
HAL Id: hal-00268068
https://hal.science/hal-00268068v5

Preprint submitted on 8 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree-based ranking methods
Stéphan Clémençon, Nicolas Vayatis

To cite this version:

Stéphan Clémençon, Nicolas Vayatis. Tree-based ranking methods. 2008. �hal-00268068v5�

https://hal.science/hal-00268068v5
https://hal.archives-ouvertes.fr

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Tree-based ranking methods
Stéphan Clémençon

Telecom Paristech (TSI) - LTCI UMR Institut Telecom/CNRS 5141
stephan.clemencon@telecom-paristech.fr

Nicolas Vayatis
ENS Cachan & UniverSud - CMLA UMR CNRS 8536

nicolas.vayatis@cmla.ens-cachan.fr

Abstract—Recursive partitioning methods are among the most
popular techniques in machine learning. The paper investigates
how these methods can be adapted to the bipartite ranking
problem. In ranking, the pursued goal is global: based on past
data, define an order on the whole input space X , so that positive
instances take up the top ranks with maximum probability. The
most natural way to order all instances consists of projecting
the input data x onto the real line through a real-valued scoring
function s and use the natural order on R. The accuracy of
the ordering induced by a candidate s is classically measured
in terms of the ROC curve or the area under the ROC curve
(AUC). Here we discuss the design of tree-structured scoring
functions obtained by recursively maximizing the AUC criterion.
The connection with recursive piecewise linear approximation
of the optimal ROC curve both in the L1-sense and in the L∞-
sense is highlighted. A novel tree-based algorithm, called TREER-
ANK, specifically designed for learning to rank/order instances
is proposed. Consistency results and generalization bounds of
functional nature are established for this ranking method, when
considering either the L1 or L∞ distance. Inspired from recent
developments in the field of binary classification, we also describe
committee-based learning procedures using TREERANK as a
”base ranker”, in order to overcome obvious drawbacks of such a
top-down partitioning technique. Preliminary simulation results
are also displayed.

Index Terms—Bipartite Ranking Problem, ROC Curve, AUC
Criterion, Decision Tree, Adaptive Piecewise Linear Approxima-
tion.

I. INTRODUCTION

The statistical ranking problem can broadly be considered as
the problem of ordering instances from an abstract space X ,
a high-dimensional Euclidean space typically. This question
arises in a large variety of applications, ranging from the
design of search engines in information retrieval to med-
ical diagnosis or credit-risk screening. A natural approach
consists of ”projecting” these instances onto the real line
through some real-valued scoring function. Such a function
would allow to rank any list of instances in the initial space.
Depending on the available information, various approaches
can be developed. For instance, both preference learning ([1],
[2], [3]) and ordinal regression ([4], [5]) deal with statistical
ranking but under different label information. We focus here
on the setup where a binary label characterizing each instance
is given. This problem is known as the bipartite ranking
problem ([6], [7], [8]). The calibration of ranking rules can
be performed in various ways. In scoring applications, the
vast majority of ranking methods are mostly in the spirit of

logistic regression and rely on the statistical modeling of the
regression function using additive models ([9]). The statistical
learning approach is different insofar as it avoids the difficult
problem of estimating the distribution in high dimensions and
focuses on prediction. Statistical learning strategies can be
thought as the optimization of performance measures based
on data. In the case of bipartite ranking, the development
of the statistical learning approach is involved with AUC
maximization. Indeed, a standard performance measure for
a scoring function in the presence of classification data is
the Receiver Operating Characteristic (ROC) curve, together
with the Area Under the ROC Curve, known as the AUC
(see [10], [11], [12], [13]). But, since their introduction, ROC
curves and the AUC used to serve mostly for validation and
not as the basis for optimization principles. More recently,
several aspects of AUC maximization have been discussed
in the machine learning literature ([14], [15], [16]) and also
from a statistical learning perspective ([7], [8], [17]). A
particular class of learning algorithms will be at the center
of the present paper, namely decision trees in the spirit of
CART for classification or regression [18]. The investigation
of decision trees in the context of ranking was initiated only
recently in the field of machine learning ([19], [20], [21]).
The main difficulty relies in the global nature of the ranking
problem, whereas, in contradistinction, popular classification
rules such as those obtained through recursive partitioning of
the input space X are based on the concept of local learning.
Indeed, for such classification procedures, the predicted label
of a given instance x ∈ X depends on the data lying in
the subregion of the partition containing x solely, while the
notion of ranking/ordering would rather involve comparing the
subregions to each other.

In this paper, a specific recursive partitioning method (RP)
producing piecewise constant scoring functions is proposed
and thoroughly investigated. In this approach, alike the RP,
the related ordering is tree-structured, in a way that (predicted)
ranks may be ”read from the left to the right” at the bottom
of the resulting tree (all instances belonging to the same
subregion of the partition having the same rank). This simple
top-down algorithm, named TREERANK, may be interpreted
as the statistical counterpart of an adaptive and recursive
piecewise linear approximation procedure of the optimal ROC
curve, in the spirit of finite element methods (FEM). From
this angle, the problem of recovering the optimal ROC curve
from the perspective of approximation theory and the one of

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

adaptively building a scoring function from training data with a
ROC curve close to the approximate version of the optimal one
can be addressed simultaneously. As the ROC curve provides
a performance measure of functional nature, the approximation
can be conceived in a variety of ways depending on the
topology equipping the space of ROC curves. Here we shall
consider two essential cases: convergence to the optimal ROC
curve in the sense of the L1-metric, which is related to the
AUC criterion, but also in a stronger sense carried by the
L∞-distance. In this respect, TREERANK is shown consistent
(meaning that the ROC curve of the scoring function output
by the learning algorithm converges to the optimal one as the
training sample size goes to infinity with probability one) for
both metrics and generalization bounds are established in this
functional setup.

It is clear that the top-down strategy of the TREERANK
algorithm is very rigid due to its hierarchical nature and shares
common drawbacks with classification tree methodologies
such as CART. An error in the ordering induced by a certain
split will be automatically propagated down to all of the
subsequent orderings. Whereas the classification task is local,
instability is strongly emphasized by the global nature of the
ranking goal: modifying the rank of a given x ∈ X may indeed
affect the rank of many other instances. Several extensions to
the TREERANK approach are thus considered, with the goal
of either enhancing the ranking produced by a single tree, or
else ”combining” many ranking trees in order to improve the
overall performance. A preliminary simulation study has also
been carried out, aiming essentially at illustrating the practical
implementation of these methods.

The article is structured as follows. In Section II, we present
a general approach for assessing optimality in the bipartite
ranking problem. We also recall the main concepts and discuss
the issue of AUC maximization. In Section III, we relate
linear-by-parts approximations of the optimal ROC curve to
finite-dimensional (piecewise constant) approximations of op-
timal scoring functions and provide an adaptive tree-structured
recursive procedure for which an approximation error result
is established. This approximation scheme can be carried
out over empirical data by the means of the TREERANK
algorithm described in Section IV. The statistical consistency
of the method is also investigated and rate bounds are proved.
Section V presents various extensions improving the original
TREERANK methodology and section VI reports illustrating
empirical results. All proofs are postponed to the Appendix
section.

II. THE NATURE OF THE RANKING PROBLEM

We start off by describing the optimal elements for the
bipartite ranking problem ([6]). The use of the ROC curve as
a performance measure for bipartite ranking is then strongly
advocated by this enlightening approach, under which the
problem boils down to recovering the collection of level sets
of the regression function.

A. Setup and goal of ranking.
We study the ranking problem for classification data with

binary labels. This is also known as the bipartite ranking

problem. The data are assumed to be generated as copies of
a random pair (X,Y) ∈ X ×{−1,+1} where X is a random
descriptor living in the measurable space X and Y represents
its binary label (relevant vs. irrelevant, healthy vs. sick, ...). We
denote by P = (µ, η) the distribution of (X,Y), where µ is
the marginal distribution of X and η is the regression function
(up to an affine transformation): η(x) = P{Y = 1 | X = x},
x ∈ X . We will also denote by p = P{Y = 1} the proportion
of positive labels. In the sequel, we assume that the distribution
µ is absolutely continuous with respect to Lebesgue measure.

The goal of a ranking procedure is to provide an ordering of
the elements of X based on their labels. We expect to end up
with a list with positive labels at the top and negative labels
at the bottom. However, label information does not permit
to derive a total order on X and among relevant (positively
labeled) objects in X , some might be more relevant than
others. In short, a good ranking should preserve the ordering
induced by the likelihood of having a positive label, namely
the regression function η. We consider the approach where the
ordering can be derived by the means of a scoring function
s : X → R: one expects that the higher the value s(X) is,
the more likely the event ”Y = +1” should be observed. The
following definition sets the goal of learning methods in the
setup of bipartite ranking.

Definition 1 (Optimal scoring functions). A scoring function
s∗ : X → R is said to be optimal if it induces the same
ordering over X as the function η(x) = P{Y = 1 | X = x},
∀x ∈ X . In other words:

∀x, x′ ∈ X , s∗(x)− s∗(x′) > 0⇒ η(x)− η(x′) > 0 .

According to the previous definition, the next proposition
is a trivial characterization of the class of optimal scoring
functions.

Proposition 2. The class of optimal scoring functions is given
by the set

S∗ = { s∗ = T ◦ η | T : [0, 1]→ R strictly increasing }.

Interestingly, it is possible to make the connection between
an arbitrary (bounded) optimal scoring function s∗ ∈ S∗
and the distribution P (through the regression function η)
completely explicit.

Proposition 3 (Optimal scoring functions representation). A
bounded scoring function s∗ is optimal if and only if there
exist a nonnegative integrable function w and a continuous
random variable V in (0, 1) such that:

∀x ∈ X , s∗(x) = inf
X
s∗ + E (w(V) · I{η(x) > V })

Remark 1. In the case of the regression function η, we have
the following identity :

∀x ∈ X , η(x) = E (w(U)I{η(x) > U})

where U is a uniform random variable on [0, 1] and the
function w is the indicator of the support of the random
variable η(X).

