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1 IntrodutionInterating partile systems have attrated a lot of attention beause of their versatilemodelling power (see for instane [?, ?℄). However, most available results deal withtheir asymptoti behavior, and relatively few theorems desribe their transient regime.In partiular, entral limit theorems for random �elds have been available for a long time[?, ?, ?, ?, ?, ?, ?℄, di�usion approximations and invariane priniples have an even longerhistory ([?℄ and referenes therein), but those funtional entral limit theorems that de-sribe the transient behavior of an interating partile system are usually muh less generalthan their �xed-time ounterparts. Existing results (see [?, ?, ?, ?℄) require rather strin-gent hypotheses: spin �ip dynamis on Z, reversibility, exponential ergodiity, stationar-ity. . . (see Holley and Strook's disussion in the introdution of [?℄). The main objetive ofthis artile is to prove a funtional entral limit theorem for interating partile systems,under very mild hypotheses, using some new tehniques of weakly dependent random �elds.Our basi referene on interating partile systems is the textbook by Liggett [?℄, andwe shall try to keep our notations as lose to his as possible: S denotes the (ountable) setof sites, W the (�nite) set of states, X = W S the set of on�gurations, and {ηt , t ≥ 0} aninterating partile system, i.e. a Feller proess with values in X . If R is a �nite subsetof S, an empirial proess is de�ned by ounting how many sites of R are in eah possiblestate at time t. This empirial proess will be denoted by NR = {NR
t , t ≥ 0}, and de�nedas follows.

NR
t = (NR

t (w))w∈W , NR
t (w) =

∑

x∈R

Iw(ηt(x)) ,where Iw denotes the indiator funtion of state w. Thus NR
t is a N

W -valued stohastiproess, whih is not Markovian in general. Our goal is to show that, under suitablehypotheses, a properly saled version of NR onverges to a Gaussian proess as R inreasesto S. The hypotheses will be preised in setions 2 and 3 and the main result (Theorem4.1) will be stated and proved in setion 4. Here is a loose desription of our assumptions.Dealing with a sum of random variables, two hypotheses an be made for a entral limittheorem: weak dependene and idential distributions.1. Weak dependene: In order to give it a sense, one has to de�ne a distane betweensites, and therefore a graph struture. We shall �rst suppose that this (undireted)graph struture has bounded degree. We shall assume also �nite range interations:the on�guration an simultaneously hange only on a bounded set of sites, and itsvalue at one site an in�uene transition rates only up to a �xed distane (De�nition3.2). Then if f and g are two funtions whose dependene on the oordinates de-reases exponentially fast with the distane from two distant �nite sets R1 and R2, weshall prove that the ovariane between f(ηs) and g(ζt) deays exponentially fast inthe distane between R1 and R2 (Proposition 3.3). The entral limit theorem 4.1 willatually be proved in a muh narrower setting, that of group invariant dynamis on atransitive graph (De�nition 3.4). However we believe that a ovariane inequality forgeneral �nite range interating partile systems is of independent interest. Of ourse2



the bound of Proposition 3.3 is not uniform in time, without further assumptions.2. Idential distributions: In order to ensure that the indiator proesses {Iw(ηt(x)) , t ≥
0} are identially distributed, we shall assume that the set of sites S is endowedwith a transitive graph struture (see [?℄ as a general referene), and that both thetransition rates and the initial distribution are invariant by the automorphism groupation. This generalizes the notion of translation invariane, usually onsidered in
Z

d ([?℄ p. 36), and an be applied to non-lattie graphs suh as trees. Several reentartiles have shown the interest of studying random proesses on graph struturesmore general than Z
d latties: see e.g. [?, ?, ?℄, and for general referenes [?, ?℄.Among the potential appliations of our result, we hose to fous on the hitting time ofa presribed level by a linear ombination of the empirial proess. In [?℄, suh hittingtimes were onsidered in the appliation ontext of reliability. Indeed the sites in R an beviewed as omponents of a oherent system and their states as degradation levels. Thena linear ombination of the empirial proess is interpreted as the global degradation ofthe system, and by Theorem 4.1, it is asymptotially distributed as a di�usion proessif the number of omponents is large. An upper bound for the degradation level an bepresribed: the system is working as soon as the degradation is lower, and fails at thehitting time. More preisely, let f : w 7→ f(w) be a mapping from W to R. The totaldegradation is the real-valued proess DR = {DR

t , t ≥ 0}, de�ned by:
DR

t =
∑

w∈W

f(w)NR
t (w).If a is the presribed level, the failure time of the system will be de�ned as the randomvariable

TR
a = inf{t ≥ 0 , DR

t ≥ a }.Under suitable hypotheses, we shall prove that TR
a onverges weakly to a normal distri-bution, thus extending Theorem 1.1 of [?℄ to systems with dependent omponents. Inreliability (see [?℄ for a general referene), omponents of a oherent system are usuallyonsidered as independent. The reason seems to be mathematial onveniene rather thanrealisti modelling. Models with dependent omponents have been proposed in the settingof stohasti Petri nets [?, ?℄. Observing that a Markovian Petri net an also be interpretedas an interating partile system, we believe that the model studied here is versatile enoughto be used in pratial appliations.The paper is organized as follows. Some basi fats about interating partile systemsare �rst realled in setion 2. They are essentially those of setions I.3 and I.4 of [?℄,summarized here for sake of ompleteness, and in order to �x notations. The ovarianeinequality for �nite range interations and loal funtions will be given in setion 3. Ourmain result, Theorem 4.1, will be stated in setion 4. Some examples of transitive graphsare proposed in setion 5. The appliation to hitting times and their reliability interpre-tation is the objet of setion 6. In the proof of Theorem 4.1, we need a spatial CLT foran interating partile system at �xed time, i.e. a random �eld. We thought interesting to3



state it independently in setion 7: Proposition 7.1 is in the same vein as the one proved byBolthausen [?℄ on Z
d, but it uses a somewhat di�erent tehnique. All proofs are postponedto setion 8.2 Main notations and assumptionsIn order to �x notations, we brie�y reall the basi onstrution of general interatingpartile systems, desribed in setions I.3 and I.4 of Liggett's book [?℄.Let S be a ountable set of sites, W a �nite set of states, and X = W S the set ofon�gurations, endowed with its produt topology, that makes it a ompat set. One de�nesa Feller proess on X by speifying the loal transition rates: to a on�guration η and a�nite set of sites T is assoiated a nonnegative measure cT (η, ·) on W T . Loosely speaking,we want the on�guration to hange on T after an exponential time with parameter

cT,η =
∑

ζ∈W T

cT (η, ζ).After that time, the on�guration beomes equal to ζ on T , with probability cT (η, ζ)/cT,η.Let ηζ denote the new on�guration, whih is equal to ζ on T , and to η outside T . Thein�nitesimal generator should be:
Ωf(η) =

∑

T⊂S

∑

ζ∈W T

cT (η, ζ)(f(ηζ) − f(η)). (1)For Ω to generate a Feller semigroup ating on ontinuous funtions from X into R, somehypotheses have to be imposed on the transition rates cT (η, ·).The �rst ondition is that the mapping η 7→ cT (η, ·) should be ontinuous (and thusbounded, sine X is ompat). Let us denote by cT its supremum norm.
cT = sup

η∈X
cT,η.It is the maximal rate of hange of a on�guration on T . One essential hypothesis is thatthe maximal rate of hange of a on�guration at one given site is bounded.

B = sup
x∈S

∑

T∋ x

cT < ∞. (2)If f is a ontinuous funtion on X , one de�nes ∆f (x) as the degree of dependene of f on
x:

∆f (x) = sup{ |f(η) − f(ζ)| , η, ζ ∈ X and η(y) = ζ(y) ∀ y 6= x }.Sine f is ontinuous, ∆f(x) tends to 0 as x tends to in�nity, and f is said to be smoothif ∆f is summable:
|||f ||| =

∑

x∈S

∆f (x) < ∞.4



It an be proved that if f is smooth, then Ωf de�ned by (1) is indeed a ontinuous funtionon X and moreover:
‖Ωf‖ ≤ B|||f |||.We also need to ontrol the dependene of the transition rates on the on�guration at othersites. If y ∈ S is a site, and T ⊂ S is a �nite set of sites, one de�nes

cT (y) = sup{ ‖cT (η1, · ) − cT (η2, · )‖tv , η1(z) = η2(z) ∀ z 6= y },where ‖ · ‖tv is the total variation norm:
‖cT (η1, · ) − cT (η2, · )‖tv =

1

2

∑

ζ∈W T

|cT (η1, ζ) − cT (η2, ζ)|.If x and y are two sites suh that x 6= y, the in�uene of y on x is de�ned as:
γ(x, y) =

∑

T ∋ x

cT (y).We will set γ(x, x) = 0 for all x. The in�uenes γ(x, y) are assumed to be summable:
M = sup

x∈S

∑

y∈S

γ(x, y) < ∞. (3)Under both hypotheses (2) and (3), it an be proved that the losure of Ω generates aFeller semigroup {St , t ≥ 0} (Theorem 3.9 p. 27 of [?℄). A generi proess with semigroup
{St , t ≥ 0} will be denoted by {ηt , t ≥ 0}. Expetations relative to its distribution,starting from η0 = η will be denoted by Eη. For eah ontinuous funtion f , one has:

