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In this paper we present results on parametrically forced gravity waves in a circular
cylinder in the limit of large fluid-depth approximation. The phase diagram that
shows the forcing-amplitude instability and the wave-breaking thresholds has been
determined in the frequency range of existence of the lowest axisymmetric wave
mode. The instability is shown to be supercritical for forcing frequencies at and
above the natural frequency and subcritical below in a frequency range where the
instability and breaking thresholds do not coincide. Above the instability threshold,
the growth in wave amplitude is exponential, but with an initial time delay. The
wave-amplitude response curve of stationary wave motions exhibits steady-state wave
motion, amplitude modulations and bifurcations to other wave modes at frequencies
where the parametric instability boundary of the axisymmetric mode overlaps with
the neighbouring modes. The amplitude modulations are either on a slow time scale or
exhibit period tripling and intermittent period tripling, without wave breaking. In the
wave-breaking regime, a finite-time singularity may occur with intense jet formation,
a phenomenon demonstrated by others in fluids of high viscosity and large surface
tension. Here, this singular behaviour with jet formation is demonstrated for a low
viscosity and low kinematic surface tension liquid. The results indicate that the jet
is driven by inertial collapse of the cavity created at the wave trough. Therefore,
the jet velocity is determined by the wave fluid velocity but depends, in addition, on
kinematic surface tension and viscosity as these affect the last stable wave crest shape
and the cavity size.

1. Introduction

Parametrically forced surface waves, known as Faraday waves, that are sub-
harmonically excited, have been studied extensively (Benjamin & Ursell 1954; Miles &
Henderson 1990; Edwards & Fauve 1994; Kumar & Tuckermann 1994). However, far
less is known about large-amplitude waves and wave-breaking conditions, especially
of parametrically forced gravity waves. Large-amplitude sloshing in containers is
encountered in rocket engine fuel tanks and ship tanks. In these applications it is
important to be able to predict the liquid behaviour and to evaluate the forces
exerted by the sloshing motion on the tank walls as well as the consequences of
sloshing and wave breaking on interfacial heat and mass transfer. The wave modes
in containers of various geometries can be found in Abramson (1966) and in Ibrahim
(2005). Miles (1984) developed a weakly nonlinear theory of wave motions in circular
cylinders subjected to horizontal forcing that contains the relevant control parameters
and allows the determination of the phase diagram of sloshing. This phase diagram
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is in good agreement with experiments (Royon-Lebeaud, Hopfinger & Cartellier
2007). The multimodal theory can cope with fully nonlinear sloshing (excluding
wave breaking) and has been successfully applied to rectangular and square-based
containers (Faltinsen et al. 2000, 2003).

Parametrically forced gravity waves have been investigated mainly near the
instability threshold and in the weakly nonlinear regime. Various surface wave
modes, tank geometries and depth to radius ratios have been considered (Dodge
1966; Nayfeh 1987; Feng & Sethna 1989; Simonelli & Gollub 1989). Reviews of
these studies and of the general, weakly nonlinear theory of parametrically forced
surface waves are given in Miles & Henderson (1990) and in Ibrahim (2005). The
depth to radius ratio is known to be an important parameter because this determines
the nonlinear resonance. Furthermore, a small depth to radius ratio enhances the
development of secondary modes. Large-amplitude parametrically forced gravity
waves have received less attention. In two dimensions, Jiang, Perlin & Schultz (1998)
showed the occurrence of a period tripling event connected with breaking or spilling
that is further discussed in Perlin & Schultz (2000). Bredmose et al. (2003) conducted
experiments in a rectangular tank that showed the existence of tabletop breaking
waves. The wave crest of gravity waves is unstable when the wave amplitude has
reached a value such that the downward acceleration of the wave crest is equal to
or slightly larger than gravity (Taylor 1953). For larger amplitudes free fall of lumps
of fluid near the wave crest is, therefore, possible, a phenomenon essential to period
tripling and tabletop wave crest formation. Henderson & Miles (1990, hereinafter
referred to as HM) determined the parametric instability conditions and the steady-
state wave-amplitude response of the axisymmetric wave mode (0,1) in a ‘small’
circular cylinder; the wave modes (m, n) express m nodal diameters and n − 1 + δm0

nodal circles with m =0, 1, . . . and n= 1, 2, . . . , where δm0 is the Kronecker delta
function. Small implies that capillary and viscous effects are significant. For a given
container size, this depends, however, on the liquid properties.

In a circular cylinder, axisymmetric wave breaking can be very violent with jet
formation. Zeff et al. (2000) demonstrated the occurrence of a finite-time singularity
with intense jet formation (also referred to as a geyser in the space science literature)
in a glycerine–water solution. The large viscosity is said to be necessary for preventing
parasitic capillary wave disturbances on the wave surface that reduce the finite-time
singularity. In the model of Zeff et al. the jet velocity is proportional to the square
root of the kinematic surface tension. It is of general interest to verify this model.

In this paper, we present results on parametrically forced gravity waves in circular
cylinders of sizes similar to those of HM and to Zeff et al. but using, primarily,
a fluid with very low kinematic viscosity and kinematic surface tension so that
capillary effects and dissipation remain small. In § 3, the essential aspects of the
HM theory are presented. Then in § 4, we first compare the experimental phase
diagram of forcing amplitude versus wave frequency with the theoretical predictions
by HM, taking into account small surface tension and viscosity corrections. This
phase diagram is completed by the wave-breaking threshold. The wave-amplitude
response curves, obtained for the same frequency domain, exhibit the existence of
steady-state wave motion, amplitude modulations and wave breaking. The nature
of the parametric instability and the wave amplification are discussed in § 5. The
finite-time singularity, associated with breaking of the axisymmetric mode, which
leads to intense jet formation, is presented in § 6. In order to determine the possible
dependence on surface tension, this jet formation has been investigated in two different
sized containers using three different liquids.
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2. Experimental conditions

The experiments have been conducted in circular cylindrical plexiglas containers,
one of diameter 2R = 50 mm ± 0.03 and 6 cm deep, and the other of 2R =100 mm
±0.04 and 10 cm deep, mounted on a vertically oscillating vibration exciter, TIRA,
type TV 52120 of peak force 200 N. After calibration, the vibration amplitude could
be kept within ±0.30 % of the nominal value and the frequency within 0.02%. Since
the vibration is normal to the fluid surface, the waves are sub-harmonically excited.
The larger container was constructed in order to clarify the possible dependency
of jet formation on kinematic surface tension. The smaller container was filled
to a depth h =3 cm with a low viscosity and low surface tension liquid, FC-72, of
ν = 0.00406 cm2 s−1, σ = 11 dyn cm−1 and ρ = 1690 kgm−1 at 20 ◦C. The corresponding
Bond number is Bo = ρgR2/σ = 942. The larger container was filled to a depth
h = 6 cm with FC-72 liquid and also with a glycerine–water solution of ν = 2.7 cm2 s−1,
σ = 65 dyn cm−1 and ρ =1260 kgm−3 at 20 ◦C. The respective Bond numbers are 3768
for FC-72 and 376 for glycerine–water. Some experiments on jet formation were done
with distilled water and with distilled water and 1 % ILFORD ILFOTOL fluid added.
Experiments were conducted at room temperature, generally around 20 to 23 ◦C. In
both containers, the fluid depth to radius ratio was h/R = 1.2, that is sufficient to
satisfy deep-water conditions (tanh (k01h) ∼= 1) for the axisymmetric mode (Miles &
Henderson 1990). The liquid FC-72 is fully wetting (the contact line is free to
move) with a static contact angle close to zero. In the case of water or glycerine–
water solution, the contact line is practically fixed (see the Appendix). The container
acceleration a(t) = Aω2

f sin ωf t , in the experiments is a(t) � 6 m s−2 where ωf is the
circular forcing frequency, equal to twice the wave frequency ω, and A is the forcing
amplitude.