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

A crucial consequence of the last proposition is that solv-
ing the bipartite ranking problem amounts to recovering the
collection {x ∈ X | η(x) > u}u∈(0,1) of level sets of the
regression function η. Hence, the bipartite ranking problem can
be seen as a collection of overlaid classification problems. This
view was first introduced in [22]. Moreover, the representation
of optimal scoring functions provides the intuition for the
approximation procedure of Section III and the subsequent
TREERANK algorithm of Section IV. By checking the proof
of the Proposition, it looks like the weight function w only
plays the role of a scaling function. However, the general
representation may suggest various estimations schemes of
the Monte-Carlo type in order to recover optimal scoring
functions.

B. (True) ROC curves

We now recall the concept of ROC curve and explain why
it is a natural choice of performance measure for the ranking
problem with classification data. In this section, we only
consider true ROC curves which correspond to the situation
where the underlying distribution is known.

Before recalling the definition, we need to introduce some
notations. For a given scoring rule s, the conditional cdfs of
the random variable s(X) are denoted by Gs and Hs. We also
set, for all z ∈ R:

Ḡs(z) = 1−Gs(z) = P {s(X) > z | Y = +1} ,
H̄s(z) = 1−Hs(z) = P {s(X) > z | Y = −1} .

to be the residual conditional cdfs of the random variable
s(X). When s = η, we shall denote the previous functions by
G∗, H∗, Ḡ∗, H̄∗ respectively. We will also use the notation,
for all t:

α(t) = H̄∗(t) = P{η(X) > t | Y = −1} ,
β(t) = Ḡ∗(t) = P{η(X) > t | Y = 1} .

We introduce the notation Q(Z,α) to denote the quantile
of order 1 − α for the distribution of a random variable Z
conditioned on the event Y = −1. In particular, the following
quantile will be of interest:

Q∗(α) = Q(η(X), α) = H̄∗−1(α) ,

where we have used here the notion of generalized inverse
F−1 of a càdlàg function F :

F−1(z) = inf{t ∈ R | F (t) ≥ z} .

A classical way to assess the performance of a scoring func-
tion s in separating the two populations (positive vs. negative
labels) is the Receiver Operating Characteristic known as the
ROC curve ([11], [12]).

Definition 4 (True ROC curve). The ROC curve of a scoring
function s is the parametric curve:

z 7→
(
H̄s(z), Ḡs(z)

)

for thresholds z ∈ R. It can also be defined as the plot of the
function:

α ∈ [0, 1] 7→ Ḡs ◦ H̄−1
s (α) = Ḡs (Q(s(X), α)) = ROC(s, α).

By convention, points of the curve corresponding to possible
jumps (due to possible degenerate points of Hs or Gs) are
connected by line segments, in order that the ROC curve is
always continuous.
For s = η, we take the notation ROC∗(α) = ROC(η, α).

The residual cdf Ḡs is also called the true positive rate
while H̄s is the false positive rate, so that the ROC curve is
the plot of the true positive rate against the false positive rate.
Basic properties of ROC curves can be found in the Appendix
A.

The ROC curve provides a visual tool for comparing the
ranking performance of two scoring rules.

Definition 5. Consider two scoring functions s1 and s2. We
say that s1 provides a better ranking than s2 when:

∀α ∈ (0, 1) , ROC(s1, α) ≥ ROC(s2, α) .

Remark 2. (GLOBAL VS. LOCAL PERFORMANCE.) Note that,
as a functional criterion, the ROC curve induces a partial order
over the space of all scoring functions. Some scoring function
might provide a better ranking on some part of the observation
space and a worst one on some other. A natural step to take is
to consider local properties of the ROC curve in order to focus
on best instances but this is not straightforward as explained
in [22].

Therefore, we expect optimal scoring functions to be those
for which the ROC curve dominates all the others for all α ∈
(0, 1). The next proposition highlights the fact that the ROC
curve is relevant when evaluating performance in the bipartite
ranking problem.

Proposition 6. The class S∗ of optimal scoring functions
provides the best possible ranking with respect to the ROC
curve. Indeed, for any scoring function s, we have:

∀α ∈ (0, 1) , ROC∗(α) ≥ ROC(s, α) ,

and

∀s∗ ∈ S∗ , ∀α ∈ (0, 1) , ROC(s∗, α) = ROC∗(α) .

Moreover, if we set the notations:

R∗α = {x ∈ X | η(x) > Q∗(α)}
Rs,α = {x ∈ X | s(x) > Q(s(X), α)}

then, for any s and any α such that: (i) the cdfs Gs and Hs

are continuous at Q(s(X), α), (ii) the cdfs G∗ and H∗ are
continuous at Q∗(α), and (iii) Q∗(α) < 1, we have:

ROC∗(α)− ROC(s, α)

=
E(|η(X)−Q∗(α)| I{X ∈ R∗α∆Rs,α})

p(1−Q∗(α))

where ∆ denotes the symmetric difference between sets.

The last statement reveals that the pointwise difference
between the dominating ROC curve and the one related to

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

a candidate scoring function s may be interpreted as the error
made in recovering the specific level set R∗α through Rs,α.
To our knowledge, this expression of the deviation between
ROC∗(α) and ROC(s, α) is entirely new.

A simple consequence of the previous result (and its proof)
is that the one-dimensional statistic η(X) (instead of the sup-
posedly high-dimensional observation X) suffices to recover
the optimal ROC curve. In other words, projecting the original
data onto (0, 1) using the regression function leaves the ROC
curve untouched.

Corollary 7. Consider the statistical model corresponding
to the observation of the random pair (η(X), Y). Then the
optimal ROC curve under this statistical model is exactly the
same as the optimal ROC curve for the random pair (X,Y).

The following result will be needed later.

Proposition 8 (Derivative of the ROC). We assume that the
optimal ROC curve is differentiable. Then, we have, for any
α such that Q∗(α) < 1:

d

dα
ROC∗(α) =

1− p
p
· Q∗(α)

1−Q∗(α)
.

C. AUC maximization

Although the ROC curve is a useful graphical tool for
evaluating the performance of a scoring function, its use as
the target of an optimization strategy to estimate ROC-optimal
scoring functions turns out to be quite challenging. Indeed,
selecting a scoring function by empirical maximization of the
ROC curve over a class S of scoring functions is a highly
complex task because of the functional nature of the ROC
curve criterion.

Of course, the closer to ROC∗ the ROC curve of a candi-
date scoring function s ∈ S, the more pertinent the ranking
induced by s. However, various metrics can be considered
for measuring the distance between curves. We focus on two
essential cases:
• the L1 metric

d1(s∗, s) =
∫ 1

0

{ROC(s∗, α)− ROC(s, α)} dα.

• the L∞ metric

d∞(s∗, s) = sup
α∈(0,1)

{ROC(s∗, α)− ROC(s, α)} .

Remark 3. In order to avoid a possible confusion due to the
notation, we bring to the reader’s attention the fact that d1 and
d∞ do not denote metrics on the space of scoring functions
S, but on the set of ROC curves.

As far as we know, the L∞ metric has not been considered
in the literature yet, although it is a natural choice given the
view on the goal of ranking previously developed, i.e. recov-
ering the collection of level sets {R∗α}α∈(0,1) (see subsection
II-B). Of course, L∞-convergence implies convergence in the
L1-sense, while the reverse is generally false. However, the
L1-metric actually corresponds to a very popular criterion

which is at the heart of most practical ranking methods. It
is known as the Area Under an ROC Curve (or AUC in
abbreviated form, see [13]).

Definition 9 (AUC). For any scoring function s, define the
AUC as:

AUC(s) =
∫ 1

0

ROC(s, α) dα ,

and set AUC∗ = AUC(η). We then have:

d1(s∗, s) = AUC∗ −AUC(s) .

When it comes to finding a scoring function, based on
empirical data, which will perform well with respect to the
AUC criterion, various strategies can be considered.

A possible angle is the plug-in approach ([23]). The idea
of plug-in consists of using an estimate η̂ of the regression
function as a scoring function. It is expected that, whenever
η̂ is close to η in a certain sense, then ROC(η̂, ·) and ROC∗

are also close.

Proposition 10. Consider η̂ an estimator of η. We have:

AUC∗ −AUC(η̂) ≤ 1
p(1− p)

E (|η̂(X)− η(X)|) a.s.

Assume that H∗ has a density which is bounded by below on
[0, 1]: ∃c > 0 such that ∀α ∈ [0, 1], dH∗

dα (α) ≥ c−1. Then,
for any α ∈ [0, 1] such that (i) Q∗(α) < 1 and (ii) Hη̂ is
continuous at Q(η̂(X), α) with probability 1, we have:

ROC∗(α)−ROC(η̂, α) ≤ cE (|H∗(η(X))−Hη̂(η̂(X))|)
p(1−Q∗(α))

a.s.

However, plug-in rules face difficulties when dealing with
high-dimensional data ([24]). Another drawback of plug-in
rules is that they are not consistent with respect to the
supremum norm. This observation provides an additional
motivation for exploring algorithms based on empirical AUC
maximization.

A nice feature of the AUC performance measure is that it
may be interpreted in a probabilistic fashion.

Proposition 11 ([17]). For any scoring function s such that
Hs and Gs are continuous cdfs, we have:

AUC(s) = P(s(X) > s(X ′) | Y = 1, Y ′ = −1)

=
1

2p(1− p)
P{(s(X)− s(X ′))(Y − Y ′) > 0} .

where (X,Y) and (X ′, Y ′) are i.i.d. copies.

From this observation, ranking can be interpreted as classi-
fication of pairs of observations. We refer to [17] for a system-
atic study of related empirical and convex risk minimization
strategies which involve U -statistics. From a machine learning
perspective, there is a growing literature in which existing
algorithms are adapted in order to perform AUC optimization
(such as, for instance: [14], [15], [16]). The tree-based method
we propose in the sequel consists of an adaptive recursive
strategy for building a piecewise constant scoring function
with nearly maximum AUC.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

III. PIECEWISE LINEAR APPROXIMATION OF THE OPTIMAL
ROC CURVE

In this section, we assume that the distribution, and hence
the optimal ROC curve, are known. We also assume that
the optimal ROC curve is differentiable and concave (check
Proposition 24). We consider the problem of building, in a
stepwise manner, a scoring function whose ROC curve is
a piecewise linear approximation/interpolation of the optimal
curve ROC∗.