Stf(η) = Eη[f(ηt)] = E[f(ηt) | η0 = η].Assume now that W is ordered, (say W = {1, . . . , n}). Let M denote the lass of allontinuous funtions on X whih are monotone in the sense that f(η) ≤ f(ξ) whenever
η ≤ ξ. As it was notied by Liggett (1985) it is essential to take advantage of monotoniityin order to prove limit theorems for partile systems. The following theorems disuss anumber of ideas related to monotoniity.Theorem 2.1 (Theorem 2.2 Liggett, (1985)) Suppose ηt is a Feller proess on X withsemigroup S(t). The following statement are equivalent :(a) f ∈ M implies S(t)f ∈ M, for all t ≥ 0(b) µ1 ≤ µ2 implies µ1S(t) ≤ µ2S(t) for all t ≥ 0.Reall that µ1 ≤ µ2 provided that ∫ fdµ1 ≤

∫

fdµ2 for any f ∈ M.De�nition 2.2 A Feller proess is said to be monotone (or attrative) if the equivalentonditions of Theorem 2.1 are satis�ed. 5



Theorem 2.3 (Theorem 2.14 Liggett, (1985)) Suppose that S(t) and Ω are respe-tively the semigroup and the generator of a monotone Feller proess on X. Assumefurther that Ω is a bounded operator. Then the following two statements are equivalent:(a) Ωfg ≥ fΩg + gΩf , for all f , g ∈ M(b) µS(t) has positive orrelations whenever µ does.Reall that µ has positive orrelation if ∫ fgdµ ≥
(∫

fdµ
) (∫

gdµ
) for any f, g ∈ M.The following orollary gives onditions under whih the positive orrelation property on-tinue to hold at later times if it holds initially.Corollary 2.4 [Corollary 2.21 Liggett, (1985)℄ Suppose that the assumptions of Theorem2.3 are satis�ed and that the equivalent onditions of Theorem 2.3 hold. Let ηt be theorresponding proess, where the distribution of η0 has positive orrelations. Then for

t1 < t2 < · · · < tn the joint distribution of (ηt1 , · · · , ηtn), whih is a probability measure on
Xn, has positive orrelations.3 Covariane inequalityThis setion is devoted to the ovariane of f(ηs) and g(ηt) for a �nite range interatingpartile system when the underlying graph struture has bounded degree. Proposition 3.3shows that if f and g are mainly loated on two �nite sets R1 and R2, then the ovarianeof f and g deays exponentially in the distane between R1 and R2.From now on, we assume that the set of sites S is endowed with an undireted graphstruture, and we denote by d the natural distane on the graph. We will assume notonly that the graph is loally �nite, but also that the degree of eah vertex is uniformlybounded.

∀x ∈ S , |{y ∈ S , d(x, y) = 1}| ≤ r ,where | · | denotes the ardinality of a �nite set. Thus the size of the sphere or ball withenter x and radius n is uniformly bounded in x, and inreases at most geometrially in n.
|{y ∈ S , d(x, y) = n}| ≤ r

r − 1
(r−1)n and |{y ∈ S , d(x, y) ≤ n}| ≤ r

r − 2
(r−1)n.Let R be a �nite subset of S. We shall use the following upper bounds for the number ofverties at distane n, or at most n from R.

|{x ∈ S , d(x, R) = n}| ≤ |{y ∈ S , d(x, R) ≤ n}| ≤ 2|R|enρ , (4)with ρ = log(r − 1).In the ase of an amenable graph (e.g. a lattie on Z
d), the ball sizes have a subexpo-nential growth. Therefore, for all ε > 0, there exists c suh that :

|{x ∈ S , d(x, R) = n}| ≤ |{y ∈ S , d(x, R) ≤ n}| ≤ cenε.6



What follows is written in the general ase, using (4). It applies to the amenable asereplaing ρ by ε, for any ε > 0.We are going to deal with smooth funtions, depending weakly on oordinates awayfrom a �xed �nite set R. Indeed, it is not su�ient to onsider funtions depending onlyon oordinates in R, beause if f is suh a funtion, then for any t > 0, Stf may dependon all oordinates.De�nition 3.1 Let f be a funtion from S into R, and R be a �nite subset of S. Thefuntion f is said to be mainly loated on R if there exists two onstants α and β > ρ suhthat α > 0, β > ρ and for all x ∈ R:
∆f(x) ≤ αe−βd(x,R). (5)Sine β > ρ, the sum ∑

x ∆f (x) is �nite. Therefore a funtion mainly loated on a �niteset is neessarily smooth.The system we are onsidering will be supposed to have �nite range interations in thefollowing sense (f. De�nition 4.17, p. 39 of [?℄).De�nition 3.2 A partile system de�ned by the rates cT (η, ·) is said to have �nite rangeinterations if there exists k > 0 suh that if d(x, y) > k:1. cT = 0 for all T ontaining both x and y ,2. γ(x, y) = 0.The �rst ondition imposes that two oordinates annot simultaneously hange if theirdistane is larger than k. The seond one says that the in�uene of a site on the transitionrates of another site annot be felt beyond distane k.Under these onditions, we prove the following ovariane inequality.Proposition 3.3 Assume (2) and (3). Assume moreover that the proess is of �nite range.Let R1 and R2 be two �nite subsets of S. Let β be a onstant suh that β > ρ. Let f and
g be two funtions mainly loated on R1 and R2, in the sense that there exist positiveonstants κf , κg suh that,

∆f(x) ≤ κfe
−βd(x,R1) and ∆g(x) ≤ κge

−βd(x,R2).Then for all positive reals s, t,
sup
η∈X

∣

∣

∣
Covη(f(ηs), g(ηt))

∣

∣

∣
≤ Cκfκg(|R1| ∧ |R2|)eD(t+s)e−(β−ρ)d(R1,R2) , (6)where

D = 2Me(β+ρ)k and C =
2Beβk

D

(

1 +
eρk

1 − e−β+ρ

)

.7



Remark. Shashkin [?℄ obtains a similar inequality for random �elds indexed by Z
d.We now onsider a transitive graph, suh that the group of automorphism ats transi-tively on S (see hapter 3 of [?℄). Namely we need that

• for any x and y in S there exists a in Aut(S), suh that a(x) = y.
• for any x and y in S and any radius n, there exists a in Aut(S), suh that a(B(x, n)) =

B(y, n).Any element a of the automorphism group ats on on�gurations, funtions and measureson X as follows:
• on�gurations: a · η(x) = η(a−1(x)),
• funtions: a · f(η) = f(a · η),
• measures: ∫ f d(a · µ) =

∫

(a · f) dµ.A probability measure µ on X is invariant through the group ation if a · µ = µ for anyautomorphism a, and we want this to hold for the probability distribution of ηt at all times
t. It will be the ase if the transition rates are also invariant through the group ation.In order to avoid onfusions with invariane in the sense of the semigroup (De�nition 1.7,p. 10 of [?℄), invariane through the ation of the automorphism group of the graph willbe systematially referred to as �group invariane� in the sequel.De�nition 3.4 Let G be the automorphism group of the graph. The transition rates
cT (η, ·) are said to be group invariant if for any a ∈ G,

ca(T )(a · η, a · ζ) = cT (η, ζ).This de�nition extends in an obvious way that of translation invariane on Z
d-latties ([?℄,p. 36).Remark. Observe that for rates whih are both �nite range and group invariant, thehypotheses (2) and (3) are trivially satis�ed. In that ase, it is easy to hek that thesemi-group {St , t ≥ 0} ommutes with the automorphism group. Thus if µ is a groupinvariant measure, then so is µSt for any t (see [?℄, p. 38). In other terms, if the distributionof η0 is group invariant, then that of ηt will remain group invariant at all times.4 Funtional CLTOur funtional entral limit theorem requires that all oordinates of the interating partilesystem {ηt , t ≥ 0} are identially distributed.8



Let (Bn)n≥1 be an inreasing sequene of �nite subsets of S suh that
S =

∞
⋃

n=1

Bn, lim
n→+∞

|∂Bn|
|Bn|

= 0 , (7)reall that | · | denotes the ardinality and ∂Bn = {x ∈ Bn , ∃ y 6∈ Bn, d(x, y) = 1}.Theorem 4.1 Let µ = δη be a Dira measure where η ∈ X ful�lls η(x) = η(y) for any
x, y ∈ S. Suppose that the transition rates are group invariant. Suppose moreover that theproess is of �nite range, monotone and ful�lling the requirements of Corollary 2.4. Let
(Bn)n≥1 be an inreasing sequene of �nite subsets of S ful�lling (7). Then the sequeneof proesses

{

NBn
t − EµNBn

t
√

|Bn|
, t ≥ 0

}

, for n = 1, 2, . . .onverges in D([0, T ]) as n tends to in�nity, to a entered Gaussian, vetor valued proess
(B(t, w))t≥ 0, w∈W with ovariane funtion Γ de�ned, for w, w′ ∈ W , by

