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We revisit the dynamics of a gene repressed by its own protein in the case where the transcription
rate does not adapt instantaneously to protein concentration but is a dynamical variable. We derive
analytical criteria for the appearance of sustained oscillations and find that they require degradation
mechanisms much less nonlinear than for infinitely fast regulation. Deterministic predictions are
confirmed by stochastic simulations of this minimal genetic oscillator.

PACS numbers: 87.18.-h 87.18.Vf 87.16.Yc 82.40.Bj

Networks of genes interacting via regulatory proteins
modulating their activities are highly nonlinear systems
which display a variety of dynamical behaviors [1, 2, 3].
Their modeling has generally assumed that gene activa-
tion is fast compared to other processes so that transcrip-
tion rate reacts instantaneously to protein concentration.
However, transcription is a complex process [4]. In the
last years, it has been increasingly recognized that gene
activity fluctuations can be slow and that this can affect
the behavior of gene regulatory networks. In particular,
slow transcriptional bursting and transcriptional mem-
ory have been observed experimentally [5, 6, 7]. The-
oretically, it has been shown that slow activation dy-
namics can lead to bursts in expression [8, 9], induce
bistability [10] or modify the flipping rate of a genetic
switch [11, 12].

In this Letter, we show that slow promoter dynamics
can also lead to oscillations by investigating how tran-
scriptional dynamics modifies the behavior of a single
gene repressed by its own protein [13, 14, 15, 16, 17, 18,
19, 20]. This old problem of theoretical biology has been
recently revived by the study of the Hes1 gene involved
in the somite clock [21]. The usual view is that oscilla-
tions appear in this genetic circuit only when additional
steps are inserted in the feedback loop [3, 14]. In the
Goodwin and Bliss oscillators [13, 14, 15], the gene pro-
tein catalyzes synthesis of the actual repressor. In early
circadian models, transport of the repressor into the nu-
cleus [16, 17] is a key oscillatory ingredient. In fact, the
mere introduction of a time delay in the one-gene circuit
model (accounting for protein transport or more gener-
ally a cascade of intermediate steps [22]) can destabilize
it [3, 18, 19, 20]. As will be of particular interest here,
oscillations may also be induced by strongly nonlinear

degradation mechanisms [23].

For simplicity, we study the case of an elementary
kinetic equation describing regulation through protein-
DNA binding [24], which we however prefer to view as
a minimal description of transcriptional memory in more
complex mechanisms. We derive an analytical expression
of the oscillation threshold, and show that when the gene
response time is appropriately tuned, the one-gene circuit
can be destabilized (and oscillations induced) by degra-
dation mechanisms much less nonlinear than for infinitely
fast regulation. This result provides new insights into the
interplay of nonlinearity and time delay. Stochastic simu-
lations confirm that the main results of our analysis carry
over to low copy number situations.

Our study is based on the following three-variable
model describing the genetic circuit represented in Fig. 1:

Ġ = θ0(1 − G) − α0C(P )G (1a)

Ṗ = nĠ + β0M − δP F (P ) (1b)

Ṁ = µ0 + λ0G − δMH(M) (1c)

where G, P and M represent gene activity, protein and
RNA copy numbers. Eq. (1a) formally describes the ki-
netics of protein-DNA binding at rate α0 and unbind-
ing at rate θ0 [24]. Possible cooperativity effects are
taken into account via the function C(P ) and the num-
ber n of proteins binding DNA. Single-protein regula-
tion corresponds to C(P ) = P , n = 1. More gener-
ally, Eq (1a) is a minimal model for the dynamics of
an effective gene activity G slowly relaxing towards an
equilibrium value given by the gene regulation function
G = 1/[1 + C(P )/C(P0)], with P0 the half-expression
threshold. Such a model can be obtained as the leading
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FIG. 1: Reaction diagram of the self-regulated gene circuit.

approximation of a mechanistic model of transcription in-
cluding all processes concurring to gene expression (e.g.,
protein-DNA interaction, formation of open complex,
polymerase recruitment, chromatin remodeling,...) when
there is a dominant limiting step. Eq. (1a) causes gene
activity G to lag fast changes in protein level, and plays a
dynamical role similar to explicit time delays [18, 19, 20]
or to transport equations [17]. In Eq. (1b), the three
terms correspond to binding/unbinding, translation and
degradation. Eq. (1c) describes transcription at rate
µ0 + λ0G and RNA degradation. In order to understand
how oscillations can be induced by tuning protein and
RNA degradation, we derive the oscillation criterion for
arbitrary degradation functions F (P ) and H(M) with
unit derivative at zero, δP and δM being the low-copy-
number degradation rates.