A. Piecewise constant scoring functions

The motivation for considering piecewise constant scoring
functions comes from the representation result on optimal
scoring functions given in Proposition 3. When it comes to
approximations of the optimal s∗, a natural idea is to introduce
discrete versions and to replace the expectation by a finite sum.

We recall that a partition of X is a finite class CN =
(Cj)1≤j≤N of sets such that

⋃
j Cj = X and Ci ∩Cj = ∅ for

i 6= j.

We now introduce D-representation of a piecewise constant
scoring function where the ’D’ stands for ’disjoint’.

Definition 12 (D-representation). The D-representation of
a piecewise constant scoring function sN taking values in
{a1, . . . , aN} is given by:

∀x ∈ X , sN (x) =
N∑
j=1

aj I{x ∈ Cj} ,

for some decreasing sequence (aj)j≥1 and some partition
CN = (Cj)1≤j≤N of X .

We now list some obvious properties of piecewise constant
scoring function.

Proposition 13. Consider some piecewise constant scoring
function sN taking N different values.

(i) The ROC curve of sN is piecewise linear with N linear
parts.

(ii) The ROC curve of sN does not depend on the particular
values of the sequence (aj)j≥1 appearing in its D-
representation but only on their ordering.

We introduce the class SN of piecewise constant scoring
functions which take N distinct values.

Definition 14 (Class SN). We define SN to be the class of
scoring functions with D-representations of order N :

SN = {sN =
N∑
j=1

aj ICj : (Cj)j≥1 is a disjoint partition ,

(aj)j≥1 is a decreasing sequence } .

Our purpose in this section is to design an iterative proce-
dure which outputs a piecewise constant scoring function sN ∈
SN whose ROC curve is as close as possible to the optimal
ROC∗. Closeness between ROC curves will be measured both

in terms of AUC and in the L∞-sense. The iterative procedure
described in the sequel satisfies the following approximation
error result, see the proof of Proposition 15.

Proposition 15. Assume that the optimal ROC curve is twice
differentiable and concave and that its second derivative takes
its values in a bounded interval which does not contain
zero. There exists a sequence of piecewise constant scoring
functions (sN)N≥1 such that, for any N ≥ 1, sN ∈ SN and:

AUC∗ −AUC(sN) = d1(s∗, sN) ≤ C ·N−2 ,

d∞(s∗, sN) ≤ C ·N−2 ,

where the constant C depends only on the distribution.

The proof can be found in the Appendix. The approxi-
mation rate O(N−2) is actually reached by any piecewise
linear approximant provided that the mesh length is of order
O(N−1). This result is well-known folklore in approxima-
tion theory, see [25]. We underline that the piecewise linear
approximation method we describe next is adaptive in the
sense that breakpoints are not fixed in advance and strongly
depend on the target curve (which suggests that this scheme
possibly yields a sharper constant C). It highlights the explicit
relationship between the ROC∗ approximant and the corre-
sponding piecewise constant scoring function. The ranking
algorithm proposed in the sequel (Section IV) will appear as a
statistical version of this variable knot approximation, where
the unknown quantities driving the recursive partitioning will
be replaced by their empirical counterparts.

B. An alternative representation of scoring functions

It will be useful to consider another possible representation
of piecewise constant scoring functions which is based on
increasing sequences of sets.

Definition 16 (Increasing sequence of sets). We call an
increasing sequence of sets of X is a finite class of sets
RN = (Rj)1≤j≤N such that

⋃
j Rj = X and Ri ⊂ Rj for

i < j. In particular, we have RN = X .

Definition 17 (I-representation). Consider a piecewise con-
stant scoring function sN taking values in {1, . . . , N}. Its I-
representation is given by:

∀x ∈ X , sN (x) =
N∑
j=1

I{x ∈ Rj} ,

for some increasing sequence RN = (Rj)1≤j≤N of subsets of
X .

The relationship between D- and I-representations is strai-
ghtforward. Assume that sN takes values in {1, . . . , N} and
consider the sequence RN arising from the I-representation.
We can then obtain the D-representation by taking C1 = R1

and:

∀i > 2 , Ci = Ri \Ri−1 and ∀j , aj = N − j + 1 .

In order to explicit the ROC curve of a piecewise constant
scoring function, we introduce the following notations: for any

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

measurable C ⊂ X ,

α(C) = P{X ∈ C | Y = −1},
β(C) = P{X ∈ C | Y = +1} .

Equipped with these notations, the ROC curve of
a scoring function with I-representation sN (x) =∑N
j=1 I{x ∈ Rj} is the broken line that connects the

knots {(α(Rj), β(Rj))}0≤j≤N with R0 = ∅ by convention.

Remark 4. (CONCAVIFICATION) The ROC curve of a piece-
wise constant scoring function sN is not necessarily con-
cave. Denoting by CN = (Cj)1≤j≤N a partition defining
a D-representation of sN , a possible way of remedying
this consists of sorting the Cj’s by decreasing order of the
ratio β(Cj)/α(Cj), i.e. of considering a permutation σ of
{1, . . . , N} such that

β(Cσ(1))
α(Cσ(1))

≥
β(Cσ(2))
α(Cσ(2))

≥ . . . ≥
β(Cσ(N))
α(Cσ(N))

.

The ROC curve related to the ordering induced by σ, i.e. of the
scoring function sN,σ(x) =

∑N
j=1(N − j + 1)I{x ∈ Cσ(j)},

is indeed concave.

C. One-step approximation to the optimal ROC curve

We now provide some insights on the general construction
by describing the one-step modification of a given piecewise
constant scoring function sN . As advocated by Proposition 3,
modifications are picked up in the class G of level sets of the
regression function η:

G = {{x ∈ X : η(x) > t} : t ∈ (0, 1)}.

Definition 18 (One-step approximation). Given sN ∈ SN , we
define:

σN = arg max
σ∈G

d1(sN , sN + σ).

Then, the one-step approximation sequence to some optimal
scoring function s∗ is defined as the sequence (sN)N≥1 of
scoring functions such that:

s1 = IX ,
sN+1 = sN + σN , N ≥ 1 .

At this point, we shall consider the I-representation of
piecewise constant scoring functions. A constructive procedure
will rely on a particular choice of subsets (Rj)j≥1. Following
the result from Proposition 3, we focus on partitions with sets
of the form:

Rj = {x ∈ X : η(x) > uj},

for some positive decreasing sequence (uj)j≥1 with u1 > 0.

First iteration. We initialize the procedure for N = 1 with
the scoring function:

∀x ∈ X , s1(x) = I{x ∈ X} ≡ 1 ,

which ranks all instances equally. It is clear that adding up
the indicator of any region of the form {η(x) > t} for some
t ∈ (0, 1) would provide a piecewise linear approximation of
the optimal ROC curve. We choose the one which maximizes
the AUC criterion.

Proposition 19 (First iteration). Assume that the optimal
ROC curve is differentiable and concave. Then the one-step
approximation at the first iteration is given by the piecewise
constant scoring function:

∀x ∈ X , s2(x) = I{x ∈ X}+ I{η(x) > t∗} ,

with t∗ = p, where p = P{Y = 1}. We also have:

(dβ/dα)(t∗) = 1.

Remark 5. (RANKING VS. CLASSIFICATION.) We point out
that the optimal binary-valued scoring function in the AUC
sense does not correspond to the Bayes classifier g∗(x) =
2I{η(x) > 1/2} − 1, except when p = 1/2. Indeed, if we
consider classifiers gt(x) = 2I{η(x) > t}− 1 of the form and
look for the minimizer of the classification error:

P{Y 6= gt(X)} = p(1− α(t)) + (1− p)β(t),

which is minimum for t such that dβ
dα (t) = (1 − p)/p

(if such a value can be reached), and hence t = 1/2 by
Proposition 8. Denote by rmax = (d/dα)(ROC∗)(0) and
rmin = (d/dα)(ROC∗)(1). When p falls out of the interval
((1 + rmax)−1, (1 + rmin)−1) then one of the two extremal
values will give the solution.

It is noteworthy that the one-step approximation obtained
by optimization of the AUC criterion is the same as the one
obtained through optimization of the sup-norm. The proof of
the following proposition is simple and left to the reader.

Proposition 20. Consider the increments at the first step:

σ1 = arg max
σ∈G

d1(s1, s1 + σ),

σ̃1 = arg max
σ∈G

d∞(s1, s1 + σ) .

We have: σ̃1 = σ1.

N -th iteration. Now consider a piecewise constant scoring
function sN ∈ SN . The ROC curve of sN is a broken
line with N linear pieces defined by the sequence of points
((αj , βj))0≤j≤N where (α0, β0) = (0, 0) and (αN , βN) =
(1, 1).

We look for the optimal splitting which would increase the
AUC by adding a knot (α(t), β(t)) such that α(t) is between
αj and αj+1. We take the notation

s
(j)
N+1,t(x) = sN (x) + I{η(x) > t} ,

with t ∈ (Q∗(αj+1), Q∗(αj)). The AUC can then be written,
for some constant cj , as:

AN+1(t) = AUC(s(j)
N+1,t)

= cj +
1
2

(αj+1 − αj)β(t)− 1
2
α(t)(βj+1 − βj) ,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

which is maximized at t∗ such that:

dβ(t∗) =
(
βj+1 − βj
αj+1 − αj

)
dα(t∗) .

We can set α∗j = α(t∗) and we get, thanks to Proposition 8,
the following relationship:

1− p
p
·

Q∗(α∗j)
1−Q∗(α∗j)

=
βj+1 − βj
αj+1 − αj

.

This leads to a one-step optimal splitting point (α∗j , β
∗
j) on

the ROC curve such that:

α∗j = H̄∗ (∆j) and β∗j = Ḡ∗ (∆j)

where

∆j =
p(βj+1 − βj)

(1− p)(αj+1 − αj) + p(βj+1 − βj)
= t∗ .

Remark 6. (INTERPRETATION IN TERMS OF PARTITIONS.)
The insertion of the new knot (α∗j , β

∗
j) is materialized by the

splitting of subset Rj+1 with a subset R∗j containing Rj and
we have:

R∗j = {x ∈ X : η(x) > Q∗(α∗j)} ,

while Rj = {x ∈ X : η(x) > Q∗(αj)}. In terms of D-
representations, we can write:

sN =
N∑
j=1

(N − j + 1) ICj

where

Cj = {x ∈ X : Q∗(αj+1) < η(x) ≤ Q∗(αj)} .