Γµ(s, t)(w, w′) =
∑

x∈S

Covµ (Iw(ηs(x)), Iw′(ηt(x))) .Remark. One may wonder wether suh results an extend under more general initialdistributions. The point is that the ovariane inequality do not extend simply by inte-gration with respet to deterministi on�gurations. We are thankful to Pr. Penrose forstressing our attention on this important restrition. Monotoniity allows to get ride ofthis restrition.5 Examples of graphsBesides the lassial lattie graphs in Z
d and their groups of translations, whih are on-sidered by most authors (see [?, ?, ?℄), our setting applies to a broad range of graphs. Wepropose some simple examples of automorphisms on trees, whih give rise to a large varietyof non lassial situations.The simplest example orresponds to regular trees de�ned as follows. Consider thenon-ommutative free group S with �nite generator set G. Impose that eah generator gis its own inverse (g2 = 1). Now onsider S as a graph, suh that x and y are onnetedif and only if there exists g ∈ G suh that x = yg. Note that S is a regular tree of degreeequal to the ardinality r of G. The size of spheres is exponential: |{y , d(x, y) = n}| = rn.Now onsider the group ation of S on itself: x ·y = xy: this ation is transitive on S (take

a = yx).From this basi example it is possible to get a large lass of graphs by adding relationsbetween generators; for example take the tree of degree 4, denote by a, b, c, and d the9



generators, and add the relation ab = c. Then, the orresponding graph is a regular treeof degree 4 were nodes are replaed by tetrahedrons. The spheres do not grow at rate 4n:
|{y , d(x, y) = n}| = 4 · 3n/2 if n is even and |{y , d(x, y) = n}| = 6 · 3(n−1)/2 if n is odd.
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Figure 1: Graph struture of the tree with tetrahedron ells. The graph onsists in aregular tree of degree 4 (bold lines), where nodes have been replaed by tetrahedrons.Automorphisms in this graph orrespond to omposition of automorphisms exhangingouples of branhes of the tree (ation of generator a for example) and displaements inthe subjaent regular tree.6 CLT for hitting timesIn this setion we onsider the ase where W is ordered, the proess is monotone andsatis�es the assumptions in Theorem 4.1, the initial ondition is �xed and f is an inreasingfuntion fromW to R. In the reliability interpretation, f(w)measures a level of degradationfor a omponent in state w. The total degradation of the system in state η will be measuredby the sum ∑

x∈Bn
f(η(x)). So we shall fous on the proess D(n) = {D(n)

t , t ≥ 0}, where
D

(n)
t = DBn

t is the total degradation of the system at time t on the set R = Bn:
D

(n)
t =

∑

x∈Bn

f(ηt(x)).It is natural to onsider the instants at whih D
(n)
t reahes a presribed level of degradation.Let k = (k(n)) be a sequene of real numbers. Our main objet is the failure time Tn,de�ned as:

Tn = inf{t ≥ 0 , D
(n)
t ≥ k(n)}.10



In the partiular ase where W = {working, failed} (binary omponents), and f is theindiator of a failed omponent, then D
(n)
t simply ounts the number of failed omponentsat time t, and our system is a so-alled �k-out-of-n� system [?℄.Let w0 be a partiular state (in the reliability w0 ould be the �perfet state� of anundergrade omponent). Let η be the onstant on�guration where all omponents are inthe perfet state w0, for all x ∈ S. Our proess starts from that on�guration η, whihis obviously group invariant. We shall denote by m(t) (respetively, v(t)) the expetation(resp., the variane) of the degradation at time t for one omponent.

m(t) = E[f(ηt(x)) | η0 = η] , v(t) = lim
n→∞

VarD
(n)
t

|Bn|
.These expressions do not depend on x ∈ S, due to group invariane.The average degradation D

(n)
t /|Bn| onverges in probability to its expetation m(t).We shall assume that m(t) is stritly inreasing on the interval [0, τ ], with 0 < τ ≤ +∞(the degradation starting from the perfet state inreases on average). Mathematially,one an assume that the states are ranked in inreasing order, the perfet state beingthe lowest. This yields a partial order on on�gurations. If the rates are suh that theinterating partile system is monotone (see [?℄), then the average degradation inreases.In the reliability interpretation, assuming monotoniity is quite natural: it amounts tosaying that the rate at whih a given omponent jumps to a more degraded state is higherif its surroundings are more degraded.We onsider a �mean degradation level� α, suh that m(0) < α < m(τ). Assume thethreshold k(n) is suh that:
k(n) = α|Bn| + o(

√

|Bn|).Theorem 4.1 shows that the degradation proess D(n) should remain at distane O(
√

|Bn|)from the deterministi funtion |Bn|m. Therefore it is natural to expet that Tn is atdistane O(1/
√

|Bn|) from the instant tα at whih m(t) rosses α:
tα = inf{t, m(t) = α}.Theorem 6.1 Under the above hypotheses,

√

|Bn| (Tn − tα)
L−−−−→

n→+∞
N (0, σ2

α),with:
σ2

α =
v(tα)

(m′(tα))2
.

11



7 CLT for weakly dependent random �eldsAs in setion 4, we onsider a transitive graph G = (S, E), where S is the set of vertiesand E ⊂
{

{x, y}, x, y ∈ S, x 6= y
} the set of edges. For a transitive graph, the degree rof eah vertex is onstant (f. Lemma 1.3.1 in Godsil and Royle [?℄).For any x in S and for any positive integer n, we denote by B(x, n) the open ball of Sentered at x, with radius n:

B(x, n) = {y ∈ S, d(x, y) < n}.The ardinality of the ball B(x, n) is onstant in x and bounded as follows.
sup
x∈S

|B(x, n)| ≤ 2rn = 2enρ =: κn, (8)where ρ = ln(max(r, 4) − 1): ompare with formula (4).Let Y = (Yx)x∈S be a real valued random �eld. We will measure ovarianes betweenoordinates of Y on two distant sets R1 and R2 through Lipshitz funtions (see [?℄). ALipshitz funtion is a real valued funtions f de�ned on R
n for some positive integer n,for whih

Lip f := sup
x 6=y

|f(x) − f(y)|
∑n

i=1 |xi − yi|
< ∞.We will assume the the random �eld Y satis�es the following ovariane inequality: forany positive real δ, for any disjoint �nite subsets R1 and R2 of S and for any Lipshitzfuntions f and g de�ned respetively on R

|R1| and R
|R2|, there exists a positive onstant

Cδ (not depending on f g, R1 and R2) suh that
|Cov (f(Yx, x ∈ R1), g(Yx, x ∈ R2)| ≤ Cδ Lip f Lip g (|R1| ∧ |R2|) exp (−δd(R1, R2)) . (9)For any �nite subset R of S, let Z(R) =

∑

x∈R Yx. Let (Bn)n∈N be an inreasingsequene of �nite subsets of S suh that |Bn| goes to in�nity with n. Our purpose in thissetion is to establish a entral limit theorem for Z(Bn), suitably normalized. We supposethat (Yx)x∈S is a weakly dependent random �eld aording to the ovariane inequality(9).In Proposition 7.1 below we prove that, as in the independent setting, a entral limittheorem holds as soon as Var Z(Bn) behaves, as n goes to in�nity, like |Bn| (f. Condition(11) below). So the purpose of Proposition 7.2 is to study the behavior of VarZ(Bn). Weprove that the limit (11) holds under two additional onditions. The �rst one supposesthat the ardinality of ∂Bn is asymptotially negligible ompared to |Bn| (f. Condition(7) in setion 4); the seond ondition supposes an invariane by the automorphisms of thegroup G, of the joint distribution (Yx, Yy) for any two verties x and y. More preisely weneed to have Condition (10) below,
Cov(Yx, Yy) = Cov(Ya(x), Ya(y)), (10)12



for any automorphism a of G.In order to prove Proposition 7.1, we shall use some estimations of Bolthausen [?℄ thatyield a entral limit theorem for stationary random �elds on Z
d under mixing onditions.Reall that the mixing oe�ients used there are de�ned as follows, noting by AR the

σ-algebra generated by (Yx, x ∈ R),
αk,l(n) = sup{|P(A1 ∩ A2) − P(A1)P(A2)|, Ai ∈ ARi

, |R1| ≤ k, |R2| ≤ l, d(R1, R2) ≥ n},for n ∈ N and k, l ∈ N ∪∞,
ρ(n) = sup{|Cov(Z1, Z2)|, Zi ∈ L2(A{ρi}), ‖Zi‖2 ≤ 1, d(ρ1, ρ2) ≥ n}.Under suitable deay of (αk,l(n))n or of (ρ(n))n, Bolthausen [?℄ proved a entral limittheorem for stationary random �elds on Z

d, using an idea of Stein. In our ase, insteadof using those mixing oe�ients, we desribe the dependene struture of the random�elds (Yx)x∈S in terms of the gap between two Lipshitz transformations of two disjointbloks (the ovariane inequality (9) above). Those manners of desribing the dependeneof random �elds are quite di�erent. As one may expet, the tehniques of proof will bedi�erent as well (see setion 8).Proposition 7.1 Let G = (S, E) be a transitive graph. Let (Bn)n∈N be an inreasingsequene of �nite subsets of S suh that |Bn| goes to in�nity with n. Let (Yx)x∈S be areal valued random �eld, satisfying (9). Suppose that, for any x ∈ S, EYx = 0 and
supx∈S ‖Yx‖∞ < ∞. If, there exists a �nite real number σ2 suh that

lim
n→∞

VarZ(Bn)

|Bn|
= σ2, (11)then the quantity Z(Bn)