Measurements were made by visualizations and image analysis only. Generally,
a digital camera with an acquisition speed of 60 frames s−1 (f.p.s.) was used. Near
resonant conditions with high-velocity jet formation, images were also taken with a
high-speed camera at 1000 f.p.s.

3. Theoretical concepts

The weakly nonlinear theory of axisymmetric wave motion in a circular cylinder
has been developed by HM following Miles (1984). A detailed outline of this theory
is given in Ibrahim (2005). The dispersion relation with surface tension added is

ω2
mn = gkmn

(

1 +
k2

mnσ

gρ

)

tanh(kmnh). (1)

The boundary condition on the container wall is ∂φ/∂r |r=R = J ′
m(kmnR) = 0,

where φ is the velocity potential, which gives for the axisymmetric wave
modes, m = 0 and n= 1 and n= 2, k01R = 3.8317 and k02R = 7.0156. For
the asymmetric modes, the dimensionless wavenumbers are: k11R = 1.841,
k21R = 3.054, k31R = 4.201, k41R = 5.318, k12R =5.331. The corresponding natural
frequencies are given by (1). For FC-72 and the test cell of R = 2.5 cm filled to
a depth h = 3 cm such that tanh(k01h) ∼= 1, the natural frequency of mode (0,1)
is ω01 = [(3.832g/R)(1 + 14.68/Bo)]1/2 = 39.08 rad s−1. The capillary contribution to
the wave frequency is less than 1 %. In the larger cylinder of R = 5 cm and FC-
72, ω01 = 27.419 rad s−1. For the glycerine–water solution, ω01 = 27.89 rad s−1 and for
water ω01 = 27.99 rad s−1. This assumes that the contact line is free to move, which is
not the case for water and glycerine–water solution (see the Appendix). When a 1 %

3



Acc
ep

te
d 

M
an

us
cr

ip
t

photo fluid is added to water, the contact line is no longer pinned and surface rigidity
is reduced. According to HM, a 1 % photo fluid in water reduces the surface tension
to σ ≈ 45 dyn cm−1.

The natural frequency shift due to linear damping is ω̂01 = ω01(1−δ), where δ = κ/ω

is the damping ratio and κ the damping rate. In general, there are two contributions
to damping, namely dissipation in the interior δi and dissipation in the Stokes layers
at the boundaries δw . The respective contributions are (Lighthill 1978):

δ ∼ (1/R2)(2ν/ω) + (1/R)(ν/2ω)1/2. (2a)

The ratio of internal to wall damping is, therefore, of the order of δi/δw ∼ 2lv/R where
the viscous length scale is the Stokes layer thickness lν = (2ν/ω)1/2. For ω = ω01, the
ratio 2lν/R ∼= 2(ν2/g2R3)1/4 is of the order of 10−2 for FC-72. This small ratio would
suggest that viscous dissipation in the Stokes boundary layer dominates over interior
dissipation and HM and Henderson & Miles (1994) assumed this to be the case for
water in a container of similar size. However, Martel, Nicolas & Vega (1998) and
Miles & Henderson (1998) showed theoretically that interior damping might be
significant even when lν/R ≪ 1, especially when the contact line is pinned, as is the
case for water. Miles & Henderson (1998) indicate that discrepancies remain between
calculated and experimental damping rates so that it is advisable to measure the
damping rate. In the case of glycerine–water, 2lν/R is an order of magnitude larger
and internal dissipation is expected to be of importance. We assume δ = δω so that
when substituting ω =(3.832g/R)1/2 in (2a), we can write the damping ratio in the
form:

δ = C(ν2/gR3)1/4, (2b)

and determine the constant C from experiments.
In the theory of HM, the wave amplitude as a function of time (at a given spatial

position) depends on three control parameters which are the forcing parameter ε,
the frequency offset or detuning parameter β and the damping ratio δ. For the
axisymmetric mode (0,1)

ε = Ak01 tanh(k01h), (3)

β =
ω2 − ω̂2

01

2εω̂2
01

. (4)

Steady-state waves exist in the range −γ <β <γ , with γ given by:

γ = [1 − (δ/ε)2]1/2. (5)

The stability boundaries are β = ± γ , with corresponding threshold forcing amplitude:

A

R
=

1

3.832 tanh(3.832h/R)

[

δ2 +

(

ω2 − ω̂2
01

)2

(

2ω̂2
01

)2

]1/2

. (6)

4. Domain of stationary wave motions and breaking conditions

All the results shown in this section have been obtained in the cylindrical container
of R = 2.5 cm filled with FC-72 liquid to a depth h = 3 cm.

4.1. Damping rate

For the determination of the instability threshold, it is important to know the damping
ratio δ to good accuracy. This ratio can be determined from decay experiments. When
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Figure 1. Typical decay of the wave amplitude showing the logarithm of b/b0 as a function
of time for ω = 38.18 rad s−1. The experimental points correspond to the wave amplitude at
each period and b0 is the wave amplitude at the stop of the container forcing. The straight
line is a least-squares fit and has a slope of 0.39 s−1.

the wave amplitude was established, the forcing was stopped and the wave motion
decayed freely in time. For small damping rate, the decay is exponential and is of the
form b = b0 exp(−δωt), where b0 is the wave amplitude when the forcing is stopped.
From images of the wave motion taken at 60 f.p.s., corresponding to a sampling
frequency of about ten times the wave frequency, the wave motion was reconstructed
by interpolation, giving the successive wave amplitudes to an accuracy of about
3 %. Figure 1 shows the logarithm of wave amplitude as a function of time for the
axisymmetric wave mode (0,1) at ω = 38.18 rad s−1. The decay rate is κ = 0.39 s−1

giving a damping ratio δ = κ/ω ∼=0.0102. From a total of seven decay experiments
conducted at frequencies ω near the natural axisymmetric mode frequency ω01, the
damping ratio was determined to be δ = 0.010 ± 0.0007. This value of 0.010 was used
for calculating the instability threshold from (6). Using the relation ω̂01 = ω01(1 −
δ), the natural frequency of the axisymmetric mode after viscosity correction is
ω̂01 =38.69 rad s−1. From here on we drop the circumflex and use for the viscous
shifted natural frequency of mode (0,1) the notation ω0 ≡ ω̂01.

