembles semi-infinis de variables aléatoires (U t , X t , Y t ) représentant les variables d'entrée, les états cachés et les sorties d'un modèle d'état [START_REF] Murphy | Dynamic Bayesian Networks : Representation, Inference and Learning[END_REF]. Les RBDs généralisent les filtres de Kalman et les chaînes de Markov (cachées et hiérarchiques). Leur utilisation permet de faire de la surveillance et de la prédiction de l'état futur du système dynamique. Dans notre cas, le RBD du système est généré à partir du GCT en appliquant la méthode proposée initialement par [START_REF] Lerner | Bayesian Fault Detection and Diagnosis in Dynamic Systems )[END_REF]. A l'étape de simulation, le RBD est paramétré en spécifiant les distributions de probabilité des différents noeuds qui le composent. Ensuite, l'utilisation d'algorithmes d'inférence déjà existants [START_REF] Murphy | Dynamic Bayesian Networks : Representation, Inference and Learning[END_REF]) permettra de simuler le comportement et l'état futur du système, et l'analyse des résultats obtenus peut conduire à des métriques pour le pronostic (estimation du RUL, confiance sur la valeur du RUL, etc.).

Application

Pour illustrer les étapes de la procédure proposée, on prend comme application un système physique, qui consiste en la suspension d'un quart de véhicule, et représenté à la figure 5 Le modèle BG précédemment construit est ensuite utilisé pour générer des indicateurs de défaillances (Relations de Redondance Analytique RRA, et résidus). Brièvement, une RRA est une contrainte reliant des variable connues (mesures, entrées, paramètres) ou estimées du système, tandis qu'un résidu est une évaluation numérique d'une RRA (pour plus de détails, voir (B. Ould Bouamama et al., 2006)). Les RRAs sont obtenues à partir du modèle BG en causalité dérivée préférentielle en suivant les étapes suivantes :

-mettre le modèle BG en causalité dérivée préférentielle, -écrire les équations aux jonctions du modèle obtenu, -éliminer les variables inconnues de chaque équation, -générer les RRAs, et en les évaluant, déduire les résidus correspondants.

L'élimination des variables inconnues est réalisée sur le modèle BG en causalité dérivée en parcourant les chemins causaux des mesures aux variables inconnues. Pour l'exemple considéré, deux résidus peuvent être générés (le système étant totalement observable et ne comportant pas de boucles causales ni algébro-différentielles). Ces résidus sont donnés par les équations suivantes :

r 1 = k dz dt -ω 1 + m d 2 ω 1 dt 2 -M d 2 ω 2 dt 2 [1] r 2 = K (ω 1 -ω 2 ) + M d 2 ω 2 dt 2 + b d (ω 1 -ω 2 ) dt [2]
A partir des résidus obtenus, la matrice de signature des défaillances du système quart de véhicule est construite directement en analysant la structure de chacun des résidus. Cette matrice est binaire, dont les lignes correspondent aux éventuelles défaillances des composants et des capteurs du système, et les colonnes les résidus. Une valeur (( 1 )) dans la matrice signifie qu'un résidu r i est sensible à la défaillance du composant correspondant (représenté par un ou plusieurs paramètres dans l'équation du résidu). Deux colonnes D b pour la détectabilité et I b pour la localisabilité (ou isolabilité) sont ajoutées à cette matrice (voir tableau 1). Une valeur (( 1 )) dans D b /I b signifie qu'une défaillance du composant physique correspondant est détectable/isolable. Dans cet exemple, les défaillances sont toutes détectables mais seules celles affectant la roue et l'amortisseur sont localisables.

Le GCT du système de suspension du quart de véhicule est donné à la figure 6. Ce graphe est obtenu à partir du modèle bond graph en causalité intégrale préférentielle de la figure 5(b) et sur lequel on a fait apparaître les variables généralisées effort (e i ) et flux (f i ). Deux types de relations sont représentés sur le GCT, à savoir : les relations algébriques (éléments résistance) et les relations différentielles (éléments C et I). Ces relations sont utilisées lors de la construction du RBD.