√

|Bn|
onverges in distribution to a entered normal law with variane

σ2.Proposition 7.2 Let G = (S, E) be a transitive graph. Let (Yx)x∈S be a entered realvalued random �eld, with �nite variane. Suppose that the onditions (9) and (10) aresatis�ed. Let (Bn)n be a sequene of �nite and inreasing sets of S ful�lling (7). Then
∑

z∈S

|Cov(Y0, Yz)| < ∞ and lim
n→∞

1

|Bn|
Var Z(Bn) =

∑

z∈S

Cov(Y0, Yz).8 Proofs8.1 Proof of Proposition 3.3Let Γ denote the matrix (γ(x, y))x,y∈S, and let it operate on the right on the spae ofsummable series ℓ1(S) indexed by the denumerable set S:
u = (u(x))x∈S 7→ Γu = (Γu(y))y∈S ,13



with :
Γu(y) =

∑

x∈S

u(x) γ(x, y).(We have followed Liggett's [?℄ hoie of denoting by Γu the produt of u by Γ on theright.) Thanks to hypothesis (3), this de�nes a bounded operator of ℓ1(S), with norm
M . Thus for all t ≥ 0, the exponential of tΓ, is well de�ned, and gives another boundedoperator of ℓ1(S):

exp(tΓ)u =

∞
∑

n=0

tnΓnu

n!
.If f is a smooth funtion, then ∆f = (∆f (x))x∈S, is an element of ℓ1(S). Applying exp(tΓ)to ∆f provides a ontrol on Stf as shows the following proposition (f. Theorem 3.9 of[?℄).Proposition 8.1 Assume (2) and (3). Let f be a smooth funtion. Then,

∆Stf ≤ exp(tΓ)∆f . (12)It follows immediately that if f is a smooth funtion then Stf is also smooth and:
|||Stf ||| ≤ etM |||f ||| ,beause the norm of exp(tΓ) operating on ℓ1(S) is etM .A similar bound for ovarianes will be our starting point (f. Proposition 4.4, p. 34 of[?℄).Proposition 8.2 Assume (2) and (3). Then for any smooth funtions f and g and for all

t ≥ 0, one has,
‖Stfg − (Stf)(Stg)‖ ≤

∑

y,z∈S

(

∑

T∋y,z

cT

)

∫ t

0

(exp(τΓ)∆f )(y)(exp(τΓ)∆g)(z) dτ. (13)In terms of the proess {ηt , t ≥ 0}, the left member of (13) is the uniform bound for theovariane between f(ηt) and g(ηt).
‖Stfg − (Stf)(Stg)‖ = sup

η∈X

∣

∣

∣
Eη[f(ηt)g(ηt)] − Eη[f(ηt)]Eη[g(ηt)]

∣

∣

∣
.A slight modi�ation of (13) gives a bound on the ovariane of f(ηs) with g(ηt), for

0 ≤ s ≤ t. From now on, we shall denote by Covη ovarianes relative to the distributionof {ηt , t ≥ 0}, starting at η0 = η:
Covη(f(ηs), g(ηt)) = Eη[f(ηs)g(ηt)] − Eη[f(ηs)]Eη[g(ηt)].14



Corollary 8.3 Assume (2) and (3). Let f and g be two smooth funtions. Then for all sand t suh that 0 ≤ s ≤ t,
sup
η∈X

∣

∣

∣
Covη(f(ηs), g(ηt))

∣

∣

∣
≤
∑

y,z∈S

(

∑

T∋y,z

cT

)

∫ s

0

(exp(τΓ)∆f )(y)(exp(τΓ)∆St−sg)(z) dτ.(14)Proof of Corollary 8.3. We have, using the semigroup property,
Eη[f(ηs)g(ηt)] = Eη[f(ηs)E[g(ηt) | ηs]] = Eη[f(ηs)St−sg(ηs)] = Ss(fSt−sg)(η).Also,

Eη[g(ηt)] = Stg(η) = Ss(St−sg)(η).Applying (13) at time s to f and St−sg, yields the result. 2In order to apply (14) to funtions mainly loated on �nite sets, we shall need to ontrolthe e�et of exp(tΓ) on a sequene (∆f (x)) satisfying (5). This will be done through thefollowing tehnial lemma.Lemma 8.4 Suppose that the proess is of �nite range. Let R be a �nite set of sites. Let
u = (u(x))x∈S be an element of ℓ1(S). If for all x ∈ S, u(x) ≤ αe−βd(x,R), with α > 0 and
β > ρ, then for all y ∈ S,

|(exp(tΓ)u)(y)| ≤ α exp(2tMe(β+ρ)k) e−βd(y,R).This lemma, together with Proposition 8.1, justi�es De�nition 3.1. Indeed, if f is mainlyloated on R, then by (12) and Lemma 8.4, Stf is also mainly loated on R, and the rateof exponential deay β is the same for both funtions.Proof of Lemma 8.4. Reall that
Γu(y) =

∑

x∈S

u(x)γ(x, y).Observe that if γ(x, y) > 0, then the distane from x to y must be at most k and thus thedistane from x to R is at least d(y, R) − k. If u(x) ≤ αe−βd(x,R) then:
Γu(y) ≤ 2αeρke−β(d(y,R)−k)M = 2αe(β+ρ)kMe−βd(y,R).Hene by indution,

Γnu(y) ≤ α2ne(β+ρ)knMne−βd(y,R).The result follows immediately. 2Together with (14), Lemma 8.4 will be the key ingredient in the proof of our ovarianeinequality. 15



End of the proof of Proposition 3.3. Being mainly loated on �nite sets, the funtions
f and g are smooth. By (14), the ovariane of f(ηs) and g(ηt) is bounded by M(s, t) with:

M(s, t) =
∑

y,z∈S

(

∑

T∋ y,z

cT

)

∫ s

0

(exp(τΓ)∆f )(y)(exp(τΓ)∆St−sg)(z) dτ.Let us apply Lemma 8.4 to ∆f and ∆St−sg.
(exp(τΓ)∆f )(y) ≤ κf exp(τMe(β+ρ)k)e−βd(y,R1) = κfe

Dτe−βd(y,R1). (15)The last bound, together with (12), gives
∆St−sg(x) ≤ (exp((t − s)Γ)∆g)(x) ≤ κge

D(t−s)e−βd(x,R2).Therefore :
(exp(τΓ)∆St−sg)(z) ≤ κge

D(τ+t−s)e−βd(z,R2). (16)Inserting the new bounds (15) and (16) into M(s, t), we obtain
M(s, t) ≤

∑

y,z∈S

(

∑

T∋ y,z

cT

)

κfκge
−β(d(y,R1)+d(z,R2))

∫ s

0

eD(2τ+t−s) dτ.Now if d(y, z) > k and y, z ∈ T , then cT is null by De�nition 3.2. Remember moreoverthat by hypothesis (2):
B = sup

u∈S

∑

T∋u

cT < ∞.Therefore :
M(s, t) ≤ κfκg

BeD(s+t)

2D

∑

y∈S

∑

d(y,z)≤k

e−β(d(y,R1)+d(z,R2)). (17)In order to evaluate the last quantity, we have to distinguish two ases.
• If d(R1, R2) ≤ k, then

∑

y∈S

∑

d(y,z)≤k

e−β(d(y,R1)+d(z,R2)) ≤ 2eρk
∑

y∈S

e−βd(y,R1)

≤ 2eρk
∑

n∈N

∑

y∈S

e−βd(y,R1)
Id(y,R1)=n

≤ 4|R1|eρk
∞
∑

n=0

e(ρ−β)n

≤ 4|R1|eρk

1 − e−(β−ρ)

≤ |R1|
4e(ρ+β)k

1 − e−(β−ρ)
e−βd(R1,R2)

≤ |R1|
4e(ρ+β)k

1 − e−(β−ρ)
e−(β−ρ)d(R1,R2)16



• If d(R1, R2) > k, then we have, noting that d(y, R1) + d(z, R2) ≥ d(R1, R2)− d(y, z) andthat d(y, z) ≤ k,
∑

y∈S

∑

d(y,z)≤k

e−β(d(y,R1)+d(z,R2))

≤
∑

d(y,R1)≤d(R1,R2)−k

∑

d(y,z)≤k

e−β(d(R1,R2)−k) +
∑

d(y,R1)≥d(R1,R2)−k

∑

d(y,z)≤k

e−βd(y,R1)

≤ 4|R1| eρ(d(R1,R2)−k)eρke−β(d(R1,R2)−k) + 4|R1|eρk
∑

n≥d(R1,R2)−k

e(ρ−β)n

≤ 4|R1| eβk

(

1 +
1

1 − e−(β−ρ)

)

e−(β−ρ)d(R1,R2).By inserting the latter bound into (17), one obtains,
M(s, t) ≤ Cκfκg|R1|eD(t+s)e−(β−ρ)d(R1,R2) ,with :

C =
2B

D
eβk

(

1 +
eρk

1 − e−β+ρ

)

. 2The ovariane inequality (6) implies that the ovariane between two funtions essentiallyloated on two distant sets deays exponentially with the distane of those two sets, what-ever the instants at whih it is evaluated. However the upper bound inreases exponentiallyfast with s and t. In the ase where the proess {ηt , t ≥ 0} onverges at exponential speedto its equilibrium, it is possible to give a bound that inreases only in t − s, thus beinguniform in t for the ovariane at a given instant t.8.2 Proof of Theorem 4.18.2.1 Finite dimensional lawsLet G = (S, E) be a transitive graph and Aut(G) be the automorphism group of G. Let
µ be a probability measure on X invariant through the automorphism group ation. Let
(ηt)t≥0 be an interating partile system ful�lling the requirements of Theorem 4.1. Reallthat {St , t ≥ 0} denotes the semigroup and µSt the distribution of ηt, if the distributionof η0 is µ.Proposition 8.5 Let (Bn)n be an inreasing sequene of �nite subsets of S ful�lling (7).Let assumptions of Theorem 4.1 hold. Then for any �xed positive real numbers t1 ≤ t2 ≤
· · · ≤ tk, the random vetor