If it is assumed that damping occurs in the Stokes boundary layers, we find from
(2b) a value of δ =0.010 when C = 1.75. With this value of C, the damping rate in
the HM experiments is δHM = 0.0199 when using ν = 0.01 cm2 s−1. This is close to
their measured value of δHM = 0.0188. This agreement does not, however, prove that
damping in the interior is insignificant.

4.2. Parametric instability and wave-breaking thresholds

Figure 2 shows the dimensionless forcing amplitude instability and wave-breaking
thresholds, respectively, Ac/R and Ab/R as a function of ω/ω0, where subscripts c

and b stand for parametric instability onset forcing amplitude and breaking forcing
amplitude threshold, respectively, and ω0 ≡ ω̂01 (see § 4.1). Wave breaking is defined
either by a jet forming or by pinching off the wave crest, followed by irregular
(chaotic) motion. The solid line corresponds to (6), with δ = 0.010 and the dotted
lines to the inviscid stability boundaries. There is good agreement between the
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Figure 2. Dimensionless forcing amplitude instability and wave-breaking thresholds,
respectively, Ac/R (×) and Ab/R (o), as a function of ω/ω0. The solid curve corresponds to (6)
and the dotted curve to the inviscid instability boundary. �, A/R = 0.0167, ω/ω0 = 0.959; �

A/R = 0.0235, ω/ω0 = 1.018 are the conditions at which the images of jet formation (figure 12)
were obtained and �, � and the vertical dashed line refer to conditions at which the jet
velocity has been measured. The bifurcation points are: β1 = −0.818, β2 = −0.72, β4 = 0.90.
The horizontal dashed line corresponds to the conditions of the wave amplitude response
curve shown in figure 3.

experimental and calculated instability thresholds in the range 0.94 <ω/ω0 < 1.02.
For ω/ω0 > 1.02, the experimental values deviate substantially from the theoretical
curve because the wave mode (3,1) is excited. When ω/ω0 < 0.942, the wave motion
bifurcates to mode (2,1). In general, there is a large difference between the instability
threshold forcing amplitude and wave breaking forcing amplitude threshold, except
in the range 0.942 � ω/ω0 < 0.975 where the two overlap and breaking always
occurs just above the instability threshold; in this range, no stable waves exist. This
behaviour is indicative of negative nonlinearity of the finite-amplitude resonance
frequency response for large fluid depth (Miles & Henderson 1990).

The limits of existence of stable wave motion depend on both the forcing
frequency and forcing amplitude related by the frequency-detuning parameter
β = (ω2 − ω2

0)/2εω2
0 (figure 2). The frequency domain of existence of wave breaking

increases with forcing amplitude. The minimum wave-breaking threshold is at
forcing amplitude A/R = 0.0079, ε = 0.0303, giving β = −γ = −0.944 using (5). The
corresponding dimensionless frequency is (4)

ω

ω0

=
[

−2ε(1 − (δ/ε)2)1/2 + 1
]1/2

, (7)

and has a value ω/ω0 = 0.971. This is close to the experimental value ω/ω0 =0.978,
corresponding to β = −0.72. This wave-breaking bifurcation point is denoted as
β2. At the dimensionless frequency ω/ω0 = 0.941, corresponding to β1 = −0.818, the
wave motion bifurcates to mode (2,1), and β4 = 0.90, ω/ω0 = 1.02, is the point where
bifurcation to mode (3,1) takes place. The bifurcation point β3 (see figure 9) has not
been identified here; it is close to β2.
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Figure 3. Wave-amplitude response for forcing amplitude, A/R = 0.006, indicated by the
horizontal dashed line in figure 2. �, steady-state axisymmetric waves; , the range of the
wave-amplitude modulation. The dash-dotted vertical lines connecting the same symbols give
the magnitude of the amplitude modulations and the thin solid vertical lines indicate the limits
−γ < β <γ , equation (5) with ε = 0.023. �, steady-state asymmetric wave motions of modes
(2,1) when ω/ω0 < 0.942 and (3,1) above; +γ = 0.90.

4.3. Wave-amplitude response

Figure 3 shows the wave-amplitude response b/R as a function of dimensionless
frequency ω/ω0 for forcing amplitude A/R = 0.006 (horizontal dashed line in figure 2).
All experimental points correspond to stable wave motions obtained when starting
from rest. As will be shown in § 5, the instability is subcritical for ω/ω0 < 1 and
supercritical for ω/ω0 � 1. The solid bold symbols indicate the existence of steady-
state axisymmetric waves and the open symbols refer to mode (3,1) when ω/ω0 > 1.02
and to mode (2,1) when ω/ω0 < 0.942. Stable axisymmetric wave motions are observed
for −γ <β <γ , where ±γ = ± 0.90, ε = 0.023 (A/R = 0.006), but the wave motion is
steady state in a subrange only. Near −γ , there is an amplitude modulation of the
axisymmetric mode (bold open symbols). There is no wave breaking at this forcing
amplitude (figure 2).

In figure 4, the amplitude response curves are shown for forcing amplitudes
A/R = 0.006 to 0.025. As expected from the phase diagram (figure 2), stable
axisymmetric wave motion only exists for A/R < 0.015, with the frequency
range increasing with decreasing forcing amplitude. When A/R � 0.015, only
stable asymmetric wave modes exist. Stable axisymmetric waves are bounded by
β2 = −0.72 (A/R ∼= 0.0079) with corresponding dimensionless frequency ω/ω0 =0.978
and by β4 = 0.90, corresponding to ω/ω0 =1.02. The amplitude modulations of the
axisymmetric wave motions are largest at A/R ≈ 0.008. The maximum frequency
range of axisymmetric wave breaking is 0.942 <ω/ω0 < 1.02. This range decreases
when the forcing amplitude is A/R < 0.015 and is zero when A/R � 0.008. When, for
a given forcing amplitude, say A/R = 0.020, the forcing frequency is increased by small
increments, starting (figure 4) at ω/ω0 ≈ 0.901, steady-state asymmetric wave motion
of mode (2,1) is observed with the wave amplitude decreasing with increasing forcing
frequency until breaking of this wave mode occurs at ω/ω0 ≈ 0.93 1. When the forcing
frequency is further increased, breaking continues but switches to the axisymmetric
mode until the breaking threshold boundary of the asymmetric mode (3,1) is crossed

7
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Figure 4. Wave-amplitude response curves for forcing amplitudes ranging from A/R =0.006
to 0.025. As in figure 3, the closed symbols indicate steady-state axisymmetric waves: �, 0.006;
�, 0.008; �, 0.01 and open, bold symbols indicate the range of the wave-amplitude modulation
of axisymmetric waves: , 0.006; , 0.008; , 0.01. The open, light symbols represent steady-state
asymmetric wave modes (2,1) and (3,1): �, A/R = 0.006; �, 0.008; �, 0.01; �, 0.015; ⋆, 0.020
×, 0.025. The vertical thin dotted lines indicate the wave-breaking limits and the vertical thin
solid lines, β2 and β4, indicate the limits of stable axisymmetric wave motion.

at ω/ω0
∼= 1.03 6. The behaviour is similar for A/R = 0.025, but with an increased

frequency range of breaking. For A/R = 0.015, the wave amplitude first decreases to
zero with increasing forcing frequency and when the breaking threshold is crossed at
ω/ω0

∼= 0.94 2, breaking of the axisymmetric wave occurs up to ω/ω0
∼= 1.02 0 where

the steady-state wave motion of the asymmetric wave mode (3,1) is reached. For
A/R = 0.01 and 0.008, the behaviour is similar but with a larger frequency range of
zero wave amplitude and narrower range of wave breaking.