By renormalizing time, variables, parameters, cooper-
ativity and degradation functions according to:

t =
t′

δM

, G = g, P = pP0, M = mM0, (2a)

P0 = C−1

(

θ0

α0

)

, M0 =
δP P0

β0

, θ =
θ0

δM

, (2b)

α =
θ0

P0δM

, δ =
δP

δM

, λ =
λ0

M0δM

, µ =
µ0

M0δM

(2c)

c(p) =
C(P )

C(P0)
, f(p) =

F (P )

P0

, h(m) =
H(M)

M0

, (2d)

Eqs. (1) can be rewritten in dimensionless form

g′ = θ [1 − g(1 + c(p))] (3a)

p′ = nα [1 − g(1 + c(p))] + δ[m − f(p)] (3b)

m′ = µ + λg − h(m) (3c)

where x′ = dx/dt′. When f and g are monotonous
and h[f(∞)] > µ, model (3) has a single steady state
(g∗, p∗, m∗) satisfying the fixed point equations:

g∗ =
1

1 + c(p∗)
, m∗ = f(p∗), g∗ =

h(m∗) − µ

λ
. (4)

Note that the steady state depends only on parameters
λ and µ as well as on functions c, f and h, whereas pa-
rameters θ, α, δ control time scales. The behavior of the

degradation and cooperativity functions in the neighbor-
hood of the steady state is described by the slopes

s =
df(p)

dp

∣
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∣
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, u =
dh(m)
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∣
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In the case of linear degradation [f(p) = p, h(m) = m],
we have u = s = 1. Small or even negative values of
the slopes s and u generally denote strongly nonlinear
degradation mechanisms [2, 23], including saturation.

To assess whether Eqs. (3) can display oscillations, we
have searched for parameter values where the fixed point
specified by (4) loses stability to a periodic solution via
a Hopf bifurcation (i.e., a pair of conjugate eigenvalues
of the linearized problem cross the imaginary axis). For
simplicity, we assume perfect repression (µ = 0) and a
large threshold P0 (α ∼ 0). Under this approximation,
the Routh-Hürwitz stability criterion [25] indicates that
a Hopf bifurcation occurs when the quantity

H = σ +
(

−δλvg2
∗

+ σ2
)

τ + γστ2 (5)

crosses zero to become negative, where τ = g∗/θ is the
gene response time, and the sum σ = δs + u and prod-
uct γ = δsu are symmetric functions of degradation
rates δs and u. At bifurcation, the oscillation period
is τosc = 2π

√

τ/(σ + γτ) where σ and γ satisfy H = 0.
Cooperativity essentially changes feedback strength from
δλ to δλv, thus we assume for simplicity single-protein
regulation [c(p) = p, v = 1] thereafter.

Eq. (5) shows that a strong feedback destabilizes the
system while high degradation rates (large σ and γ) tend
to stabilize it. In the single protein case, H > 0 when
both protein and RNA are linearly degraded and no
oscillations occur. Conversely, when protein and RNA
degradations are completely saturated (s = u = σ = 0),
H = −δλg2

∗
τ < 0, indicating that oscillations then ap-

pear systematically. The behavior in intermediate cases
depends on the value of the response time τ .

In the classical case τ = 0, H = σ and oscillations
appear only for σ < 0. It is indeed known that negative
effective degradation rates can lead to oscillations [2, 23].
We thus restrict ourselves to showing that at finite τ , os-
cillations can occur for u, s > 0. More precisely, we want
to understand how oscillations arise away from the sat-
urated cases u = 0 or s = 0. To this end, we use the
geometric slope average ν =

√
us =

√

γ/δ as an index
(ν = 1 in the linear case), seeking to determine the max-
imum value of ν at which oscillations can be observed,
and for which values of τ this extremum is achieved.