1
√

|Bn|
(

NBn

t1
− EµNBn

t1
, NBn

t2
− EµNBn

t2
, . . . , NBn

tk
− EµNBn

tk

)17



onverges in distribution, as n tends to in�nity, to a entered Gaussian vetor with ovari-ane matrix (Γµ(ti, tj))1≤i,j≤k.Proof of Proposition 8.5. We will only study the onvergene in distribution of thevetor
1

√

|Bn|
(

NBn

t1
− EµNBn

t1
, NBn

t2
− EµNBn

t2

)

,the general ase being similar. For i = 1, 2, we denote by αi = (αi(w))w∈W two �xedvetors of R
|W |. We have, denoting by · the usual salar produt,
1

√

|Bn|

2
∑

i=1

αi ·
(

NBn
ti

− EµN
Bn
ti

)

=
1

√

|Bn|
∑

x∈Bn

(

2
∑

i=1

(

∑

w∈W

αi(w)(Iw(ηti(x)) − Pµ(ηti(x) = w))

))

=
1

√

|Bn|
∑

x∈Bn

Yx,where (Yx)x∈S is the random �eld de�ned by
Yx =

2
∑

i=1

(

∑

w∈W

αi(w)(Iw(ηti(x)) − Pµ(ηti(x) = w))

)

=: F1(ηt1(x)) + F2(ηt2(x)). (18)The purpose is then to prove a entral limit theorem for the sum ∑

x∈Bn
Yx. For this, weshall study the nature of the dependene of (Yx)x∈S.Let R1 and R2 be two �nite and disjoints subsets of S. Let k1 and k2 be two real valuedfuntions de�ned respetively on R

|R1| and R
|R2|. Let K1, K2 be two real valued funtions,de�ned respetively on W R1 and W R2, by

Kj(ν, η) = kj(F1(ν(x)) + F2(η(x)), x ∈ Rj), j = 1, 2.Let L be the lass of real valued Lipshitz funtions f de�ned on R
n, for some positiveinteger n, for whih

Lip f := sup
x 6=y

|f(x) − f(y)|
∑n

i=1 |xi − yi|
< ∞.We assume that k1 and k2 belong to L. Reall that

Covη(k1(Yx, x ∈ R1), k2(Yx, x ∈ R2)) = Covη (K1(ηt1 , ηt2), K2(ηt1 , ηt2))But
|K1(ηt1 , ηt2) − K1(η

′
t1 , ηt2)| ≤ 4Lip k1

∑

w∈W

|α1(w)|
∑

x∈R1

|ηt1(x) − η′
t1(x)|18



Denote A1(W ) = 4Lip k1

∑

w∈W |α1(w)|. Then, the funtions
ηt1 −→ (Lip k1)A1(W )

∑

x∈R1

ηt1(x) ± K1(ηt1 , ηt2)are inreasing. Hene, the funtions
G±

1 : (ηt1 , ηt2) −→ Lip k1

∑

x∈R1

(A1(W )ηt1(x) + A2(W )ηt2(x)) ± K1(ηt1 , ηt2)are inreasing oordinate by oordinate. This also holds for,
G±

2 : (ηt1 , ηt2) −→ Lip k2

∑

x∈R2

(A1(W )ηt1(x) + A2(W )ηt2(x)) ± K2(ηt1 , ηt2).Under assumptions of Theorem 2.3 and of its Corollary 2.4, the vetor (ηt1 , ηt2) has positiveorrelation so that
Covη(G

±
1 (ηt1 , ηt2), G

±
2 (ηt1 , ηt2)) ≥ 0.This gives

|Covη(k1(Yx, x ∈ R1), k2(Yx, x ∈ R2))|
≤ Lip k1Lip k2

∑

x∈R1

∑

y∈R2

Covη(A1(W )ηt1(x) + A2(W )ηt2(x), A1(W )ηt1(y) + A2(W )ηt2(y)).From this bilinear formula, we now apply Proposition 3.3 and obtain the following ovari-ane inequality: for �nite subsets R1 and R2 of S, we have letting δ = β − ρ,
|Covη (K1(ηt1 , ηt2), K2(ηt1 , ηt2))| ≤ CδLip k1Lip k2 (|R1| ∧ |R2|) exp (−δd(R1, R2)) ,where Cδ is a positive onstant depending on β and not depending on R1, R2, k1 and k2.We then dedue from Proposition 7.1 that 1√

|Bn|

∑

x∈Bn
Yx onverges in distribution to aentered normal law as soon as the quantity Var µ(

∑

x∈Bn
Yx)/|Bn| onverges as n tends toin�nity to a �nite number σ2. This variane onverges if the requirements of Proposition7.2 are satis�ed. For this, we �rst hek the ondition of invariane (10):

Covµ(Yx, Yy) = Covµ(Ya(x), Ya(y)),for any automorphism a of G and for Yx as de�ned by (18). We reall that the initialdistribution is a Dira distribution on the on�guration η. Then it has positive orrelations.We have supposed that η(x) = η(y) for all x, y ∈ S, hene a·µ = µ and the group invarianeproperty of the transition rates proves that µ = δη ful�lls (19) below and then (10) willhold. Condition (19) is true thanks to the following estimations valid for any suitable real
19



valued funtions f and g,
Eµ(f(ηt1)g(ηt2))

=

∫

dµ(η)St1 (fSt2−t1g) (η)

=

∫

dµ(η) a · St1 (fSt2−t1g) (η) sine a · µ = µ

=

∫

dµ(η)St1 ((a · f)St2−t1(a · g)) (η) sine a · (Ssf) = Ss(a · f)

= Eµ((a · f)(ηt1)(a · g)(ηt2)) = Eµ(f(a · ηt1)g(a · ηt2)). (19)Hene Proposition 7.2 applies and gives
σ2 =

∑

z∈S

Covµ(Y0, Yz)

=
2
∑

i,j=1

∑

w,w′∈W

αi(w)αj(w
′)
∑

z∈S

Covµ (Iw(ηti(0)), Iw′(ηti(z)))

=

2
∑

i,j=1

αt
iΓµ(ti, tj)αj ,where Γµ(ti, tj) is the ovariane matrix as de�ned in Theorem 4.1; with this we ompletethe proof of Proposition 8.5.8.2.2 TightnessFirst we establish ovariane inequalities for the ounting proess. Denote gs,t,w(η, y) =

Iw(ηt(y)) − Iw(ηs(y)) and for any multi-index y = (y1, . . . , yu) ∈ Su, for any state vetor
w = (w1, . . . , wu) ∈ W u, Πy,w =

∏u
ℓ=1 gs,t,wℓ

(η, yℓ). Following (6), for β > ρ, for any
r-distant �nite multi-indies y ∈ Su and z ∈ Sv , for any times 0 ≤ s ≤ t ≤ T and for anystate vetors w ∈ W u and w

′ ∈ W v

|Covη (Πy,w, Πz,w′)| ≤ 4C(u ∧ v)e2DT e−(β−ρ)r ≡ c0(u ∧ v)e−cr, (20)for c = β − ρ and c0 =
4Be2DT e−(β−ρ)r(2 − e−c)

Meρk(1 − e−c)
.Lemma 8.6 There exist δ0 > 0 and KΩ > 0 suh that for |s − t| < δ0:

|Covη (Πx,w, Πy,w′)| ≤ KΩ|t − s|. (21)Proof. Denote f(η) = Iw(η(x)) then gt+h,t,w(η, x) = Shf(ηt) − f(ηt); the properties of thegenerator Ω imply that
lim
h→0

Shf(η) − f(η)

h
= Ωf(η)20



But
|Ωf(η)| ≤

∑

T⊂S

∑

ζ∈W T

cT (η, ζ)|f(ηζ) − f(η)|

≤
∑

T⊂S,x∈T

cT (η) ≤
∑

T⊂S,x∈T

cT ≤ CΩso that for h > 0 tending to zero
|gs,s+h,w(η, x)| ≤ CΩh + o(h)Beause Ω is group invariant, the remainder term is uniform with respet to index x, sothat we �nd onvenient δ0 and KΩ uniformly with respet to loation. �From inequality (20) and lemma 8.6, we dedue the following moment inequality:Proposition 8.7 Choose l and c suh that ρ(2l − 1) < c. For (s, t) suh that |t − s| <

δ0 ∧ c0e
c/KΩ:

E(NBn
t − NBn

s )2l ≤ (4l − 2)!(c0e
2c)

ρl
c

(2l)!(2l − 1)!
(

22l(2l)!(c0e
2c)

ρ(l−1)
c

c1

|Bn|1−l(KΩ|t − s|)1− ρ(2l−1)
c +

(

8

c1

)l

(KΩ|t − s|)l− ρl
c

)

, (22)where c1 = ρ ∧ (c − ρ(2l − 1)).Proof. Reall that NBn

t − NBn
s = 1√

|Bn|

∑

x∈Bn
gs,t,w(η, x). Note that the value of Πxdoes not depend on the order of the elements x1, . . . , xL. The index x is said to split into

y = (y1, . . . , yM) and z = (z1, . . . , zL−M) if one an write y1 = xσ(1), . . . , yM = xσ(M) and
z1 = xσ(M+1), . . . , zL−M = xσ(L) for some bijetion σ : {1, . . . , L} → {1, . . . , L}. We adaptlemma 14 in Doukhan & Louhihi [?℄ to the series (gt,s,w(η, x))x∈Bn

. For any integer q ≥ 1,set :
Aq(n) =

∑

x∈Bq
n

|EΠx,w| , (23)then,
E(NBn

s − NBn
t )2l ≤ |Bn|−lA2l(n). (24)If q ≥ 2, for a multi-index x = (x1, . . . , xq) of elements of S, the gap is de�ned by themaximum of the integers r suh that the index may split into two non-empty sub-indies

y = (y1, . . . , yh) and z = (z1, . . . , zq−h) whose mutual distane equals r: d(y(x), z(x)) =
min{d(ya, zb); 1 ≤ a ≤ h, 1 ≤ b ≤ q − h} = r. If the sequene is onstant, its gap is 0.