After the splitting, in the new partition, the set Cj+1 is
replaced by C∗j and Cj+1 \ C∗j where

Cj+1 = {x ∈ X : Q∗(αj+1) < η(x) ≤ Q∗(α∗j)} .

The previous computations quantify the improvement in
terms of AUC after adding one knot for each linear part of
the ROC curve at step N . Instead of sticking to one-step
approximations, we can introduce an approximation scheme
which will add 2N knots after the N -th iteration.

D. A tree-structured recursive approximation scheme

We now turn to the full recursive procedure. At each step,
an adaptively chosen knot is added between all consecutive
points of the current meshgrid. We take N = 2D with D ≥ 0
and we describe iterations over D for constructing a sequence
of piecewise constant scoring functions. It will be easier to
work with D-representations of the form:

∀x ∈ X , sD(x) =
2D−1∑
k=0

(2D − k) I{x ∈ CD,k} ,

where, for fixed D, the class of sets (CD,k)0≤k≤2D−1 is a
disjoint partition of X .

The iterative procedure goes as follows.

Initialization (d = 0 and d = 1). For the extremal points, we
set:

∀d ∈ N , α∗d,0 = β∗d,0 = 0 and α∗d,2d = β∗d,2d = 1 ,

and for the first iteration points (d = 1):

α∗1,1 = H̄∗(p) and β∗1,1 = Ḡ∗(p) ,

From d to d + 1, for d ≥ 1. We are given the col-
lection of points {(α∗d,k, β∗d,k)}k=0,...,2d−1. On each interval
(α∗d,k, α

∗
d,k+1), we apply the one-step approximation. Hence,

the new point is given by:

α∗d+1,2k+1 = H̄∗
(
∆∗d+1,2k+1

)
,

β∗d+1,2k+1 = Ḡ∗
(
∆∗d+1,2k+1

)
,

where

∆∗d+1,2k+1 =
p(β∗d,k+1 − β∗d,k)

(1− p)(α∗d,k+1 − α∗d,k) + p(β∗d,k+1 − β∗d,k)
.

Moreover, the previous cut-off point is renamed:

α∗d+1,2k = α∗d,k and β∗d+1,2k = β∗d,k ,

and also ∆∗d+1,2k = ∆∗d,k.

Note that, for each level d, the resulting partition is given
by the class of sets:

C∗d,k = {x ∈ X : ∆∗d,k < η(x) ≤ ∆∗d,k+1},

for all k = 0, . . . , 2d − 1 with the convention that ∆∗d,0 = 0
and ∆d,2d = 1 for all d ≥ 0.

For all d ∈ N, we also define the sets R∗d,k by: ∀k ∈
{1, . . . , 2d − 1}, R∗d,k = C∗d,k ∪R∗d,k−1 with R∗d,0 = C∗d,0.

α2,0 α3,2

β3,2

β2,0

Fig. 1. Piecewise linear approximation of the ROC curve.

Remark 7. (A TREE-STRUCTURED RECURSIVE INTERPOLA-
TION SCHEME.) A nice feature of the recursive approximation
procedure is its binary-tree structure. Owing to their crucial

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

practical advantages regarding implementation and interpreta-
tion, tree-structured decision rules have been proved useful for
a wide range of statistical tasks and are in particular among
the most popular methods for regression and classification (we
refer to Chapter 20 in [23] for an excellent account of tree
decision rules in the context of classification).

Remark 8. (A PIECEWISE CONSTANT APPROXIMANT OF
THE REGRESSION FUNCTION.) Although the angle embraced
in this paper consists of directly building a partitioning of the
input space corresponding to a nearly optimal ranking in the
spirit of popular machine-learning algorithms, we point out
that, as a byproduct, the resulting partition provides a stepwise
approximation of the regression function:

η̃(x) =
2D−1∑
k=0

P(Y = +1 | X ∈ C∗D,k) I{x ∈ C∗D,k}

=
2D−1∑
k=0

∆∗D+1,2k+1 I{x ∈ C∗D,k}.

Provided that H∗ is strictly increasing, the scoring function
s(x) = H∗(η(x)) is also optimal and is approximated by:

s̃(x) =
2D−1∑
j=0

(α∗D,j+1 − α∗D,j) I{x ∈ R∗D,j},

which should be seen as a Riemann’s discretization of the
integral

∫ 1

0
I{η(x) > Q∗(α)} dα (see Remark 1).

In order to provide a closed analytical form for the (linear-
by-parts) ROC curve of the stepwise scoring function

s∗D(x) =
2D−1∑
k=0

(2D − k) I{x ∈ C∗D,k},

consider the ”hat functions” defined by

φ∗d,k(.) = φ(.; (α∗d,k−1, α
∗
d,k))− φ(.; (α∗d,k, α

∗
d,k+1)),

for d ≥ 0 and 1 ≤ k ≤ 2d − 1, with the notation

φ(α; (α1, α2)) =
α− α1

α2 − α1
I{α ∈ [α1, α2]}

for −∞ < α1 < α2 < ∞. For notational convenience, we
also set

φ∗d,2d(.) = φ(.; (α∗d,2d−1, 1)).

Equipped with these notations, one may classically write the
FEM approximation of the optimal ROC curve based on the
meshgrid {α∗D,k}0≤k≤2D−1 as

∀α ∈ [0, 1], ROC(s∗D, α) =
2D∑

k=1

β∗D,kφ
∗
D,k(α).

It is noteworthy that the approximant is increasing and con-
cave, as the target curve ROC∗. Furthermore, from this

representation, one may straightforwardly get the following
expression for the corresponding estimate of the optimal AUC:

AUC(s∗D) =
1
2

2D−1∑
k=1

(α∗D,k+1 − α∗D,k−1)β∗D,k.

As stated in Proposition 15 (see the proof in Appendix B), the
deviation between ROC∗ and ROC(s∗D, .) is of order 2−2D

when measured either in terms of AUC or else in sup norm.

IV. A TREE-STRUCTURED WEAK RANKER

It is time to exploit the theory developed in the previous
sections to deal with empirical data. We formulate a practical
algorithm which implements a top-down strategy to build a
binary tree-structured scoring function. This algorithm mimics
the ideal recursive approximation procedure of the optimal
ROC curve from Section III, where probabilities are replaced
by their empirical counterparts.

A. The TREERANK algorithm

We assume now that a training data set

Dn = {(X1, Y1), . . . , (Xn, Yn)}

of n independent copies of the pair (X,Y) is available. We
set

n+ =
n∑
i=1

I{Yi = 1} and n− =
n∑
i=1

I{Yi = −1} .

We introduce the following data-based quantities, for any
subset C:

α̂(C) =
1
n−

n∑
i=1

I{Xi ∈ C, Yi = −1}

β̂(C) =
1
n+

n∑
i=1

I{Xi ∈ C, Yi = +1}

which correspond respectively to the empirical false positive
rate and the empirical true positive rate of a classifier predict-
ing +1 on the set C.

For notational convenience, we set αd,0 = βd,0 = 0 and
αd,2d = βd,2d = 1 for all d ≥ 0. We assume that we are given
a class C of subsets of X .

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

TREERANK ALGORITHM

1) Initialization. Set C0,0 = X .

2) Iterations. For d = 0, . . . , D − 1 and k =
0, . . . , 2d − 1:

a) (OPTIMIZATION STEP.) Set the entropic mea-
sure:

Λd,k+1(C) = (αd,k+1 − αd,k)β̂(C)
− (βd,k+1 − βd,k)α̂(C) .

Find the best subset Cd+1,2k of rectangle Cd,k
in the AUC sense:

Cd+1,2k = arg max
C∈C, C⊂Cd,k

Λd,k+1(C) .

Then, set Cd+1,2k+1 = Cd,k \ Cd+1,2k.

b) (UPDATE.) Set

αd+1,2k+1 = αd,k + α̂(Cd+1,2k)

βd+1,2k+1 = βd,k + β̂(Cd+1,2k)

and

αd+1,2k+2 = αd,k+1

βd+1,2k+2 = βd,k+1 .

3) Output. After D iterations, we get the piecewise
constant scoring function:

sD(x) =
2D−1∑
k=0

(2D − k) I{x ∈ CD,k},

together with the AUC estimate

ÂUC(sD) =
1
2

2D−1∑
k=1

(αD,k+1 − αD,k−1)βD,k

=
1
2

+
1
2

2D−1−1∑
k=0

ΛD−1,k+1(CD,2k)

and the estimate of the curve ROC(sD, .)

R̂OC(sD, α) =
2D∑
k=1

βD,kφD,k(α), α ∈ [0, 1],

where

φD,k(.) = φ(.; (αD,k−1, αD,k))
− φ(.; (αD,k, αD,k+1)),

φD,2D (.) = φ(.; (αD,2D−1, 1)).

Important features of the TREERANK algorithm are listed
in the following remarks.

Remark 9. (READING THE RANKS.) The resulting ranking
induced by the scoring function sD may be read from the left

to the right looking at the terminal nodes (see Figure 2).

Remark 10. (A SIMPLISTIC STOPPING CRITERION.) If there
is more than one subrectangle solution in the OPTIMIZATION
STEP, take the larger. Hence, if there is no improvement
in terms of AUC maximization when splitting the current
rectangle Cd,k, set Cd+1,2k = Cd,k, so that Cd+1,2k+1 = ∅.

Remark 11. (ON THE SPLITTING RULE.) In the context of
classification, this splitting rule has been considered previously
in [19]. We point out that, in contrast to tree-based classifi-
cation methods, such as CART, the splitting criterion depends
on the node through the parent’s false and true positive rates
α̂(C) and β̂(C). This can be explained by the fact that the
goal pursued in the ranking problem is global: one attempts
to order all input data with respect to each other.