The quantities σ and γ play complementary roles. The
total degradation rate σ controls instability onset for
small to moderate τ . Moreover, Eq. (5) indicates that
when σ, γ > 0, a necessary condition for oscillations is

σ < σc = g∗
√

δλ =
g∗
√

2

tsw
(6)
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where tsw is the time during which a fully active gene
synthesizes the amount of protein corresponding to half-
repression threshold. The degradation rate product γ
is relevant only for large τ , blocking oscillations if it is
too large. In particular, γ = 0 guarantees the onset of
oscillations for sufficiently large τ whenever (6) holds.
For u, s > 0 and a given value of σ, γ can take any
value between σ2/4 and 0 depending on whether the two
degradation rates are equal or completely unbalanced,
one being equal to zero and the other to σ. We use below
ǫ = 2

√
γ/σ ∈ [0, 1] as a balance indicator.

Remarkably, we note that under the rescaling

σ = σcΣ, γ = σ2
c

(

ǫΣ

2

)2

, τ =
T

σc

, (7)

the oscillation condition can be rewritten without explicit
parameter dependence:

Hǫ(Σ, T ) = Σ ×
[

ǫ2Σ2

4
T 2 +

(

Σ − 1

Σ

)

T + 1

]

< 0 (8)

and defines a series of curves Σǫ(T ) such that given a
balance index ǫ and a response time T , oscillations are
found for Σ ≤ Σǫ(T ). Fig. 2 shows the limit curves Σ1(T )
and Σ0(T ) which are important to understand the bifur-
cation diagram: regardless of the value of ǫ, the circuit
always (resp., never) oscillates when Σ < Σ1(T ) [resp.,
Σ > Σ0(T )]. To support our analysis, we have searched
the parameter space of Eqs. (3) for oscillatory behavior
for α, µ 6= 0, assuming for definiteness allosteric protein
degradation and Michaelis-Menten RNA degradation:

f(p) =
p × (a + p/κ)

a + 2a(p/κ) + (p/κ)2
, h(m) =

χm

χ + m
(9)

Points in the (Σ, T ) plane associated with oscillating pa-
rameter sets are shown as black dots in Fig. 2. Agreement
is excellent: all dots are below the Σ0(T ) curve and the
few significantly above Σ1(T ) have one small degradation
rate. We are thus confident that our analysis allows us
to understand the behavior of Eqs. (3).

Two regions can be distinguished in Fig. 2. For T < 1,
the instability threshold Σǫ(T ) is practically indepen-
dent of ǫ and increases rapidly with T . For small T ,
Σǫ(T ) ∼ T (thus, the oscillation criterion is σ < σ2

cτ).
In the T > 1 region, Σǫ(T ) reaches its maximum value
Σm(ǫ) = 1/

√
ǫ + 1 at T = Tm(ǫ) = 2

√
ǫ + 1/ǫ, and then

decreases as T−1 for T → ∞, except for ǫ = 0 where
it monotonously increases towards Σ = 1. At fixed Σ,
oscillations are thus found in a finite range of T , which
widens gradually, and is eventually infinite, as ǫ → 0.

In the oscillation region, the index ν ∼ ǫΣ measur-
ing distance from saturated degradation reaches its max-
imal value νopt = g∗

√

λ/8 for T = Topt = 2
√

2 and
ǫ = 1, at the maximum of the Σ1(T ) curve. Our analysis
thus unveils a resonance phenomenon in the dynamics of
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FIG. 2: Bifurcation diagram of Eqs. (3) in the (Σ, T ) plane
according to (8). A system with balance index ǫ oscillates for
Σ < Σǫ(T ) (hatched areas). Black dots indicate oscillating
parameter sets of (3), with θ, δ ∈ [10−1, 10], θ/α ∈ [10, 1000],
λ ∈ [1, 103], λ/µ ∈ [10, 103], assuming the degradation mecha-
nisms (9) with a ∈ [10−6, 1], κ, χ ∈ [1, 100]. Tc = 1 is the time
scale at which transcriptional dynamics cannot be neglected,
Topt = 2