4.4. Amplitude modulations

The amplitude modulations of the axisymmetric wave mode mentioned above is a
slow time scale modulation for forcing amplitudes A/R = 0.006 and A/R = 0.010
and a period tripling event occurs at forcing amplitude A/R =0.008. This is shown
in figure 5 where the wave amplitudes are plotted as a function of dimensionless
time t/T , where T = 2π/ω. The amplitude modulations in figures 5(a) and 5(c) are
periodic with the period reducing with increasing forcing amplitude. This suggests
a slow time scale of the form τ = Kεπt/T , similar to Miles’ (1984) slow time scale.
For A/R = 0.006, τ ≈ 0.1t/T and for A/R = 0.01, τ ≈ 0.18t/T , giving K ≈ 1.5. The
modulation in wave amplitude in dimensionless time t/T is, therefore, respectively
0.1 and 0.18 of the change in dimensionless slow time τ . This is in good agreement
with observations where the half-periods in growth in wave amplitudes are 10t/T and
7t/T . Images of the corresponding wave shapes are shown in figure 6. As expected,
the wave crest is more pointed for A/R = 0.01 as is seen in figure 6(b) where images
are shown for t/T =1 and 15; 4 and 18; 8 and 22. For A/R = 0.006 (figure 6a) the
wave crest is almost flat with small-amplitude modulations at the forcing frequency

8
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Figure 5. Amplitude modulations for different A/R. (a) A/R = 0.006, ω/ω0 = 0.994;
(b) A/R = 0.008, ω/ω0 =0.994; (c) A/R = 0.01, ω/ω0 = 1.007; T is the wave period. The points
are the measured wave amplitudes, and the dashed lines join negative and positive amplitudes.

t = 3T, 23T, .... t = 8T, 28T, .... t = 13T, 33T, ....

t = 1T, 15T, .... t = 4T, 18T, .... t = 8T, 22T, ....

(a)

(b)

Figure 6. Images showing the wave-amplitude modulations for (a) A/R = 0.006,
ω/ω0 = 0.994; (b) A/R = 0.01, ω/ω0 = 1.007

.

for which the images are shown. For slightly lower forcing frequency, the amplitude
modulations are larger, as seen in figure 4, but remain similar to figure 6(a).

The period tripling event at A/R = 0.008 is demonstrated in figure 7. The event is
visualized in the images shown in figure 7(a). It is seen that the wave crest steepens,
is flat-topped in the next period and then takes an intermediate amplitude before
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t = 4, 7T, .... t = 5T, 8T, .... t = 6T, 9T, ....

Mode A Mode B Mode C

(a)

(a)

Figure 7. Images showing the wave-amplitude modulations for the conditions shown in fig-
ure 5(b). (a) Period tripling scenario; (b) contours of the wave shapes traced from the images
(with the scale slightly enlarged).

the cycle begins again. The wave shape contours are traced in figure 7(b) (somewhat
enlarged with respect to the images). This period tripling is similar to the period
tripling event observed by Jiang et al. (1998) for two-dimensional waves, except that
in the present experiments there is no wave breaking or spilling associated. It is most
likely that capillary forces that are stronger in the axisymmetric case prevent the
wave from breaking. The downward acceleration by the capillary forces is, however,
only a fraction of the acceleration due to gravity (about 0.1g). The wave amplitude
bc at which the downward acceleration is equal to gravity is bc = g/ω2

0
∼=0.26R and

it can be seen in figure 4 that the wave crest can reach twice this value. Therefore,
it is expected that a lump of fluid falls nearly freely under gravity and impinges on
the upward-moving wave crest during the next period causing the wave top to flatten
and dissipate wave energy.

Figure 8 shows the amplitude modulation for A/R = 0.008 and ω/ω0 = 0.986 just
before breaking or jet formation. A sequence of images (figure 8b) shows period
tripling with a large variation in amplitude. However, period tripling events observed
at this frequency are not continuous (figure 8a). In the time series t/T = 0 to 30, no
period tripling occurs in t/T = 4 to 6 and 16 to 18, whereas successive period tripling
events occur for t/T = 1 to 3, 7 to 15 and 19 to 30.

5. Supercritical and subcritical instabilities

In this section, results of the nature of the instability are presented for the low-
viscosity liquid FC-72 in the larger container of R = 5 cm filled to a depth h = 6 cm.
The larger container is used here because the resolution is somewhat improved
when the container is larger and damping is less. Note that this container has been
constructed for the purpose of clarifying the possible effect of surface tension on jet
formation presented in § 6.
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Figure 8. Amplitude modulations for A/R = 0.008 and ω/ω0 = 0.986. (a) Wave amplitude as
a function of time showing amplitude modulations; (b) images showing different stages of the
modulations with and without period tripling.

5.1. Parametric instability threshold

The forcing amplitude instability threshold as a function of dimensionless wave
frequency is shown in figure 9 for FC-72. As in figure 2, the axisymmetric mode
(0,1) exists in the range 0.94 <ω/ω0 < 1.020 and there is good agreement with
the theoretical prediction (6) shown by the solid curve in figure 9. It should
be noted that as in figure 2, the experimental points are slightly above neutral
stability where perceptible but no measurable wave motion exists (wave amplitude
of 0.1 to 0.2 mm). This means that, in the frequency range where the instability
and breaking thresholds coincide, the wave amplitude at the experimental points
indicated, will grow and eventually break. The neutral stability boundary is very
close to the experimental points (about 1% below). The value of the damping
ratio used in fitting the theoretical curve is δ =0.0022. The value obtained from
(2a) with C = 1.75 is 0.0059. We have conducted two decay experiments that
give a value δ ≈ 0.0022, hence C ≈ 0.6. This seems to indicate that in the smaller
container, internal damping is of importance whereas in the R =5 cm container,

11



Acc
ep

te
d 

M
an

us
cr

ip
t

0.020

0.016

0.012

A

R

0.008

0.004

1

2

0
0.9 1.0

ω/(ω0)

β1

β2

β3

β4

1.1

Figure 9. Dimensionless forcing amplitude instability thresholds as a function of ω/ω0 for
FC-72 in the R = 5 cm container. The solid line corresponds to the theoretical curve (6)
with δ = 0.0022. Bifurcation points are: bifurcation to mode (2,1), β1 = −0.962, ω/ω0 = 0.94;
wave-breaking bifurcation, β2 = −1.015, ω/ω0 = 0.974; unsteady wave motion, β3 = −0.753,
ω/ω0 = 0.987; bifurcation to mode (3,1), β4 = 0.875, ω/ω0 = 1.02; β is defined by (6). - - -,
experimental wave breaking threshold; · · ·, onset of unstable wave motion.

internal damping is negligible. The linear damping corrected resonance frequency is
ω0 ≡ ω̂01 =ω01(1 − δ) = 27.419(1 − 0.0022) = 27.358 rad s−1.