21



De�ne the set Gr(q, n) = {x ∈ Bq
n and the gap of x is r}. Sorting the sequenes of indiesby their gap:

Aq(n) ≤
∑

x1∈Bn

E|gs,t,w(η, x1)|q +

n
∑

r=1

∑

x∈Gr(q,n)

∣

∣Cov
(

Πy(x),w, Πz(x),w

)∣

∣ (25)
+

n
∑

r=1

∑

x∈Gr(q,n)

∣

∣E
(

Πy(x),w

)

E
(

Πz(x),w

)∣

∣ . (26)Denote
Vq(n) =

∑

x1∈Bn

E|gs,t,w(η, x1)|q +

n
∑

r=1

∑

x∈Gr(q,n)

∣

∣Cov
(

Πy(x),w, Πz(x),w

)∣

∣ .In order to prove that the expression (26) is bounded by the produt∑h Ah(n)Aq−h(n) wemake a �rst summation over the x's suh that y(x) ∈ Bh
n. Hene:

Aq(n) ≤ Vq(n) +

q−1
∑

h=1

Ah(n)Aq−h(n).To build a multi-index x = (x1, . . . , xq) belonging to Gr(q, n), we �rst �x one of the |Bn|points of Bn, say x1. We hoose a seond point x2 with d(x1, x2) = r. The third point x3is in one of the ball with radius r entered in one of the previous points, and so on. . . Thus,beause the maximal ardinality of a ball with radius r writes b(r) ≤ eρr

|Gr(q, n)| ≤ |Bn|b(r)2b(r) · · · (q − 1)b(r) ≤ |Bn|(q − 1)!2q−1eρ(q−1)r.We use lemma 8.6 to dedue:
Vq(n) ≤ |Bn|

(

KΩ|t − s| + (q − 1)!2q−1
∞
∑

r=1

eρ(q−1)r(c0qe
−cr ∧ KΩ|t − s|)

)

.Let R be an integer to be spei�ed, then
Vq(n) ≤ |Bn|q!2q−1

(

KΩ|t − s|
R−1
∑

r=0

eρ(q−1)r + c0

∞
∑

r=R

e(ρ(q−1)−c)r

)

.Comparing those summations with integrals:
Vq(n) ≤ |Bn|q!2q−1

(

KΩ|t − s|
ρ(q − 1)

eρ(q−1)R +
c0

c − ρ(q − 1)
e(ρ(q−1)−c)(R−1)

)

≤ |Bn|q!2q−1KΩ|t − s|
c1

eρ(q−1)R

(

1 +
c0

KΩ|t − s|e
c−cR

)

,22



where c1 = ρ∧ (c− ρ(2l − 1)). Assume that (s, t) ∈ T are suh that |t− s| < c0e
c/KΩ andhoose R ≥ 1 as the integer suh that ec(R−1) ≤ c0ec

KΩ|t−s|
≤ ecR.

Vq(n) ≤ |Bn|q!
2qKΩ|t − s|e2ρ(q−1)

c1

(

c0

KΩ|t − s|

)
ρ(q−1)

c

, (27)so that Vq(n) is a funtion of q that satis�es ondition (H0) of Doukhan & Louhihi [?℄.Then
A2l(n) ≤ (4l − 2)!

(2l)!(2l − 1)!

(

V2l(n) + V2(n)l
)

≤ (4l − 2)!(c0e
2c)

ρl
c

(2l)!(2l − 1)!

(

22l(2l)!(c0e
2c)

ρ(l−1)
c

c1

|Bn|(KΩ|t − s|)1− ρ(2l−1)
c

+

(

8

c1

)l

|Bn|l(KΩ|t − s|)l− ρl
c

)

,and Proposition 8.7 is proved. �To prove the tightness of the sequene of proesses NBn , we study its osillations:
w(δ, NBn) = sup

‖t−s‖1<δ

|NBn

t − NBn

s |Fix ε and η. We have to �nd δ and n0 suh that for all n > n0 :
P(w(δ, NBn) ≥ ε) ≤ ηDe�ne n0 as the smallest integer suh that |Bn0| > δ−1−ρ/c, then for n > n0, |t − s| < δ,

l = 2 and c > 3ρ, Proposition 8.7 yields:
E(NBn

t − NBn

s )4 ≤ Cδ2(1− ρ
c
)and we now follow the proof in Billingsley [?℄ to onlude.8.3 Proof of Theorem 6.1The proof is lose to that of the analogous result in [?℄. The onvergene in distributionof Zn = (Zn(t))t≥0, where Zn(t) = (D

(n)
t − |Bn| ·m(t))/

√

|Bn|, does not diretly imply theCLT for Tn. The Skorohod-Dudley-Wihura representation theorem is a muh strongerresult (see Pollard [?℄, setion IV.3). It implies that there exist versions Z∗
n of Zn andnon-dereasing funtions φn suh that for any �xed s suh that for Z∗, limit in distributionof Zn:

lim
n→∞

sup
0≤t≤s

|Z∗
n(t) − Z∗(φn(t))| = 0 a.s.23



and:
lim

n→∞
sup

0≤t≤s
|φn(t) − t| = 0 a.s.Sine Z∗ has ontinuous paths, it is uniformly ontinuous on [0, s], and hene:

lim
n→∞

sup
0≤t≤s

|Z∗
n(t) − Z∗(t)| = 0 a.s. , (28)We shall �rst use (28) to prove that the distributions of√|Bn|(Tn−tα) are a tight sequene.Let c be a positive onstant. On the one hand, if D

(n)

tα+c/
√

|Bn|
≥ k(n), then Tn ≤ tα +

c/
√

|Bn|. Thus:
P[
√

|Bn|(Tn − tα) ≤ c] ≥ P[D
(n)

tα+c/
√

|Bn|
≥ k(n)]

= P[Z∗
n(tα + c/

√

|Bn|) ≥
√

|Bn|(α − m(tα + c/
√

|Bn|)) + o(1)]

= P[Z∗
n(tα + c/

√

|Bn|) ≥ −cm′(tα) + o(1)]

= P[Z∗(tα) ≥ −cm′(tα)] + o(1) ,using (28) and the ontinuity of Z∗. Sine m′(tα) > 0, we obtain that:
lim
c→∞

lim inf
n→∞

P[
√

|Bn|(Tn − tα) ≤ c] = 1. (29)On the other hand, we have:
P[
√

|Bn|(Tn − tα) ≤ −c] = P[∃t ≤ tα − c/
√

|Bn| , Z∗
n(t) ≥

√

|Bn|(α − m(t)) + o(1)].But sine the funtion m is inreasing, for all t ≤ tα − c/
√

|Bn| we have:
√

|Bn|(α − m(t)) ≥
√

|Bn|(α − m(tα − c/
√

|Bn|)) = cm′(tα) + o(1).Hene:
P[
√

|Bn|(Tn − tα) ≤ −c] ≤ P[∃t ≤ tα − c/
√

|Bn| , Z∗
n(t) ≥ cm′(tα) + o(1)]

≤ P[∃t ≤ tα , Z∗
n(t) ≥ cm′(tα) + o(1)]

= P[∃t ≤ tα , Z∗(t) ≥ cm′(tα) + o(1)] + o(1).The proess Z being a.s. bounded on any ompat set and m′(t) being positive on [0, τ ],we dedue that:
lim
c→∞

lim sup
n→∞

P[
√

|Bn|(Tn − tα) ≤ −c] = 0. (30)Now (29) and (30) mean that the sequene of distributions of (
√

|Bn|(Tn − tα)) is tight.Hene to onlude it is enough to hek the limit.24



Using again (28), together with the almost sure ontinuity of Z yields:
D

(n)

tα+c/
√

|Bn|
= |Bn|m(tα + u/

√

|Bn|) +
√

|Bn|Z∗(tα + u/
√

|Bn|) + o(
√

|Bn|) a.s.