√
2 is the location of the maximum of Σ1(T ).

a self-regulated gene with dynamical transcription rate:
this circuit bifurcates most easily to periodic behavior,
or more generally is least stable, at a finite value of the
gene relaxation time given by τopt = 2

√
2τc where

τc =
1

g∗
√

δλ
=

1

σc

=
tsw

g∗
√

2
= δM × 1

g∗

√

P0

λ0β0

. (10)

The quantity τc gives the time scale at which dynami-
cal behavior departs from the fast regulation case. Be-
cause g∗ is determined by (4), computing precise lower
bounds on τc with (10) requires specifying the degrada-
tion mechanisms. Fixing λ0 = β0 = 10 mn−1, P0 = 100,
and g∗ = 0.5, provides an estimate tc = τc/δM = 2 mn
which is not unrealistically larger than typical gene in-
duction times. At resonance, the oscillation period is
τosc = 4π

√

2/3 τc (about 20 mn in the example above).
Since a common interpretation of the diagram of Fig. 1

is that there are only two gene states (bound or unbound)
[26], one may wonder whether our deterministic analysis
is relevant. If g is viewed as a temporal average of gene
activity, our results are valid when the response time τ is
small compared to the oscillation period so that there are
many binding/unbinding events by cycle [27]. Moreover,
transcription is a complex process involving a number of
distinct steps [4], and Eq. (1a) is the simplest way to
model memory effects arising from cooperativity in the
transcription machinery [6].

Anyhow, we now show that even when G is a stochastic
variable jumping between 0 and 1, our main result still
holds: there is a time scale near τopt at which oscillations
are enhanced. To this end we have carried out stochastic
simulations of the reaction network of Fig. 1 using the
Gillespie algorithm [28], varying the response time τ at
fixed P0. Instead of regular oscillations, a sequence of
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FIG. 3: Coefficient of variation of interpeak time intervals
η vs. mean residence time τ for a stochastic simulation of
(3)+(9) rescaled to original variables G, P , M at three values
of threshold P0 (from top to bottom, P0 = 100, 500, 2500).
Parameter values correspond to δ = 1, θ = 1, α = θ/P0,
λ = 21.54, µ = 0.085, χ = 95.5, κ = 21.68, a = 10−6. τ1 and
τ2 are the boundaries of the deterministic oscillation domain.

irregularly spaced peaks in protein concentration is ob-
served. A natural question is then whether protein peaks
occur more regularly at parameter values where the de-
terministic model oscillates, in particular when τ = τopt.

We define interpeak times as the time intervals ∆t be-
tween two crossings of P = 1.2Pavg separated by at least
one crossing of P = 0.8Pavg, with Pavg the mean pro-
tein level (thus imposing a minimum amplitude of 40%).
Their distribution is characterized by the coefficient of
variation η = σ∆t

<∆t>
. A typical variation of η with τ

in our system is shown in Fig. 3. It definitely suggests
that the deterministic analysis remains relevant in the
stochastic regime, since there is clearly a time scale near
τopt where interpeak time fluctuations are minimal.

In conclusion, we have shown that a nontrivial tran-
scriptional dynamics can destabilize a self-regulated gene.
Although it is known that nonlinear degradation mecha-
nisms can induce oscillations in this system, we observe
a resonance-like effect such that a much weaker nonlin-
earity is required when the gene response time matches
a characteristic time. Its expression can be computed
analytically, which allows us to identify the parameter
regions where this effect cannot be neglected. Stochas-
tic simulations confirm the relevance of this time scale in
the dynamics of the self-regulated gene. This shows that
transcriptional dynamics is a possible source of oscilla-
tory behavior besides other deterministic [1, 2, 3, 16, 17,
18, 19, 20, 23] and stochastic [29, 30] effects.

A natural question is whether our conclusions remain
valid when more detailed transcriptional mechanisms or
multiple sources of delay are taken into account. It can
be shown that adding an explicit delay to Eqs. (3) only
further destabilizes the circuit and thus does not essen-
tially interfere with the effect of a gene response delay.
Future studies should thus focus on cases where the tran-
scriptional dynamics is more complex and features more

than one limiting step.
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