At ω/ω0 =1.020, β4 = 0.875, the wave motion bifurcates to the wave mode (3,1)
of dimensionless wavenumber k31R =4.201 and of linear damping shifted frequency
ω31 = 28.69 rad s−1. In figure 9, the natural frequency of this mode is, therefore, at
ω/ω0 = 1.0496. In the range 0.94 � ω/ω0 < 0.974, β1 � β >β2, where β1 = −0.962 and
β2 = − 1.015, the wave motion is unstable when the parametric instability threshold
is crossed with exponential growth in wave amplitude up to breaking (inset image 1)
with possible jet formation. In the interval 0.974 � ω/ω0 � 0.987, β2 � β � β3, where
β3 = −0.753, the wave motion is unstable above the instability threshold but the
amplitude remains finite (inset image 2). In the range 0.987 <ω/ω0 � 1.020, the
instability is subcritical for ω/ω0 < 1 and supercritical at ω/ω0 = 1 and above (see
§ 5.2). Because of smaller damping in the R =5 cm container, the values of the
bifurcation points differ from the values in the R = 2.5 cm container.

5.2. Instability behaviour

In figure 10, the dimensionless wave amplitude is plotted as a function of the control
parameter

α =
A − Ac

Ac

, (8)

for values of ω/ω0 =0.9994, 1.0086 and 0.9926, first by increasing and then decreasing
the forcing amplitude by small steps. The value of Ac in (8) is given by the stability
threshold shown in figure 9 at the frequency considered. At the natural frequency and
above, the instability is clearly supercritical with the wave amplitude, proportional to
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Figure 10. Dimensionless wave amplitude as a function of the control parameter α (8), for �,
ω/ω0 =0.9994; �, 1.0086; �, 0.9926. The open symbols indicate increasing forcing amplitude
A by small increments �A and the solid symbols indicate decreasing forcing amplitude.
The time interval between each increment and decrement is about 100 s. The curves fitted
through the experimental data at ω/ω0 = 0.9994 and 1.0086 are, respectively, b/R = 0.069α12

and b/R = 0.137α12; R = 5 cm.

the fluid velocity, increasing as α1/2. The prefactor depends on ω/ω0. At ω/ω0 = 0.9994,
b/R = 0.069α12 and at ω/ω0 = 1.0086, b/R =0.137α1/2. The maximum value of α is
limited by the onset of amplitude modulations. Below the natural frequency (ω < ω0),
the instability is subcritical. When at ω/ω0 = 0.9994, the instability threshold Ac is
crossed by increasing the forcing amplitude by small increments, the wave amplitude
increases suddenly to b/R ≈ 0.11. Then it continues to increase slowly with increasing
forcing amplitude. The maximum value of α is in this case limited by the unsteady
wave motion threshold. When the forcing amplitude is then decreased in small steps,
the wave amplitude decreases slowly down to b/R ≈ 0.075 and then drops to zero at
α ∼= −0.739.

The subcritical behaviour for ω/ω0 < 1 is demonstrated well by figure 11, where the
wave amplitude is plotted as a function of ω/ω0 for a forcing amplitude A/R = 0.0015.
A finite-amplitude wave motion is first established by starting at ω/ω0 = 0.999. When
the forcing frequency is then decreased by small steps, the wave amplitude increases
until the instability threshold is crossed, beyond which it continues to increase with
decreasing forcing frequency down to ω/ω0

∼=0.986 where it drops to zero suddenly.
When ω/ω0 is then increased, the wave amplitude remains zero until the instability
threshold is reached where it increases rapidly. There is a clear hysteresis loop
consistent with the subcritical behaviour shown in figure 10 for ω/ω0 < 1. On the
contrary, when the forcing frequency is increased starting at ω/ω0 = 1 the wave
amplitude decreases until the instability threshold is crossed and then drops to zero,
consistent with the supercritical instability at ω/ω0 � 1. Benielli & Sommeria (1998)
determined a similar behaviour of the asymmetric internal wave mode (1,1) for
parametrically forced internal waves at a density interface and Dodge (1966) showed
the existence of a hysteresis loop for the surface wave mode (1,1). In a narrow
rectangular channel, Jiang et al. (1996) showed the existence of a hysteresis loop that
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Figure 11. Dimensionless wave amplitude versus forcing frequency for A/R = 0.0015. �,
decreasing frequency starting at ω/ω0 =0.9994; �, increasing frequency. The arrows indicate
the sense of the hysteresis loop. Vertical solid lines indicate cross-over frequencies of the
instability curve (figure 9).
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Figure 12. (a) Wave-amplitude growth versus time. ×, breaking regime, ω/ω0 =0.963,
A/R = 0.0113, ti/T = 42; �, steady-state wave regime, ω/ω0 =1, A/R = 0.005, ti/T ≈ 63. The
solid lines represent the exponential fits. (b) Time of onset of wave motion ti (�, �) and
amplification rate s (�, �) versus the control parameter α. The solid symbols are for the
steady wave regime; T = 2π/ω.

was attributed to contact line effects. Note that just beyond the bifurcation point to
mode (3,1), that is at ω/ω0 =1.02, the instability of mode (3,1) is again subcritical.

The temporal growth in wave amplitude above the instability threshold is
exponential. From figure 12(a), this is clear in the frequency range where the instability
and breaking thresholds coincide (0.94 � ω/ω0 < 0.974) and the wave amplitude grows
until breaking. In the stable wave regime, the growth is exponential only initially and
then changes to a nearly linear growth before reaching the stable wave amplitude.
However, in both regimes, when starting from rest at time t = 0 in figure 12(a), this
onset in exponential growth occurs only after a certain time, denoted as ti . In the
typical examples shown in figure 12(a), the exponential growth in wave amplitude
for ω/ω0 =0.963, A/R = 0.0113 starts at ti/T ≈ 42 and in the stable wave regime,
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Figure 13. A composite of two photographs showing the axisymmetric wave depression
(cavity) below and jet formation above for (a) A/R = 0.0167, ω/ω0 = 0.959; (b) A/R = 0.0235,
ω/ω0 =1.018. The horizontal and vertical bars represent 1 cm. Note that the horizontal scale
changes somewhat with location because of optical distortions. R = 2.5 cm, FC-72 liquid.

ω/ω0 = 1, A/R = 0.005 at ti/T ≈ 63. Before this time ti there is no discernible motion
of the free surface in the centre of the container.

The growth rate can be written as b/R = (bi/R) exp(sω(t − ti)) where s is the
dimensionless amplification rate and bi the initial wave amplitude at ti . In the
breaking regime at frequency ω/ω0 =0.963, we determined the amplification rate s

and the onset time ti for different values of α = (A − Ac)/Ac (figure 12b). ti decreases
with increasing α and the amplification rate slightly increases. In the stable wave
regime it takes a longer time (solid square symbol) before the wave amplitude starts
to grow. The growth rate (solid triangle) is similar to that in the breaking regime.