= |Bn|α + u
√

|Bn|m′(tα) +
√

|Bn|Z∗(tα) + o(
√

|Bn|) a.s.Therefore:
inf

{

u ; D
(n)

tα+u/
√

|Bn|
≥ k(n)

}

= inf
{

u ; u
√

|Bn|m′(tα) +
√

|Bn|Z∗(tα) + o(
√

|Bn|) ≥ 0
}

= −Z∗(tα)

m′(tα)
+ o(1).The distribution of −Z∗(tα)/m′(tα) is normal with mean 0 and variane σ2

α, hene theresult.8.4 Proof of Proposition 7.1Let F2,3 be the set of real valued funtions h de�ned on R, three times di�erentiable, suhthat h(0) = 0, ‖h′′‖∞ < +∞, and ‖h(3)‖∞ < +∞. For a funtion h ∈ F2,3, we will denoteby b2 and b3 the supremum norm of its seond and third derivatives. We �rst need thefollowing lemma.Lemma 8.8 Let h be a �xed funtion of the set F2,3. Let R be a �xed and �nite subsetof S. Let r be a �xed positive real. For any x ∈ R, let Vx = B(x, r) ∩ R. Let (Yx)x∈S bea real valued random �eld. Suppose that, for any x ∈ S, EYx = 0 and EY 2
x < +∞. Let

Z(R) =
∑

x∈R Yx. Then
∣

∣

∣

∣

E(h(Z(R))) − VarZ(R)

∫ 1

0

tE(h′′ (tZ(R)))dt

∣

∣

∣

∣

≤
∫ 1

0

∑

x∈R

|Cov (Yx, h
′(tZ(V c

x )))| dt + 2
∑

x∈R

E|Yx||Z(Vx)| [b2 ∧ b3|Z(Vx)|]

+b2E

∣

∣

∣

∣

∣

∑

x∈R

(YxZ(Vx) − E(YxZ(Vx)))

∣

∣

∣

∣

∣

+ b2

∑

x∈R

|Cov(Yx, Z(V c
x ))| , (31)where V c

x = R \ Vx.Remark. For an independent random �eld (Yx)x∈S, ful�lling supx∈S EY 4
x < +∞, Lemma8.8 applied with Vx = {x}, ensures

∣

∣

∣

∣

E(h(Z(R))) − VarZ(R)

∫ 1

0

tE(h′′ (tZ(R)))dt

∣

∣

∣

∣

≤ 2
∑

x∈R

E|Yx|2 (b2 ∧ b3|Yx|)+b2

√

|R| sup
x∈S

‖Y 2
x ‖2.25



Proof of Lemma 8.8. We have,
h(Z(R)) = Z(R)

∫ 1

0

h′(tZ(R))dt =

∫ 1

0

(

∑

x∈R

Yxh
′(tZ(R))

)

dt

=

∫ 1

0

(

∑

x∈R

Yxh
′(tZ(V c

x ))

)

dt +

∫ 1

0

(

∑

x∈R

Yx (h′(tZ(R)) − h′(tZ(V c
x )) − tZ(Vx)h

′′(tZ(R)))

)

dt

+
∑

x∈R

YxZ(Vx)

∫ 1

0

th′′(tZ(R))dt −
∑

x∈R

E (YxZ(Vx))

∫ 1

0

th′′(tZ(R))dt

+
∑

x∈R

E (YxZ(Vx))

∫ 1

0

th′′(tZ(R))dt −
∑

x∈R

E (YxZ(R))

∫ 1

0

th′′(tZ(R))dt

+
∑

x∈R

E (YxZ(R))

∫ 1

0

th′′(tZ(R))dt.We take expetation in the last equality. The obtained formula, together with the followingestimations, proves Lemma 8.8.
|h′(tZ(R)) − h′(tZ(V c

x )) − tZ(Vx)h
′′(tZ(R))|

≤ |h′(tZ(R)) − h′(tZ(V c
x )) − tZ(Vx)h

′′(tZ(V c
x ))| + |Z(Vx)||h′′(tZ(R)) − h′′(tZ(V c

x ))|
≤ 2|Z(Vx)| (b2 ∧ b3|Z(Vx)|) . 2Our purpose now is to ontrol the right hand side of the bound (31) for a random �eld

(Yx)x∈S ful�lling the ovariane inequality (9) and the requirements of Proposition 7.1.Corollary 8.9 Let h be a �xed funtion of the set F2,3. Let R be a �nite subset of S. Forany x ∈ R and for any positive real r, let Vx = B(x, r) ∩ R. Let (Yx)x∈S be a real valuedrandom �eld, ful�lling the ovariane inequality (9). Suppose that, for any x ∈ S, EYx = 0and supx∈S ‖Yx‖∞ < M , for some positive real M . Reall that Z(R) =
∑

x∈R Yx. Then,for any δ > 0, there exists a positive onstant C(δ, M) independent of R, suh that
sup

h∈F2,3

∣

∣

∣

∣

E(h(Z(R))) − VarZ(R)

∫ 1

0

tE(h′′ (tZ(R)))dt

∣

∣

∣

∣

≤ C(δ, M)











b2|R|e−δr + b3|R|κr + b2|R|1/2κr





∞
∑

k=[3r]

κke
−δ(k−2r)





1/2

+b2|R|1/2κ3r





[3r]+1
∑

k=1

e−δkκk





1/2










,reall that supx∈S |B(x, n)| ≤ κn. 26



Proof of Corollary 8.9We have
V c

x = {y ∈ S, d(x, y) ≥ r} ∩ R.Hene
d({x}, V c

x ) ≥ r.The last bound together with (9), proves that
∑

x∈R

|Cov (Yx, h
′(tZ(V c

x )))| ≤ Cδb2

∑

x∈R

(|V c
x | ∧ 1)e−δd({x},V c

x )

≤ Cδb2|R|e−δr. (32)In the same way, we prove that
b2

∑

x∈R

|Cov(Yx, Z(V c
x ))| ≤ Cδb2|R|e−δr. (33)Now

∑

x∈R

E|Yx||Z(Vx)| (b2 ∧ b3|Z(Vx)|) ≤ b3M |R| sup
x∈S

E|Z(Vx)|2

≤ b3M |R|κr sup
y∈S

∑

z∈S

|Cov(Yy, Yz)| (34)The last bound is obtained sine |Vx| ≤ κr and supy∈S

∑

z∈S |Cov(Yy, Yz)| < ∞ (the proofof the last inequality is done along the same lines as that of Proposition 7.2) .It remains to ontrol
E

∣

∣

∣

∣

∣

∑

x∈R

(YxZ(Vx) − E(YxZ(Vx)))

∣

∣

∣

∣

∣

.For this, we argue as Bolthausen [?℄. We have
E

∣

∣

∣

∣

∣

∑

x∈R

(YxZ(Vx) − E(YxZ(Vx)))

∣

∣

∣

∣

∣

2

= Var (
∑

x∈R

YxZ(Vx))

=
∑

x∈R

∑

y∈R

Cov(YxZ(Vx), YyZ(Vy)).Hene, sine Vx ⊂ B(x, r),
E

∣

∣

∣

∣

∣

∑

x∈R

(YxZ(Vx) − E(YxZ(Vx)))

∣

∣

∣

∣

∣

2

≤
∑

x∈R

∑

x′∈B(x,r)

∑

y∈R

∑

y′∈B(y,r)

|Cov(YxYx′, YyYy′)| . (35)We have,
|Cov(YxYx′, YyYy′)| ≤ |Cov(YxYx′, YyYy′)| Id(x,y)≥3r + |Cov(YxYx′, YyYy′)| Id(x,y)≤3r. (36)27



We begin by ontrolling the �rst term. The ovariane inequality (9) together with someelementary estimations, ensures
|Cov(YxYx′, YyYy′)| Id(x,y)≥3r ≤

∞
∑

k=[3r]

|Cov(YxYx′, YyYy′)| Ik≤d(x,y)<k+1

≤ 2M2Cδ

∞
∑

k=[3r]

e−δd({x,x′},{y,y′})
Ik≤d(x,y)<k+1

≤ 2M2Cδ

∞
∑

k=[3r]

e−δ(k−2r)
Id(x,y)<k+1,the last bound is obtained sine, for any x′ ∈ B(x, r) and y′ ∈ B(y, r), we have,

d({x, x′}, {y, y′}) + 2r ≥ d({x, x′}, {y, y′}) + d(x, x′) + d(y, y′) ≥ d(x, y).Hene,
∑

x∈R

∑

x′∈B(x,r)

∑

y∈R

∑

y′∈B(y,r)

|Cov(YxYx′, YyYy′)| Id(x,y)≥3r

≤ 2M2Cδκ
2
r

∞
∑

k=[3r]

∑

x∈R

∑

y∈R

e−δ(k−2r)
Iy∈B(x,k+1)

≤ 2M2Cδ|R|κ2
r

∞
∑

k=[3r]

κk+1e
−δ(k−2r). (37)We now ontrol the seond term in (36). Inequality (9) and the fat that

d({x}, {x′, y, y′}) ≤ d({x}, {x′}), ensure
|Cov(YxYx′, YyYy′)| Id(x,y)≤3r

≤ |Cov(Yx, Yx′YyYy′)| Id(x,y)≤3r + |Cov(Yx, Yx′)| |Cov(Yy, Yy′)| Id(x,y)≤3r

≤ 2M2Cδe
−δd({x},{x′,y,y′})

Id(x,y)≤3r.We dedue, using the last bound, that
|Cov(YxYx′, YyYy′)| Id(x,y)≤3r

≤
[3r]+1
∑

k=1

|Cov(YxYx′, YyYy′)| Id(x,y)≤3rIk−1≤d({x},{x′,y,y′})<k

≤ 2M2Cδ

[3r]+1
∑

k=1

e−δ(k−1)
Id(x,y)≤3rId({x},{x′,y,y′})<k. (38)We have

Id({x},{x′,y,y′})≤k ≤ Id({x},{x′})≤k + Id({x},{y})≤k + Id({x},{y′})≤k.28



Hene, we hek that,
∑

x∈R

∑

x′∈B(x,r)

∑

y∈R

∑

y′∈B(y,r)

Id(x,y)≤3rId({x},{x′,y,y′})≤k ≤ 3|R|κ2
3rκk. (39)We obtain ombining (38) and (39),

∑

x∈R

∑

x′∈B(x,r)