Le RBD du système est montré à la figure 7. Il est construit à partir du GCT en appliquant la méthode proposée dans [START_REF] Lerner | Bayesian Fault Detection and Diagnosis in Dynamic Systems )[END_REF] (en traduisant les diffé- Discussion : l'application de la procédure décrite à la section 3.2 a permis d'aboutir au RBD du système de suspension du quart de véhicule. Les paramètres de ce modèle sont ceux du système physique auxquels on peut ajouter des bruits pour tenir compte des erreurs de modélisation et des bruits de mesure. De plus, nous avons ajouté des noeuds dont l'état est fonction des valeurs prises par les résidus et donc pouvant renseigner sur l'état actuel du système (mode de fonctionnement nominal, dégradé, défaillante, etc.). La simulation de ce modèle final permet alors d'obtenir des valeurs sur le RUL et l'état futur du système. 

Conclusion

Le diagnostic peut se révéler intéressant pour des systèmes où l'occurrence d'une défaillance est sans conséquences graves sur la sécurité des personnes ou encore sur l'environnement. Il a pour rôle de détecter, de localiser et d'identifier les défaillances afin de prendre des actions adéquates pour la conduite du système (accommodation, reconfiguration, arrêt d'urgence, etc.). Cependant, pour les processus à risque ou tout simplement pour des soucis d'économie et de disponibilité, il serait plus intéressant d'anticiper la défaillance. Ceci est réalisé par le processus de pronostic qui permet, entre autres, d'estimer la durée résiduelle avant défaillance pour mieux planifier les actions de maintenance, augmenter la disponibilité et améliorer la fiabilité du système. Dans la première partie de cet article, les réseaux bayésiens statiques ont été utilisés pour localiser des défaillances sur un moteur à aimants permanents. L'utilisation de cet outil a permis de modéliser la connaissance fournie par un expert pour faire du diagnostic. Dans la seconde partie de l'article, une procédure pour construire un modèle de pronostic pour des systèmes dynamiques relativement simples a été proposée. Cette procédure repose sur le couplage de deux outils : les BGs et les RBDs. Les premiers sont utilisés pour modéliser les phénomènes physiques propres au système, et les seconds pour intégrer au modèle de comportement dynamique généré des connaissances exogènes telle que la prise en compte d'informations issues des résidus ou encore les bruits de modélisation et de mesure. La simulation du modèle graphique final construit peut être exploité pour fournir des indicateurs. Ces derniers peuvent être utilisés pour qualifier les performances futures du système et pour aider à la prise de décision concernant les éventuelles actions à entreprendre afin d'augmenter sa disponibilité et améliorer sa fiabilité.

Figure 2 .

 2 Figure 2. Réseau bayésien statique du système

Figure 3 .

 3 Figure 3. Scénario 1 : mode de fonctionnement nominal

Figure 4 .

 4 Figure 4. Scénario 3 : présence de défaillance

  (a). Ce système est extrait d'un cours de G. Dauphin Tanguy (Dauphin-Tanguy, 2001). Le schéma physique montre les différents phénomènes pris en compte : le profil de la route, la roue représentée par la masse m et le ressort de raideur k, le châssis représenté par la masse M , le ressort de raideur K et les frottements représentés par l'élément R de paramètre b. Le modèle BG en causalité intégrale de ce système est donné à la figure 5(b). Une analyse structurelle (ordre du système, commandabilité, observabilité, etc.) peut être réalisée directement sur le modèle BG obtenu sans utiliser de modèle mathématique. Sur le modèle de la figure 5(b) on peut distinguer des éléments qui stockent de l'énergie (éléments C et I) auxquels sont associés des variables d'état, des éléments qui dissipent de l'énergie (R), et des éléments qui sont des sources d'énergie (Se et Sf ). Le modèle BG en causalité intégrale permet de générer le modèle d'état du système et donc les matrices de transition, de commande et d'observation qui peuvent être utilisées lors de la construction du RBD.

Figure 5 .

 5 Figure 5. Système physique : (a) quart de véhicule, (b) modèle BG

Tableau 1 .Figure 6 .

 16 Figure 6. Graphe causal temporel du système

Figure 7 .

 7 Figure 7. Réseau bayésien dynamique du système
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