6. Jet formation: finite-time singularity

For container forcing amplitudes A > Ab, wave breaking occurs. Axisymmetric wave
breaking may lead to high-velocity jet formation. The jet is formed by the collapse of
the depression or cavity caused by the large-amplitude axisymmetric standing wave, a
phenomenon observed by Longuet-Higgins (1983) and analysed by Zeff et al. (2000).
Images of the wave depression (lower part of image) and of jet formation (upper part
of image) are shown in figure 13 for two different forcing conditions; these conditions
are indicated in figure 2 by � and �.

The question is whether this jet formation depends on surface tension. Zeff et al.
developed a similarity theory and a power-law scaling in (t − t0)

±2/3 of the free-
surface displacement and of the velocity potential (where t0 is the time at which
the singularity occurs) to calculate the form of the free-surface depression near t0.
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Figure 14. Dimensionless jet velocity versus the last smooth standing-wave amplitude
((b − bs)/R) at ω/ω0 =1.018; �, without bubble pinch-off; �, with pinch-off. (a) Jet velocity
made dimensionless by the surface tension velocity scale, Vg/(σ/ρR)1/2 and (b) jet velocity

made dimensionless by the inertial velocity scale (wave fluid velocity), (gR)1/2. The solid
line in (a) is the Weber number correlation (9) and the dotted lines are correlation (10)
for rs = 3 mm and dashed lines for rs = 2 mm. The solid, dotted and dashed lines in (b) are
the Froude number correlations (11) and (12), respectively. bs/R ∼= 0.88, bsω = 84.87 cm s−1,
(σ/ρR)1/2 = 1.61 cm s−1. +, O, Zeff et al. (σ/ρR)1/2 = 2.85 cm s−1, bs/R = 0.968.

This scaling introduces a Weber number and the experiments of Zeff et al. seem to
indicate that the maximum jet velocity, Vg , scales with the Weber number in the form
We = ρV 2

g (b − bs)/σ , where bs is the maximum stable wave amplitude above which
bubble pinch-off (figure 13a) takes place at the wave depression. The value of the
critical Weber number is not given, but the experimental results of Zeff et al. suggest
a value of Wec ≈ 3000. The container radius should enter into the scaling because
the critical wave amplitude bs must depend on R. Viscous cutoff prevents Vg from
becoming infinite as b → bs . A non-smooth surface has a similar cutoff effect to
viscosity. This is the case with water where perturbations in the form of parasitic
capillary waves appear. Zeff et al. used a container of radius R = 6.35 cm and a
glycerine–water solution of ν =1.94 cm2 s−1 to keep the surface smooth at large wave
amplitudes. With the low-viscosity fluid FC-72, parasitic capillary waves are reduced
because of the low kinematic surface tension. Generally, a stationary wave motion
was first established at A/R = 0.012 and ω/ω0

∼=1.018 (� in figure 2) and then the
forcing amplitude was increased above the wave-breaking threshold amplitude Ab.
Experiments done at ω/ω0

∼= 0.959 (� in figure 2), where no stable axisymmetric wave
motion exists, lead practically to the same jet formation.

In order to be able to compare results obtained with different container sizes and
different fluid properties, it is necessary to develop a dimensionless expression for the
jet velocity. If we use the Weber number criterion as suggested by Zeff at al., the
following dimensionless scaling law can be established:

Vg

(σ/ρR)1/2
=

[

Wec

R

b|(1 − bs/b)|

]1/2

. (9)

In figure 14(a), we plot this dimensionless jet velocity Vg/(σ/ρR)1/2 as a function of
b/R, where b is the last ‘stable’ wave amplitude before cavity formation and sudden
jet emergence. The solid lines in figure 14(a) are for Wec =3000 in (9) that best fits
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the data of Zeff et al. The corresponding critical wave amplitude is bs/R = 0.968,
whereas the present data are best fitted by bs/R = 0.88. Although the dispersion in
the measured velocities is large, the relatively good collapse of the present results
with the results of Zeff et al., obtained for a kinematic surface tension ten times larger
(σ/ρ ≈ 65 cm3 s−2), would indicate that the jet velocity scales with surface tension.
The agreement is less good when the singularity is approached (b → bs), which would
suggest that in a larger container the singularity is more pronounced. One possible
argument is that the wave depression, that is the radius of the cavity rs , just before
jet emergence, is finite and is, to first approximation, independent of container radius.
Thus when rs/R is small, the jet velocity is larger. We can add this finite-size effect
in (9) in the form:

Vg

(σ/ρR)1/2
=

[

Wec

R

b|(1 − bs/b)| + r2
s /R

]1/2

. (10)

The experimental data obtained in a container of size R =2.5 cm are best fitted
by a cavity radius (quasi-singularity) at jet emergence of rs ≈ 3 mm. The jet velocities
according to (10) with rs ≈ 3 mm are shown by the dotted lines in figure 14. This
has the correct behaviour, but in order to reach the largest jet velocity measured by
Zeff et al. the cavity radius has to be reduced to about rs ≈ 2 mm (dashed lines in
figure 14).

The distinction between the right-hand and left-hand branches in figure 14 is that
there is bubble detachment when (b − bs)/R > 0 (figure 13a). The data by Zeff et al.
show this distinction clearly, whereas in the present data the dispersion is larger. We
kept all data to show that the jet velocities are not always identical for the same
experimental conditions; small perturbations can become significant.

In figure 14(a), the jet velocity is two to three orders of magnitude larger than
the surface tension velocity scale (σ/ρR)1/2. Even if R is replaced by the radius rs at
which surface tension forces act, the jet velocity is still one to two orders of magnitude
larger than the surface-tension generated velocity. This suggests that the driving force
is inertia. The jet velocity can in this case be scaled by a modified Froude number of
the form Vg/(gR)1/2/((b − bs)/R) = Fr . In figure 14(b), the jet velocity is scaled with
(gR)1/2 and plotted as a function of (b − bs)/R as in figure 14(a). The solid line in
figure 14(b) is the correlation

Vg

(gR)1/2
=

[

Frc

R

b|(1 − bs/b)|

]1/2

, (11)

with the characteristic Froude number Frc = 4.3. The dotted and dashed lines are the
finite-size cavity correlation with, respectively, rs = 3 mm and 2 mm in the correlation:

Vg

(gR)1/2
=

[

Frc

R

b|(1 − bs/b)| + r2
s /R

]1/2

. (12)

The scaling with (gR)1/2 collapses the data nearly as well as the surface tension
scaling and the numerical values of the dimensionless jet velocity are physically
more plausible. The reason for the collapse of the data in both scalings is that by
coincidence the ratio of

√
σ/ρR and the square root of the radii in the present and

the Zeff et al. experiments differ only by about 20 %. Therefore, the good collapse by
the Weber number scaling is not conclusive.