∑

y∈R

∑

y′∈B(y,r)

|Cov(YxYx′, YyYy′)| Id(x,y)≤3r

≤ 6eδM2Cδ|R|κ2
3r

[3r]+1
∑

k=1

e−δkκk. (40)We ollet the bounds (35), (37) and (40), we obtain,
E

∣

∣

∣

∣

∣

∑

x∈R

(YxZ(Vx) − E(YxZ(Vx)))

∣

∣

∣

∣

∣

≤ C(δ, M)|R|1/2











κr





∞
∑

k=[3r]

κk+1e
−δ(k−2r)





1/2

+ κ3r





[3r]+1
∑

k=1

e−δkκk





1/2










. (41)Finally, the bounds (32), (33), (34), (41), together with Lemma 8.8 prove Corollary 8.9.
2End of the proof of Proposition 7.1. We apply Corollary 8.9 to the real and imaginaryparts of the funtion x → exp(iux/

√

|Bn|) − 1. Those funtions belong to the set F2,3,with b2 = u2

|Bn| and b3 =
|u|3

|Bn|3/2 .We obtain, noting by φn the harateristi funtion of the normalized sum Z(Bn)/
√

|Bn|,
∣

∣

∣

∣

φn(u) − 1 +
VarZ(Bn)

|Bn|
u2

∫ 1

0

tφn(tu)dt

∣

∣

∣

∣

≤ C(δ, M, u)











e−δr +
κr

√

|Bn|
+

κr
√

|Bn|





∞
∑

k=[3r]

κke
−δ(k−2r)





1/2

+
κ3r
√

|Bn|





[3r]+1
∑

k=1

e−δkκk





1/2










.Let δ be a �xed positive real suh that δ > 12ρ, reall that
sup
x∈S

|B(x, r)| ≤ 2erρ =: κr.29



Hene
∣

∣

∣

∣

φn(u) − 1 +
VarZ(Bn)

|Bn|
u2

∫ 1

0

tφn(tu)dt

∣

∣

∣

∣

≤ C(δ, M, u)











e−δr +
erρ

√

|Bn|
+

e(ρ+δ)r

√

|Bn|





∞
∑

k=[3r]

e−(δ−ρ)k





1/2

+
e3ρr

√

|Bn|





[3r]+1
∑

k=1

e−(δ−ρ)k





1/2










≤ C(M, ρ, δ, u)

(

e−δr +
e3rρ

√

|Bn|
+

e−(δ−5ρ)r/2

√

|Bn|

)

.For a suitable hoie of the sequene r (for example we an take r = 2
δ
ln |Bn|), the righthand side of the last bound tends to 0 an n tends to in�nity:

lim
n→∞

∣

∣

∣

∣

φn(u) − 1 +
Var Z(Bn)

|Bn|
u2

∫ 1

0

tφn(tu)dt

∣

∣

∣

∣

= 0. (42)We now need the following lemma.Lemma 8.10 Let σ2 be a positive real. Let (Xn) be a sequene of real valued random vari-ables suh that supn∈N EX2
n < +∞. Let φn be the harateristi funtion of Xn. Supposethat for any u ∈ R,
lim

n→+∞

∣

∣

∣

∣

φn(u) − 1 + σ2

∫ u

0

tφn(t)dt

∣

∣

∣

∣

= 0. (43)Then, for any u ∈ R,
lim

n→+∞
φn(u) = exp(−u2σ2

2
).Proof of Lemma 8.10. Lemma 8.10 is a variant of Lemma 2 in Bolthausen [?℄. TheMarkov inequality and the ondition supn∈N

EX2
n < +∞ imply that the sequene (µn)n∈Nof the laws of (Xn) is tight. Theorem 25.10 in Billingsley [?℄ proves the existene of asubsequene µnk

and a probability measure µ suh that µnk
onverges weakly to µ as ktends to in�nity. Let φ be the harateristi funtion of µ. We dedue from (43) that, forany u ∈ R,

φ(u) − 1 + σ2

∫ u

0

tφ(t)dt = 0,or equivalently, for any u ∈ R,
φ′(u) + σ2uφ(u) = 0.We obtain, integrating the last equation, that for any u ∈ R,
φ(u) = exp(−σ2u2

2
).The proof of Lemma 8.10 is ompleted by using Theorem 25.10 in Billingsley [?℄ and itsorollary. 2Proposition 7.1 follows from (11), (42) and Lemma 8.10. 230



8.5 Proof of Proposition 7.2.We dedue from (9) that for any positive real δ there exists a positive onstant Cδ suhthat for di�erent sites x and y of S,
|Cov(Yx, Yy)| ≤ Cδe

−δd(x,y). (44)Hene, the �rst onlusion of Proposition 7.2 follows from the bound (44), together withthe following elementary alulations, for ρ < δ,
∑

z∈S

|Cov(Y0, Yz)| ≤ Cδ

∑

z∈S

exp(−δd(0, z))

≤ Cδ

∑

z∈S

∞
∑

r=0

exp(−δd(0, z))Ir≤d(0,z)<r+1

≤ Cδ

∞
∑

r=0

exp(−δr)
∑

z∈S

Id(0,z)<r+1

≤ Cδ

∞
∑

r=0

exp(−δr)|B(0, r + 1)|

≤ C(δ, ρ)
∞
∑

r=0

exp(−(δ − ρ)r), (45)where C(δ, ρ) is a positive onstant depending on δ and ρ.We now prove the seond part of Proposition 7.2. Thanks to (7), we an �nd a sequene
u = (un) of positive real numbers suh that

lim
n→+∞

un = +∞, lim
n→+∞

|∂Bn|
|Bn|

exp(ρun) = 0. (46)Let (∂uBn)n be the sequene of subsets of S de�ned by
∂uBn = {s ∈ Bn : d(s, ∂Bn) < un}.The bound (4) gives

|∂uBn| ≤ 2|∂Bn|eunρ,whih together with the suitable hoie of the sequene (un) ensures
lim

n→+∞

|∂uBn|
|Bn|

= 0, (47)we shall use this fat below without further omments. Let Bu
n = Bn\∂uBn. We deomposethe quantity Var Sn as in Newman [?℄:

1

|Bn|
Var Sn =

1

|Bn|
∑

x∈Bn

∑

y∈Bn

Cov (Yx, Yy) = T1,n + T2,n + T3,n,31



where
T1,n =

1

|Bn|
∑

x∈Bu
n

∑

y∈Bn\B(x,un)

Cov (Yx, Yy) ,

T2,n =
1

|Bn|
∑

x∈Bu
n

∑

y∈Bn∩B(x,un)

Cov (Yx, Yy) ,

T3,n =
1

|Bn|
∑

x∈∂uBn

∑

y∈Bn

Cov (Yx, Yy) .Control of T1,n. We have, sine |Bu
n| ≤ |Bn| and applying (44)

|T1,n| ≤ sup
x∈S

∑

y∈S\B(x,un)

|Cov(Yx, Yy)| ≤ Cδ sup
x∈S

∑

y∈S\B(x,n)

exp(−δd(x, y)). (48)For any �xed x ∈ S, we argue as for (45) and we obtain for ρ < δ,
∑

y∈S\B(x,n)

exp(−δd(x, y)) ≤ C(δ)

∞
∑

r=[un]

exp(−(δ − ρ)r) ≤ C(δ, ρ) exp(−(δ − ρ)un) (49)We obtain, olleting (48), (49) together with the �rst limit in (46) :
lim

n→+∞
T1,n = 0. (50)Control of T3,n. We obtain using (44) :

|T3,n| ≤ |∂uBn|
|Bn|

sup
x∈S

∑

y∈S

|Cov(Yx, Yy)| . (51)The last bound, together with the limit (47) gives
lim

n→+∞
T3,n = 0. (52)Control of T2,n. We dedue using the following impliation, if x ∈ Bu

n and y is notbelonging to Bn then d(x, y) ≥ un, that
T2,n =

1

|Bn|
∑

x∈Bu
n

∑

y∈B(x,un)

Cov(Yx, Yy)We laim that,
∑

y∈B(x,un)

Cov(Yx, Yy) =
∑

z∈B(0,un)

Cov (Y0, Yz) , (53)32



in fat, sine the graph G is transitive, there exits an automorphism ax, suh that ax(x) = 0(0 is a �xed vertex in S). Equality (10) gives
∑

y∈B(x,un)

Cov(Yx, Yy) =
∑

y∈B(x,un)

Cov(Y0, Yax(y)).Now, Lemma 1.3.2 in Godsil and Royle [?℄ yields that d(x, y) = d(ax(x), ax(y)) = d(0, ax(y)).From this we dedue that y ∈ B(x, un) if and only if ax(y) ∈ B(0, un). From above, weonlude that,
∑

y∈B(x,un)

Cov(Yx, Yy) =
∑

ax(y)∈B(0,un)

Cov(Y0, Yax(y)) =
∑

z∈B(0,un)

Cov(Y0, Yz),whih proves (53). Consequently,
T2,n =

|Bu
n|

|Bn|
∑

z∈B(0,un)

Cov(Y0, Yz).The last equality together with the �rst limit in (46) and (47), ensures
lim

n→+∞
T2,n =

∑

z∈S

Cov(Y0, Yz). (54)The seond onlusion of Proposition 7.2 is proved by olleting the limits (50), (52) and(54). 2Aknowledgements. We wish to thank Professor Mathew Penrose for his importantremarks whih helped us to derive the present version of this work. He mentioned an errorin a previous draft for this work, see the Remark following Theorem 4.1. We also thankDavid Coupier for his preious omments.
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