Remark 12. (LINEAR SPLITS.) The choice of the class C
is a matter of trade-off between representation ability and
computation cost. Linear splits lead to a rich class of partitions
but practitioners would rather go for orthogonal splits. The
choice of orthogonal splits amounts to using a class R of
decision stumps, obtained by cutting a certain coordinate of
the input vector X at a certain level (the split variable and
the level being chosen so as to maximize the AUC). The
subclass to be enumerated is then the intersection of decision
stumps with the set represented in the parent node. This choice
presents a clear advantage on the algorithmic side but suffers
from representation ability as we will see in Section VI.

Remark 13. (TRUE ROC CURVE AND AUC.) We point out
that the (true) AUC of the scoring function produced by
TREERANK is given by:

AUC(sD) =
1
2

2D−1∑
k=1

(α(CD,k) + α(CD,k−1))β(RD,k−1),

where Rd,j = ∪jk=0Cd,j for all d ≥ 0, j ∈ {0, . . . , 2d − 1}.
Furthermore, its (true) ROC curve may be written as:

ROC(sD, α) =
2D∑

k=1

β(RD,k−1)φ̃D,k(α), α ∈ [0, 1],

where

φ̃D,k(.) = φ(.; (α(RD,k−2), α(RD,k−1)))
− φ(.; (α(RD,k−1), α(RD,k))),

φ̃D,2D (.) = φ(.; (α(RD,2D−2), 1)).

As stated in the next result, another major feature of the
TREERANK algorithm is that, similarly to the approximant
ROC(s∗D, .), the estimate R̂OC(sD, .) of ROC∗ it outputs
is necessarily concave as soon as the set C is union stable
(whereas this is not necessarily true for the theoretical ROC
curve ROC(sD, .)).

Proposition 21. (CONCAVITY OF THE ROC∗ ESTIMATE.)
Suppose that the class C of sets is union stable, i.e. ∀(C,C ′) ∈
C2: C ∪ C ′ ∈ C. Consider the scoring function sD output by
the TREERANK algorithm after 2D iterations. Its empirical
ROC curve, R̂OC(sD, .), is concave.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

C0,0

C1,0 C1,1

C2,2 C2,3

Fig. 2. Numbering of the nodes and order for reading the ranks.

C2,2

C1,0

C2,3

X1

X2

Fig. 3. Partitioning induced by the tree structure with perpendicular splits.

Remark 14. (RANKING AS TESTING FOR HOMOGENEITY)
Whereas there is a wide variety of possible approaches in
the one-dimensional case, testing for homogeneity in a high-
dimensional space is a very challenging task. In this respect,
the ROC∗ estimate output by the TREERANK algorithm may
be useful, insofar that the null assumption boils down to claim
that ROC∗ is simply the first diagonal of the ROC space.
Indeed, suppose we are interested in testing the hypothesis
H0 : H = G based on sample data. A possible method could
consist of first projecting the data onto the real line using sD
and then applying a standard test (based on ranks) for homo-
geneity between the real-valued samples {sD(X ′i) : Y ′i =
+1, 1 ≤ i ≤ n′} and {sD(X ′i) : Y ′i = −1, 1 ≤ i ≤ n′},
where D′n′ = {(X ′i, Y ′i); 1 ≤ i ≤ n′} is a sample of n′ i.i.d.
copies of the pair (X,Y), independent from Dn.

B. Consistency of TREERANK and rate bounds

We now provide a consistency result for the class of parti-
tions induced by the TREERANK algorithm. The formulation
(and the proof) mimics Theorem 21.2 from [23].

Theorem 22. We consider scoring functions sn corresponding
to partitions Fn of X . We assume that the Fn’s are random
partitions of X resulting from runs of TREERANK with
training sets of size n. We also assume that X is bounded and
that the partitions Fn belong to a VC class of sets with VC
dimension V , for any n and any training set. If the diameter
of any cell of Fn goes to 0 when n tends to infinity, then we
have that:

AUC(s∗)−AUC(sn) = d1(s∗, sn)→ 0

almost surely, as n goes to ∞.

If we have, in addition that H∗ has a density which is
bounded by below on [0, 1] and that, for any α, Q∗(α) < 1−ε,
for some ε > 0, then:

d∞(s∗, sn)→ 0

almost surely, as n goes to ∞.

Remark 15. (BOUNDEDNESS OF X .) This assumption is a
simplification which can be removed at the cost of a longer
proof (the core of the argument can be found in [23]).

Remark 16. (COMPLEXITY ASSUMPTION.) Instead of as-
suming a finite VC dimension, a weaker assumption on
the combinatorial entropy of the class of partitions may be
provided (again check [23] for this refinement).

Under additional assumptions, rate bounds can be estab-
lished for the scoring function produced by TREERANK. We
strongly emphasize that the rate bound for d∞(ŝD, s∗) corre-
sponds to a confidence band for ROC(ŝD, .) in a functional
space, namely the space C([0, 1]) of real-valued continuous
functions on [0, 1] equipped with the sup norm, whereas
the one for d1(ŝD, s∗) yields a confidence interval for the
real-valued quantity AUC(ŝD). To our knowledge, it is the
first result of this nature available in the statistical learning
literature.

Theorem 23. Assume that conditions of Proposition 15 are
fulfilled. Suppose that the class C of subset candidates contains
all level sets R∗α, α ∈ [0, 1] and is intersection stable, i.e.
∀(C,C ′) ∈ C2: C ∩ C ′ ∈ C. Assume furthermore that C has
finite VC dimension V .
(i) For all δ > 0, there exists a constant c0 and universal

constants c1, c2 such that, with probability at least 1−δ,
we have for all D ≥ 1, n ∈ N:

d1(ŝD, sD) ≤ cD0

{(
c21V

n

) 1
2D

+
(
c22 log(1/δ)

n

) 1
2D

}
,

d∞(ŝD, sD) ≤ cD0

{(
c21V

n

) 1
2(D+1)

+
(
c22 log(1/δ)

n

) 1
2(D+1))

}
.

(ii) Choose D = Dn so that Dn ∼
√

log n, as n → ∞.
Then, for all δ > 0, there exists a constant κ such that,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

with probability at least 1− δ, we have for all n ∈ N:

di(ŝDn
, s∗) ≤ exp(−κ

√
log n), i ∈ {1, ∞}.

Remark 17. (ESTIMATION OF THE OPTIMAL ROC CURVE)
It follows from the argument of Theorem 23 that, if one
chooses Dn ∼

√
log n, the empirical ROC curve R̂OC(sDn

, .)
output by the TREERANK algorithm is a consistent estimator
of the optimal curve ROC∗, for both the L1-distance and the
sup norm, the same rate bound as for the true ROC curve
ROC(sDn , .) holding true.

V. BEYOND THE TREERANK ALGORITHM

The TREERANK methodology inherits certain drawbacks
from its hierarchical nature, like CART, instability and a lack
of smoothness essentially. These drawbacks are emphasized
because of the global nature of the ranking goal: indeed,
changing the rank/score of an instance x ∈ X possibly affects
the ranks of many other instances, whereas the classification
task is local. In the present section we discuss these issues
and propose various modifications of the original TREERANK
algorithm. Two types of strategies are considered. The first
approach consists of improving the performance of one single
tree, while the second one relies on combining several ranking
trees following the example of committee-based methods in
classification.

A. Pruning a ranking tree

The complexity of a piecewise constant scoring function
can naturally be described by the cardinality of the partition
involved in its D-representation, see Definition 12. A classical
approach in model selection consists of penalizing candidates
according to their complexity using an adequate cost function
and then choosing the model yielding the best trade-off
between performance and complexity cost.

In the ranking setup, a possible strategy could be to grow
first a deep ranking tree via TREERANK, producing a scoring
function sD(x) with large depth D, and then considering the
ordering induced by ”subtrees”, the latter being obtained by
merging certain neighboring subrectangles CD,k. Formally,
the ranking induced by a subtree is entirely determined by
an element of the set ΘD of increasing sequences θ :
{0, . . . , 2D − 1} → {0, . . . , 2D − 1} such that θ(0) = 0
and ∀k ∈ {1, . . . , 2D − 1}, θ(k)− θ(k − 1) ≥ 1. We set

∀θ ∈ ΘD, sθD =
2D−1∑
k=0

(2D − θ(k))I{x ∈ CD,k}.

The size of the corresponding partition is then #θ = θ(2D−1).
The idea is to maximize the complexity-penalized AUC over
ΘD:

ÂUCλ(θ) = ÂUC(sθD)− λ ·#θ.

The tuning parameter λ rules the trade-off between ranking
performance and ranking-tree size. It may be estimated by
cross-validation.

Remark 18. (WEAKEST LINK PRUNING) If one restricts itself
to the case where only siblings can be merged, a fast bottom-
up pruning procedure may be implemented for determining

the optimal subtree. We recall that siblings corresponding to
subrectangles of the tree which have the same parent node. As
for CART in the classification setup, it suffices to collapse
the internal node that corresponds to the smallest decrease
in terms of AUC, node after node, producing a sequence of
embedded subtrees containing the optimal one. We refer to
[18] for further details.

B. Shaking the ranking tree

Because of the hierarchical structure of the tree growing
procedure, it would be convenient to possibly consider order-
ings of the subregions of the resulting partition other than
the one implicitly obtained by perusing the terminal nodes of
the tree from the left to the right. As a matter of fact, due
to the specific topology induced by the recursive partitioning,
ranking errors induced by a non ideal split cannot be corrected
by growing the tree deeper. Indeed, it may happen that a
region Cd,k of the input space is split into two subregions
Rd+1,2k ∪ Rd+1,2k+1, in a way that Rd+1,2k unfortunately
contains a few instances which are less relevant than certain
instances of Rd+1,2k+1. Even though TREERANK keeps on
running endlessly, these instances will never be ranked worse
than any of the instances of Rd+1,2k+1. However, it is pos-
sible to modify the algorithm so that it encourages recursive
partitioning to automatically detect low cardinality groups of
instances of low ranks surrounded by instances of high ranks.

Suppose that one disposes of a scoring function with D-
representation sN (x) =

∑N
i=1(N − i)I{x ∈ Ci}. Let σ be an

element of the group GN of permutations of {1, . . . , N} and
consider

sN,σ(x) =
N∑
i=1

(N − σ(i))I{x ∈ Ci}.

The ordering of the subregions Ci, 1 ≤ i ≤ N , corresponding
to the largest AUC corresponds to the permutation

σ∗ = arg max
σ∈GN

AUC(sσ,N).