In the falling, partially filled, coffee cup experiment of Milgram (1969), surface
tension is required to curve the free surface during the free fall, but the jet is formed

17



Acc
ep

te
d 

M
an

us
cr

ip
t

by the gravity wave generated when the cup impacts on the ground which propagates
radially inward and forms a central cavity; the inertial collapse of this cavity generates
an intense jet. A similar jet by inertial cavity collapse is observed in dam break
experiments in a cylindrical container where a gravity wave propagates toward
the centre after sudden withdrawal of the barrier (Hopfinger & Baumbach 2007).
When a wave impacts on a vertical wall, a two-dimensional jet is formed (Peregrine
et al. 2004). In these situations, as the air cavity forms there is a phenomenon called
flip-through.

In the present standing-wave experiments, the cavity is formed by the downward
acceleration of the large-amplitude axisymmetric wave crest column. When the wave
amplitude is large, a fluid column (part of the wave crest) falls under gravity and
surface tension forces and impinges at the wave trough, forming a cavity. In order
to clarify the possible influences of container size and of surface tension on this
mechanism, we performed further experiments in the container of R = 5 cm with
FC-72, glycerine–water solution and some with distilled water (in the small container,
experiments with glycerine–water were not conclusive because of too much damping).
The forcing amplitude stability thresholds for glycerine–water and water as well as
water with photo fluid are given in the Appendix. Figure 15 shows, for the three
liquids, typical shapes of the last stable wave crests as well as the cavities, which form
half a period later at the wave trough. On (inertial) collapse of these cavities the
intense jet emerges. Clearly, surface tension and viscosity (if the Ohnesorge number
is of order 1 as it is for glycerine–water) affect the shape of the wave crests and,
consequently the cavity size by inhibiting parasitic capillary waves and by preventing
Taylor instability from developing. Taylor showed that a free surface, hence a wave
crest, is unstable when the downward acceleration exceeds gravity g (Taylor 1950).
Milgram (1969) extended the theory of Taylor by including the effect of surface
tension and showed that the free surface is unstable when the downward acceleration
exceeds gravity plus the acceleration due to surface tension. For the axisymmetric
wave, downward acceleration due to surface tension is in the linear limit equal to
(σ/ρ)k2

01. As the wave amplitude grows, the curvature of the wave crest increases,
hence increasing the surface tension contribution. Rayleigh instability is not possible
because the shortest wavelength that could be amplified exceeds 2πr1.

It can be seen from figure 15(a) that the large viscosity of glycerine–water solution
inhibits parasitic capillary waves and Taylor instability. The fluid column is smooth
and has a smaller diameter. The cavity that is formed (lower part of image) when
the wave column is accelerated downward, and impinges on the wave trough, is
deeper and of smaller size than in water and FC-72. Its aspect ratio, that is cavity
depth to cavity radius, is ℓ/rca � 1. The cavity size, of radius rca , shown in the images
corresponds to the instant when the cavity just begins to contract. When the kinematic
surface tension is small as in FC-72 (figure 15d, e) a cylindrical precursor fluid column
is projected upward (Taylor instability) that is then partially or completely taken over
by the following wave crest; drop pinch-off may occur in some cases (figure 15d) or the
wave crest may be flat-toped (figure 15e). Parasitic capillary waves are insignificant.
With water (figure 15b, c) this upward projection of a cylindrical fluid column also
happens, but is less pronounced because of higher surface tension. Parasitic capillary
waves are clearly present (figure 15b taken at 0.186T before figure 15c) but because
of the high surface tension, the wave crest remains axisymmetric. The wave shape
shown in image 15(f ) is for FC-72 and container radius R = 2.5 cm resulting in a
lower Bond number and, hence, a smoother wave crest. The characteristic values of
the wave crest and of the cavity are summarized in table 1.
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Figure 15. Composite images (a, c–e) obtained in container R = 5 cm and image (f ) obtained
in container R = 2.5 cm, showing the last stable wave amplitude and the following (half a
period later) wave depression (cavity) below, for glycerine–water (a), water (c) and FC-72 (d , e).
(b) The wave crest for water, with parasitic capillary waves, taken at 0.186 wave period before
the maximum wave amplitude is reached, shown in (c); (a) ωf /2π = 8.85 Hz, A/R = 0.0368;
(c) ωf /2π = 8.86 Hz, A/R =0.0154; (d) ωf /2π = 8.77 Hz, A/R = 0.0179;(e) ωf /2π = 8.35 Hz,
A/R = 0.0143; (f ) R = 2.5 cm, FC-72, ωf /2π = 11.65Hz, A/R = 0.0175.

In figure 16, dimensionless jet velocities (Vg/
√

gR) are shown as a function of
(b−bs)/R for the three liquids in the container of R = 5 cm. The first observation is that
the jet velocity scales with the Froude number because for FC-72 the dimensionless
velocity is nearly the same in containers of R = 2.5 cm (figure 14b) and of R = 5 cm.
Furthermore, in water of about ten times larger kinematic surface tension, the jet
velocity is only about 40 % larger (and not by a factor of 3 as surface tension scaling
would suggest) than in FC-72. The reason is that the contribution of surface tension to
the downward acceleration is larger in water than in FC-72 (table 1). With glycerine–
water, a much larger jet velocity can be achieved. This is because the last stable
wave crest is of larger amplitude and has a smaller radius. In addition, it remains
smooth (figure 15a) because the large viscosity prevents parasitic capillary waves and
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σ/ρ

(cm3 s−2) ν (cm2 s−1) R (cm) T (s) r1 (mm) rca (mm) ℓ/rca

σ

ρgr2
1

tcr (s) acr/g

2.5 0.17 2.7 4 1.05 0.09 0.056 1.16
FC-72 6.5 0.0040 5 0.23 5.5 9.5 – 0.02 – –

5 0.24 7 11.1 0.59 0.01 0.064 1.09
Glycerine– 65 2.5 5 0.23 4.5 3.2 2.14 0.3 0.079 1.16

water
Water 71 0.01 5 0.23 6 9.5 0.32 0.2 0.059 1.3

Table 1. Summary of the fluid properties, wave crest radius, r1, cavity radius, rca , and of cavity
aspect ratios ℓ/rca . acr is the measured downward acceleration of the wave crest before cavity
formation and tcr is the time it takes for the wave crest to move downward by a distance R.
the wave period is T = 2π/ω.

60
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Figure 16. Dimensionless jet velocity versus (b − bs)/R, where b is the last stable wave
amplitude before jet formation. �, glycerine–water; �, FC-72; �, distilled water. Filled symbols
with letters next it, are the velocities corresponding to the images shown in figure 15. The
wave amplitude bs above which bubble pinch-off occurs (figure 13a) is bs/R ≈ 0.815, 0.92
and 1.07 for, respectively, FC-72, water and glycerine water. The data are best fitted by (12)
with rs = 3, 3, 2 mm, respectively, for FCg-72 (- - -), water (. . .), and glycerine–water (——–).
With water–photo fluid solution, bs/R = 1, point ⊳, the experiment has been done for forcing
amplitude A/R = 0.013 and forcing frequency ωf /2π =8.4 Hz.

Taylor instability. The cavity that forms is consequently smaller and deeper (larger
aspect ratio ℓ/rca). It is not surface tension that is responsible for the larger cavity
aspect ratio, hence larger jet velocity, because the contribution of surface tension
to the downward acceleration of the wave crest, acr , is less than in water (table 1).
Furthermore, the upward acceleration by surface tension in the cavity is negligible
compared with the wave acceleration and especially compared with the acceleration
required to produce the high-velocity jet.
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In figure 16, it can be seen that the jet velocities are reasonably well fitted by (12)
when taking for glycerine–water a smaller value of rs (rs = 2 mm) than for FC-72
and water (rs = 3 mm). The model of Zeff et al. indicates that the cavity collapse is
homothetic so that the radius, rs , of the singularity will be smaller when the cavity
aspect ratio is large. In glycerine–water, the cavity aspect ratio is ℓ/rca ≈ 2, leading to
a smaller value of rs , hence, a larger jet velocity. There is a large dispersion of the jet
velocity data because small perturbations may have a large effect. In particular, the
conditions at the singularity require very fine-tuning and many trials are necessary to
achieve a very high velocity. Zeff et al. have only one data point at 60 m s−1. We have
not reached such a velocity value with about 30 runs. In some experiments, a 1 %
ILFORD ILFOTOL in distilled water was used. The photo fluid solution reduces the
surface tension to σ ≈ 45 dyn cm−1, but does not seem to completely eliminate surface
rigidity (see the Appendix). Parasitic capillary waves are reduced and the wave crest,
because of the larger surface tension compared with FC-72, remains axisymmetric.
The cavity that is formed is smaller and of larger aspect ratio than in water or FC-72,
hence giving rise to a larger jet velocity.

7. Conclusions

The experimentally determined stability threshold of the parametrically forced
axisymmetric gravity wave mode (0,1) in a low viscosity and low kinematic surface
tension fluid in a circular cylinder is shown to be in good agreement with the HM
theory. Bifurcations to other wave modes, namely modes (2,1) and (3,1), take place at
forcing frequencies where the stability thresholds of the different wave modes overlap.
Stationary finite-amplitude wave motions exist between the stability threshold and
the wave-breaking threshold established in the present experiments. The parametric
instability of the axisymmetric mode is shown to be supercritical at the natural
frequency and above, and subcritical in a certain frequency range below. Above
the instability threshold, the temporal growth of the wave amplitude is exponential
after some initial time delay that depends on forcing amplitude with respect to
the threshold forcing amplitude. The amplitude response curve shows that near the
breaking boundary, the finite-amplitude wave motions exhibit amplitude modulations.
These modulations occur on a slow time scale or by period tripling, similar to what has
been observed by Jiang et al. (1998) for two-dimensional breaking waves. However,
here, period tripling occurs without wave breaking or spilling.

In the unstable wave-breaking regime, drop pinch-off at the wave crest occurs or
an intense jet may emerge suddenly. This finite-time singularity, demonstrated by Zeff
et al. (2000) in fluids of high viscosity, is caused by cavity collapse. The cavity is
created by the large-amplitude wave crest that falls nearly freely under gravity and
surface tension forces and impinges on the wave trough. The present experiments
demonstrate that this near singularity is possible in low viscosity and low kinematic
surface tension liquids. Using the results of Zeff et al. we first developed a Weber-
number scaling for the jet velocity that takes into account the container size in
addition to the fluid properties. However, the analysis of the results in two containers
of different radii and the use of three different liquids indicate that the jet velocity
scales on the wave fluid velocity that suggests a Froude-number scaling. Nevertheless,
surface tension and especially viscosity (when the Ohnesorge number is of order 1)
affect the intensity of the jet by affecting the wave crest shape and hence the cavity
aspect ratio.
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Figure 17. Forcing amplitude instability threshold versus forcing frequency; �, distilled water;
�, distilled water with 1 % photo fluid added; �, glycerine–water. The theoretical natural
frequencies (1) of the axisymmetric mode (0,1) are ω01 = 27.89 rad s−1 for glycerine–water and
27.99 rad s−1 for water. For water with photo fluid ω01 = 27.89 rad s−1 as for glycerine–water
(no viscous correction applied). The corresponding forcing frequencies are, respectively,
ωf /2π ≈ 8.88 and 8.91 Hz.

What happens is that the wave crest, by inertial upward projection, can reach
amplitudes of b ≈ R that are much larger than the wave amplitude where the
downward wave crest acceleration is equal to gravity (plus acceleration due to surface
tension), which is about b ≈ 0.3R. The shape of this wave crest and the adjacent
fluid column is affected by surface tension or viscosity when the Ohnesorge number
Oh = ν/

√
σ r1/ρ is of order 1, which is the case for glycerine–water. When the main

wave accelerates downward, the fluid column above (above 0.3R) falls back freely
under gravity plus surface tension (effective downward acceleration acr , table 1) and
impinges on the wave trough, forming a cavity. Its radius and depth depend on the
wave-crest amplitude and shape and on acr . The (inertial) collapse of this cavity and
jet emergence are then a function of the wave velocity bω ≈

√
gR and of the radius

rs (quasi-singularity) that depends on the cavity aspect ratio ℓ/rca , determined by
surface tension and/or viscosity.

The valuable technical help of Pierre Carecchio, Joseph Virone and François Bonnel
is gratefully acknowledged. The work was financially supported by contract CNES
60167 within the COMPERE programme.

Appendix. Stability threshold forcing amplitude for glycerine–water and water

In figure 17, we show the measured forcing amplitude instability threshold as a
function of forcing frequency for water and glycerine–water in the R =5 cm container.
The observed natural frequencies are nearly identical and are larger ωf /2π

∼= 9.1 Hz
than the natural frequencies calculated from (1) that would correspond to forcing
frequencies ωf /2π

∼= 8.88 Hz. This is because the contact line is practically pinned to
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the container wall resulting in a higher wave frequency. The effect of contact line
conditions on frequency has been pointed out by Benjamin & Scott (1979) in the
context of travelling surface waves in a narrow rectangular channel. The speed of
wave propagation is increased by the stiffening effect of surface tension with the
contact line pinned to the wall. When a 1% ILFORD ILFOTOL fluid is added to
distilled water, the measured frequency is close to the theoretical value.

In glycerine–water, because of its large kinematic viscosity (ν ≈ 2.5 cm2 s−1),
damping is expected to be very large. From the measured critical forcing amplitude
of A/R ∼=0.021 at the natural frequency (figure 17), a damping ratio δ ≈ 0.081 is
obtained from (6). This corresponds to a decrease in wave amplitude by 1/e in two
wave periods. From (2b) we obtain δ ≈ 0.084 when C ≈ 1. For water we obtain from
figure 17 a value of δ ≈ 0.019, whereas from (2b) with C = 1 we obtain δ ≈ 0.0053.
This indicates that the free surface has rigidity so that damping at the free surface is
important. The parasitic capillary waves in water, observed on the wave crest during
jet formation, may be related to this surface rigidity.

When 1 % photo fluid (ILFOD ILFOTOL) is added to water, the damping is
somewhat reduced. From figure 17 and (6), the damping is δ ≈ 0.019 so that in (2b)
the constant C ≈ 3.5. This would indicate that the surface rigidity is only slightly
reduced, but the contact line is free to move because the frequency is close to the
theoretical value.
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