Hence, at each iteration, the partitioning criterion could be
enriched in order to evaluate the gain from splitting the current
region in terms of the overall AUC, allowing for intercalating
the siblings at any possible ranks in the current ordering.

C. On bagging ranking trees

In order to reduce the variability/instability of the ranking
rules produced by TREERANK, a possible approach consists
of ”averaging” many ranking trees, following the bootstrap
paradigm. This approach, proposed by [26] in the context
of binary classification and regression, is known as bagging.
In our setup, the bagging strategy boils down to generating
M independent training data sets by sampling with replace-
ment from the original data, D(1)

n , . . . , D(M)
n , running next

TREERANK from each of these bootstrap samples, yielding
the scoring functions

s̃(m)(c) =
2D−1∑
j=0

(α(m)
D,j+1 − α

(m)
D,j)I{x ∈ R

(m)
D,j},

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

with m ∈ {1, . . . , M}, see Remark 8. The bagging ranker is
then given by: ∀x ∈ X ,

s̃bag(x) =
1
M

M∑
i=m

s̃(m)(x),

the predicted score of a given instance being thus the average
score from these M tree-based scoring functions. This pro-
vides a smoother ranking rule, corresponding to an estimate
of H∗(η(x)) with lower variance than the one of a single
scoring function.

D. Boosting tree ranking rules

We suggest that a tree-based ranker could serve as a
weak learner and feed a boosting-type algorithm. However, as
noticed in [6], extending the notion of aggregating predictors
to the ranking problem is far from obvious, due to the fact
that what one is trying to predict, the proper ordering on X ,
is not of binary nature. In this respect, it is noteworthy that
the RANKBOOST algorithm indeed proposes an extension of
the ADABOOST methodology in the limiting case where weak
scoring rules are binary solely.

Nevertheless, building on the approach developed in [8]
according to which ranking is viewed as a pairwise classi-
fication problem, it is possible to bring back ourselves to the
binary setting. An apparently restrictive formulation of the
ranking problem consists of determining which one among
two instances X and X ′, independently drawn at random,
is ”better” i.e. predicting the sign of Y ′ − Y , the random
variables Y and Y ′ denoting the respective labels of X and
X ′. We call a ranking rule any antisymmetric predictor:
r : X × X → {−1, 0, 1} such that ∀(x, x′) ∈ X 2, r(x, x′) =
−r(x′, x). Since the ranking rule with minimum ranking risk
L(r) = P(r(X,X ′) ·(Y −Y ′) < 0) is r∗(x, x′) = 2 ·I{η(x) >
η(x′)} − 1, it is natural to seek for ranking rules of the form
rs(x, x′) = 2 · I{s(x) > s(x′)} − 1 where s ∈ S. Notice that,
equipped with this notation, AUC(s) = 1−L(rs)/(2p(1−p)).

Reciprocally, one may deduce a scoring function from a
ranking rule r. It suffices to consider for instance the function

sr(x) = E[r(x,X ′) | Y ′ = −1],

which represents the average number of negative instances that
are predicted ”worse” than x. We point out that one generally
has r 6= rsr

unless the rule r is transitive, i.e. ∀(x, x′, x′′) ∈
X 3, if r(x, x′) = +1 and (x′, x′′) = +1, then, necessarily,
r(x, x′′) = +1. Observe that sr∗(x) = 2H∗(η(x))− 1.

For notational simplicity, consider

{(Xi, Yi) : Yi = +1 and 1 ≤ i ≤ n} = {X+
i : 1 ≤ i ≤ n+},

{(Xi, Yi) : Yi = −1 and 1 ≤ i ≤ n} = {X−j : 1 ≤ j ≤ n−},

TREERANK-BOOST

1) Initialization. Assign the weights

ω+
i =

1
n+

, 1 ≤ i ≤ n+

ω−j =
1
n−

, 1 ≤ j ≤ n−,

to the data {X+
i }1≤i≤n+ and {X−j }1≤j≤n− .

2) Iterations. For m = 1, . . . , M :

a) (WEAK RANKING.) From the weighted training
data, run TREERANK, producing the scoring
function s(m) and the associated ranking rule
r(m) = rs(m) .

b) (RANKING ERROR.) Compute the weighted
rate of discording pairs

Lm =
n+∑
i=1

n−∑
j=1

w+
i w
−
j I{s(m)(X+

i) < s(m)(X−j)}

and set am = log((1− Lm)/Lm).
c) (UPDATE.) Set

ω+
i ← ω+

i e
−Lms

(m)(X+
i), 1 ≤ i ≤ n+,

ω−j ← ω−j e
−Lms

(m)(X−j), 1 ≤ j ≤ n−,

and normalize the weights so that
∑n+
i=1 ω

+
i = 1

and
∑n−
j=1 ω

−
j = 1.

3) Output. After B iterations, get the ranking rule

rBoost(x, x′) = 2 · I

{
M∑
m=1

amr
(m)(x, x′) > 0

}
− 1

and the scoring function

sBoost(x) =
1
n−

n−∑
j=1

rBoost(x,X−j).

Following the view on Boosting developed in [27], the
algorithm above may be interpreted in terms of forward
stagewise additive modeling for approximating the solution
to

min
r

E[er(X,X
′) | Y = −1, Y ′ = 1].

VI. A TOY EXAMPLE

It is not the purpose of this paper to provide a fully practical
way of implementing the TREERANK methodology. Related
discussions and empirical studies are postponed to a forth-
coming companion paper. The simulation example displayed
in this section solely serves as an illustration and it should not
be considered as more than that. However, we point out that
the efficiency of the algorithm is guaranteed by the supposed
fact that, at each iteration (d, k), the class of subrectangle
candidates is rich enough to contain a good approximation of

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

the optimal subregion C∗d+1,2k. As mentioned in Remark 12, a
simple approach would consist of implementing TREERANK
with perpendicular splits, in the spirit of the original CART
method proposed by [18]. It is the way we proceeded in
the example below. But, as for the classification task, many
other types of cuts could be pertinently considered, involving
combinations of several coordinates for instance. In practice,
it may happen that perpendicular splits do not lead to a nearly
optimal partitioning and it can be necessary to adapt this naive
approach in order to achieve more flexible cuts. A possible key
to the design of an efficient implementation of TREERANK
could consist of enriching the splitting rule this way: from
the current node, grow a subtree with a given depth and then,
as previously described, shake and merge the terminal leaves
of the subtree in order to produce two siblings only. Clearly,
this leads to improve the gain in terms of (empirical) AUC
compared to the crude perpendicular splitting. Other variants
could naturally be considered, focussing on the nodes it is best
to split for instance.

Data description. Each class contains gaussian vectors in Rd
with d = 5 with different means and same covariance matrix
Σ. Theoretical proportions for each class are equal (p = 1/2).
We consider samples of size n = 1000 and run TreeRank with
a depth of five layers.

Results. We consider two situations: (i) the optimal separator
between the two classes is a hyperplane orthogonal to one of
the axes (Figure 4), (ii) the optimal is a linear separator in
arbitrary position (Figure 5). The results illustrate both the
potential of the TREERANK algorithm for scoring in high
dimensions (case (i)) and the weaknesses of a plain application
of TREERANK with orthogonal splits (case (ii)). Indeed, in
case (ii), the first split is necessarily bad because an orthogonal
split is a bad approximation of an arbitrary hyperplane. Hence,
for those points which fall on the wrong side of the first
split, the algorithm will never be able to rank them correctly,
whatever the depth. These results are promising but also
motivate further work in the spirit of Section V.

VII. CONCLUSION

The ranking problem is characterized by its global nature
which is well reflected by function-like optimization criteria
such as the ROC curve. The present contribution sets the
grounds to develop statistical learning theory for this prob-
lem and investigates an algorithm which iteratively builds a
piecewise scoring function with a tree-structured partition over
the input space. Forthcoming work will attempt to correct
the weaknesses of the TREERANK algorithm in the spirit of
Section V, but also to further explore curve approximation
techniques in the context of ranking methods.

APPENDIX A - PROPERTIES OF ROC CURVES

We now recall some simple properties of ROC curves (see
[11], [28]).

Proposition 24 (Properties of the ROC curve). For any
distribution P and any scoring function s : X → R, the
following properties hold:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate (α)

T
ru

e
 p

o
si

tiv
e

 r
a

te
 (

 β
)

ROC curves − TreeRank vs. Optimal

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of layers

A
U

C

AUC of TreeRank

Fig. 4. Case (i) - The linear separator is well-described by a decision stump.
Up: Overlaid TREERANK ROC curves over successive iterations (red) vs
optimal ROC∗ curve (blue). Down: TREERANK AUC as a function of the
number of layers D (red) compared to the optimal AUC (blue).

1) Limit values. We have: ROC(s, 0) = 0 and
ROC(s, 1) = 1

2) Invariance. For any strictly increasing function T :
R → R, we have, for all α ∈ (0, 1): ROC(T ◦ s, α) =
ROC(s, α).

3) Concavity. If the likelihood ratio dGs/dHs is a mono-
tone function then the ROC curve is concave.

4) Linear parts. If the likelihood ratio dGs/dHs is con-
stant on some interval in the range of the scoring
function s then the ROC curve will present a linear
part on the corresponding domain. Furthermore, ROC∗

is linear on [α1, α2] iff dG/dH is constant on the subset
{x ∈ X/ Q∗(α2) ≤ η(x) ≤ Q∗(α1)}.

5) Differentiability. Assume that the distribution µ of X is

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate (α)

T
ru

e
 p

o
si

tiv
e

 r
a

te
 (

 β
)

ROC curves − TreeRank vs. Optimal

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of layers

A
U

C

AUC of TreeRank

Fig. 5. Case (ii) - The linear separator is in arbitrary position. Up: Overlaid
TREERANK ROC curves over successive iterations (red) vs optimal ROC∗

curve (blue). Down: TREERANK AUC as a function of the number of layers
D (red) compared to the optimal AUC (blue).

continuous. Then, the ROC curve of a scoring function s
is differentiable if and only if the conditional distribution
of s(X) given Y is continuous.

APPENDIX B - PROOFS

Proof of Proposition 3

First note that, for any scoring function s with range equal
to (m,M), if U has a uniform distribution in (m,M), then:

∀x ∈ X , E(I{s(x) > U}) =
s(x)−m
M −m

.

Assume that the range of η has no holes. Then for s∗ ∈ S∗
with range equal to [m,M], there exists a strictly increasing

function T : (0, 1)→ [m,M] such that s∗ = T ◦ η. We have:

∀x ∈ X , s∗(x) = m+ (M −m)E(I{η(x) > T−1(U)}) .

We can set V = T−1(U) and w(V) = M −m, and the ’only
if’ part is proved in the case where η(X) has a support equal
to [0, 1]. For the general case, we only have to take w to be
the indicator of the support of η.

Now assume that s∗ has the given form. In order to show
that s∗ is an optimal scoring function, it suffices to prove that
the ordering induced by s on a pair (x, x′) is the same as the
one induced by η. Denote by φ the df of V with respect to
the Lebesgue measure. We have:

∀x, x′ ∈ X , s∗(x)− s∗(x′) =
∫ η(x)

η(x′)

w(v)φ(v) dv ,

which gives the result since φ and w are nonnegative.

Proof of Proposition 6 and Corollary 7

The first part of the proposition is a simple consequence
of Neyman-Pearson’s lemma formulated in the appropriate
setting. For the sake of clarity, we provide a detailed argument.
Consider the following hypothesis testing problem: given the
observation X , test the null assumption H0 : Y = −1 against
the alternative H1 : Y = +1. Denote by p = P{Y = 1}.
The optimal test statistic is then given by the likelihood ratio
test:

φ∗(x) =
P{X = x | Y = 1}

P{X = x | Y = −1}
=

1− p
p
· η(x)

1− η(x)
.

Denote by Q(Z,α) the quantile of order 1− α for the distri-
bution of Z conditioned on the event Y = −1. By Neyman-
Pearson’s lemma, we have that among all test statistics φ(X)
with fixed type I error α = P{φ(X) > Q(φ(X), α) | Y =
−1}, the test defined by the statistic φ∗(X) maximizes the
power β = P{φ(X) > Q(φ(X), α) | Y = 1}. Moreover,
the class of distributions {P{X = x | Y = θ}}θ∈{0,1} is a
monotone likelihood ratio family in η(X). Indeed, since the
function u 7→ 1−p

p ·
u

1−u is strictly increasing on (0, 1), the
test based on the statistic φ∗(X) is obviously equivalent to
the one based η(X). Hence η is an optimal scoring function
in the sense of the ROC curve. Any element of the class S∗
will also maximize the ROC curve thanks to the invariance
property under strictly increasing transforms.

The last statement of Proposition 6 is proved as follows.
First, we use the fact that, for any measurable function h, we
have:

E(h(X) | Y = +1) =
1− p
p

E
(

η(X)
1− η(X)

h(X) | Y = −1
)
.

We apply this with h(X) = I{X ∈ R∗α}− I{X ∈ Rs,α} to
get:

ROC∗(α)− ROC(s, α)

=
1− p
p

E
(

η(X)
1− η(X)

h(X) | Y = −1
)
.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

Then we add and subtract Q∗(α)
1−Q∗(α) and using the fact that

1− α = P{X ∈ Rs,α | Y = −1} = P{X ∈ R∗α | Y = −1} ,

we get:

ROC∗(α)− ROC(s, α)

=
(

1− p
p

)
E
((

η(X)
1− η(X)

− Q∗(α)
1−Q∗(α)

)
h(X)

∣∣∣∣Y = −1
)
.

We remove the conditioning with respect to Y = −1 and using
then conditioning on X , we obtain:

ROC∗(α)− ROC(s, α)

=
1
p

E
((

η(X)−Q∗(α)
1−Q∗(α)

)
h(X)

)
.

It is then easy to see that this expression corresponds to the
statement in the Proposition.

Proof of Proposition 8

In the proof of Proposition 6, we saw that the likelihood
ratio test statistic was given by:

φ∗(x) =
P{X = x | Y = 1}

P{X = x | Y = −1}
=

1− p
p
· η(x)

1− η(x)
.

Now consider, for any measurable function m, the following
conditional expectation with respect to the random variable X
given Y = 1:

E(m(η(X)) | Y = 1) = E (m(η(X)) · φ∗(X) | Y = −1)

which can also be expressed as a conditional expectation with
respect to the random variable Z = η(X) given Y = 1:

E(m(Z) | Y = 1) = E
(
m(Z) · dG

∗

dH∗
(Z)
∣∣∣∣Y = −1

)
.

We can then proceed to the following identification:

φ∗(X) =
dG∗

dH∗
(η(X))

We have obtained the following formula for the likelihood
ratio of the random variable η(X):

∀u ∈ (0, 1) ,
dG∗

dH∗
(u) =

1− p
p
· u

1− u
,

which gives the result.

Proof of Proposition 10

We recall (see [17]) that:

AUC∗ −AUC(η̂) =
E (|η(X)− η(X′)|I{(X,X′) ∈ Γ})

2p(1− p)
.

where

Γ = {(x, x′) : sgn(η̂(X)− η̂(X ′)) 6= sgn(η(X)− η(X ′))}

But, one may easily check that:
if sgn(η̂(X)− η̂(X ′)) 6= sgn(η(X)− η(X ′)), then

|η(X)− η(X ′)| ≤ |η(X)− η̂(X)|+ |η(X ′)− η̂(X ′)| ,

which gives the first part of the result.

Turning to the second assertion, consider the event

E = {X ∈ R∗α∆Rη̂,α}.

Notice first that, after Proposition 6, we have:

ROC∗(α)− ROC(η̂, α) =
E(|η(X)−Q∗(α)| IE)

p(1−Q∗(α))

≤ cE(|H∗(η(X))− 1 + α| IE)
p(1−Q∗(α))

by virtue of the finite increments theorem. Now, observing that

E = {sgn(H∗(η(X))− 1 + α) 6= sgn(Hη̂(η̂(X))− 1 + α)},

we have in a similar fashion as above: if X ∈ R∗α∆Rη̂,α, then

|H∗(η(X))− 1 + α| ≤ |H∗(η(X))−Hη̂(η̂(X))|,

which, combined to the previous bound, proves the second
part.

Proof of Proposition 15

We now show that the recursive approximation procedure
described in Subsection III-D provides a sequence of piecewise
constant scoring functions (sD)D≥0 with N constant parts
which achieves an approximation error rate for the AUC of
the order of 2−2D.

For any α ∈ (α∗D,k, α
∗
D,k+1), we have, for any optimal

scoring function s∗, by concavity of η:

ROC(s∗, α)− ROC(sD, α) ≤ −1
8

(α∗D,k+1 − α∗D,k)2

× d2

dα2
ROC(s∗, α∗D,k) .

By assumption, the second derivative of the optimal ROC is
bounded and hence, it suffices to check that, for some constant
C, we have:

∀k , α∗D,k+1 − α∗D,k ≤ C · 2−D .

This inequality follows immediately from a recurrence based
on the next lemma.

Lemma 25. Consider f : [0, 1]→ [0, 1] a twice differentiable
and concave function such that: m ≤ f ′′ ≤ M < 0. Take
x0, x1 such that x0 < x1 and set x∗ such that

f ′(x∗) =
f(x1)− f(x0)

x1 − x0
.

Then, we have:

x∗ − x0 ≤ C(x1 − x0)

for some constant C which does not depend on x0, x1.

Proof: Set the notations: ∆f = f(x1)−f(x0) and ∆x =
x1 − x0 As f ′ is continuous and strictly increasing, we can
use the following expression for x∗:

x∗ = f ′−1

(
∆f
∆x

)
.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 16

By applying the theorem of finite increment to f ′−1 between
and f ′(x1) and ∆f

∆x , we have

x∗ − x0 = x1 − x0 +
(

∆f
∆x
− f ′(x1)

)
(f ′−1)′(c)

for some c. But we also have by Taylor’s formula that:

∆f
∆x
− f ′(x1) =

1
2

(x1 − x0)f ′′(c′)

for some c′. This leads to the result, as m ≤ f ′′ ≤ M < 0
since:

(f ′−1)′ =
f ′′

f ′′ ◦ (f ′)−1
.

Proof of Proposition 19

The ROC curve of s2,t is a broken line with the extremities
of the two linear parts being (0, 0), (α(t), β(t)) and (1, 1).
Hence, the corresponding AUC can be written as:

A2(t) =
1
2

(1 + β(t)− α(t)) .

As the ROC curve is differentiable, the maximum of A2(t) is
obtained at the point t∗ such that:

dβ(t∗) = dα(t∗) ,

and hence d
dαROC∗(α∗) = 1 for α∗ = α(t∗). We use

Proposition 8 to get α∗ = H̄∗(p) and this ultimately leads
to t∗ = p.

Proof of Proposition 21

It suffices to prove the concavity for D ≤ 2, the general
result will be immediately obtained by recurrence. For D ≤ 1,
the result is obviously true. Consider thus the case D = 2. By
construction, we have for all C ∈ C,

β̂(C)− α̂(C) ≤ β1,1 − α1,1 = β2,2 − α2,2.

Taking successively C = C2,1 and C = R2,3 = C2,1 ∪C2,2 ∪
C2,3 (recall that C is union stable by assumption), one gets

β2,3 − β2,2

α2,3 − α2,2
≤ 1 ≤ β2,2 − β2,1

α2,2 − α2,1
,

which yields the desired result.

Proof of Theorem 22 (Sketch of)

The proof of the consistency result in the case of decision
trees for classification is based on the control of the excess risk
in terms of the L1-distance between the regression function
and its plug-in estimator obtained as a local estimation on one
cell. In the case of ranking, we can use a similar argument
both for the AUC criterion and the supremum norm over the
ROC curves thanks to Proposition 10. For a given sample Dn,
consider the sequences of sets (Rd,k)d,k, (Cd,k)d,k and the
sequences {(αd,k, βd,k)}d,k arising from a run of TREERANK
with depth N = 2D. We can then deal with the two metrics
in a similar way:

• L1 metric (AUC) - we can consider the following plug-in
estimator of the regression function (see Remark 8):

η̂(x) =
2D−1∑
k=0

∆D+1,2k+1 I{x ∈ CD,k},

where

∆D+1,2k+1 =
n+(βd,k+1 − βd,k)

n−(αd,k+1 − αd,k) + n+(βd,k+1 − βd,k)
.

Then use the inequality from Proposition 10:

AUC∗ −AUC(η̂) ≤ 1
p(1− p)

E (|η̂(X)− η(X)|) .

• L∞ metric - here we introduce the estimator:

ŝ(x) =
2D−1∑
j=0

(αD,j+1 − αD,j) I{x ∈ RD,j}

for H∗ ◦ η. But we have, by construction:

I{x ∈ RD,j} =
j∑

k=0

I{x ∈ CD,k} .

Then we have, also by Proposition 10, for any α:

ROC∗(α)− ROC(ŝ, α) ≤ cE (|H∗(η(X))− ŝ(X))|)
p(1−Q∗(α))

.

Now denote by j0 the index of the set such that x ∈ CD,j0 ,
then η̂(x) = ∆D+1,2j0+1 and ŝ(x) = 1 − αD,j0 . Note also
that

αD,j0 =
1
n−

n∑
i=1

I{Xi ∈ CD,j0 , Yi = −1}

βD,j0 =
1
n+

n∑
i=1

I{Xi ∈ CD,j0 , Yi = 1} .

This observation indicates that the same argument will work
for the two metrics. From there, the rest of the proof is exactly
as in Theorem 21.2 from [23], except that n+, n− are random.
We can write, for instance:

1
n−

=
1
n−
− 1
n(1− p)

+
1

n(1− p)
,

and we can see that there will be a corrective term of the order
of n−1/2 which will not affect the convergence.

Proof of Theorem 23

As a first go, we consider the L1 case, the result concerning
the sup norm shall appear as a consequence of the next
argument.
The AUC case. The proof immediately follows from the next

lemma, combined with the proof of Proposition 15.

Lemma 26. Under the assumptions of Theorem 23, there exist
constants κ1, κ2, c1 and c2 such that, for all δ > 0, we have
with probability at least 1− δ: ∀d ∈ N, ∀n ∈ N,

|AUC(s∗d)−AUC(sd)| ≤ κd−1
1 B(d,n, δ),

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 17

and ∀k ∈ {0, . . . , 2d−1 − 1},

|α(C∗d,2k)− α(Cd,2k)|+ |β(C∗d,2k)− β(Cd,2k)|
≤ κd2B(d+ 1, n, δ),

where: ∀(d, n, δ) ∈ N× N×]0, 1[,

B(d, n, δ) =
(
c21V

n

) 1
2d

+
(
c22 log(1/δ)

n

) 1
2d

.

For d = 0, the result is obvious. The general version can be
established by recurrence. Here we shall detail the transition
from d = 1 to d = 2. Let us introduce the notation: for all
C ∈ C, d ∈ N and k ∈ {1, . . . , 2d},

Λ∗d,k(C) = α(C∗d,k−1)β(C)− β(C∗d,k−1)α(C),

Λ̃d,k(C) = α(Cd,k−1)β(C)− β(Cd,k−1)α(C).

Equipped with this notation, we can bound the deviation
2|AUC(s∗D)−AUC(sD)| by

2D−1−1∑
k=0

|Λ∗D−1,k+1(C∗D,2k)− Λ̃D−1,k+1(CD,2k)|.

First iteration d = 1. We have

2AUC(s∗1)− 1 = Λ∗0,1(C∗1,0) = β∗1,1 − α∗1,1,
2AUC(s1)− 1 = Λ∗0,1(C1,0) = Λ̃0,1(C1,0).

In the first place, notice that

AUC(s∗1)−AUC(s1) ≥ 0.

Indeed, since ROC∗ dominates any true ROC curve every-
where, observe that

β(C1,0)− α(C1,0) ≤ ROC∗(α(C1,0))− α(C1,0).

and recall that α∗1,1 = arg maxα∈(0,1){ROC∗(α)− α}.

Now, write

2{AUC(s∗1)−AUC(s1)} = (I) + (II) + (III), (1)

where

(I) = Λ∗0,1(C∗1,0)− Λ0,1(C∗1,0)
(II) = Λ0,1(C∗1,0)− Λ0,1(C1,0)

(III) = Λ0,1(C1,0)− Λ∗0,1(C1,0).

By definition, one has (II) ≤ 0, while (I) and (III) are both
bounded by

sup
C∈C
|α(C)− α̂(C)|+ sup

C∈C
|β(C)− β̂(C)|.

Let δ > 0. Consequently, using twice the VC inequality for
the expectation of a supremum (see [?]), we obtain that, with
probability at least 1− δ: ∀n ∈ N,

AUC(s∗1)−AUC(s1) ≤ c1

√
V

n
+ c2

√
log(1/δ)

n
= B(1, n, δ),

Using a Taylor-Lagrange expansion of α 7→ ROC∗(α) − α
around α∗1,1 at the second order, we get that {ROC∗(α∗1,1)−
α∗1,1} − {ROC∗(α(C1,0))− α(C1,0)} is equal to

−1
2

ROC∗
′′
(α̃)(α∗1,1 − α(C1,0))2,

for a certain α̃ between α(C1,0) and α∗1,1. Besides, using
again that ROC∗ dominates any other true ROC curve
(so that β(C1,0) ≤ ROC∗(α(C1,0))), it is also bounded
by the deviation 2{AUC(s∗1) − AUC(s1)}). We set m =
− supα∈[0,1] ROC∗

′′
(α). Combined with the bound previously

established, we obtain that, for all δ > 0, we have with
probability larger than 1− δ: ∀n ∈ N,

|α∗1,1 − α(C1,0)| ≤ 2√
m

√
B(1, n, δ) ≤ 2√

m
B(2, n, δ).

By the triangular inequality, we also have with probability
larger than δ: ∀n ∈ N,

|β∗1,1 − β(C1,0)| ≤ 2√
m
B(2, n, δ) +B(1, n, δ).

Hence, ∀n ≥ nδ = max{c21V, c22 log(1/δ)}, with probability
at least 1− δ, we have

|α(C∗1,1)− α(C1,0)|+ |β(C∗1,1)− β(C1,0)| ≤ κ2B(2, n, δ),

with κ2 = 6/
√
m. This suggests that the deviation at the next

iteration should be of order OP(n−1/4).

Recurrence. Let d ≥ 1 be fixed. We temporarily suppose
that the bounds stated in Lemma 26 hold for d − 1. For all
k ∈ {0, . . . , 2d−1 − 1}, set

C̄d,2k = arg max
C⊂Cd−1,k

Λ̃d−1,k+1(C).

Write

Λ∗d−1,k+1(C∗d,2k)− Λ̃d−1,k+1(Cd,2k) = Id,2k + Jd,2k,

where

Id,2k = Λ∗d−1,k+1(C∗d,2k)− Λ̃d−1,k+1(C̄d,2k),

Jd,2k = Λ̃d−1,k+1(C̄d,2k)− Λ̃d−1,k+1(Cd,2k).

Reproducing the argument used for d = 1, we obtain that, for
all δ > 0, we have with probability at least 1 − δ: ∀n ∈ N,
∀k ∈ {0, . . . , 2d−1 − 1},

0 ≤ Jd,2k ≤ B(1, n, δ).

Consider the first term now and write C∗d,2k = A∗d,2k ∪B∗d,2k
with

A∗d,2k = C∗d,2k ∩ (C∗d−1,k \ Cd−1,k),
B∗d,2k = C∗d,2k ∩ Cd−1,k.

Similarly, set Cd,2k = Ad,2k ∪Bd,2k where

Ad,2k = Cd,2k ∩ (Cd−1,k \ C∗d−1,k),
Bd,2k = Cd,2k ∩ C∗d−1,k.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 18

By additivity of the entropy measures, we have:

Id,2k = Λ∗d−1,k+1(C∗d,2k)− Λ̃d−1,k+1(C∗d,2k)

+ Λ̃d−1,k+1(B∗d,2k)− Λ̃d−1,k+1(C̄d,2k)

+ Λ̃d−1,k+1(A∗d,2k)

≤ Λ∗d−1,k+1(C∗d,2k)− Λ̃d−1,k+1(C∗d,2k)

+ Λ̃d−1,k+1(A∗d,2k).

By virtue of the recurrence assumption, we have, with proba-
bility larger than 1− δ: ∀n ≥ nδ ,

Λ∗d−1,k+1(C∗d,2k)− Λ̃d−1,k+1(C∗d,2k)
≤ |α(C∗d−1,k)− α(Cd−1,k)|+ |β(C∗d−1,k)− β(Cd−1,k)|

≤ κd−1
2 B(d, n, δ),

and exactly the same bound holds for Λ̃d−1,k+1(A∗d,2k).

Symmetrically,

Id,2k = Λ∗d−1,k+1(C̄d,2k))− Λ̃d−1,k+1(C̄d,2k)
+ Λ∗d−1,k+1(C∗d,2k)− Λ∗d,2k(B2,k)
+ Λ∗d−1,k+1(Ad,2k)

≥ Λ∗d−1,k+1(C̄d,2k)− Λ̃d−1,k+1(C̄d,k)
+ Λ∗d−1,k+1(Ad,2k).

Using the same argument as above, we eventually get that:
∀n ≥ nδ ,

|Λ∗d−1,k+1(C∗d,2k)− Λ̃d−1,k+1(C∗d,2k)| ≤ κd−1
2 B(d, n, δ).

Hence, we have: ∀n ≥ nδ ,

AUC(s∗d)−AUC(sd) ≤ (2κ2)d−1B(d,n, δ).

Now it remains to control the deviation α(C∗d,2k)−α(Cd,2k).
Given that the quantity

α(C∗d−1,k)(ROC∗(α)− β∗d−1,k)− β(C∗d−1,k)(α− α∗d−1,k)

is maximum for α = α∗d,2k+1, the deviation

Λ∗d−1,k+1(C∗d,2k)−α(C∗d−1,k)ROC∗(α(Bd,2k)+αd−1,k)−. . .
. . .− α(C∗d−1,k)β∗d−1,k − β(C∗d,k)α(Bd,2k)

is positive. Besides, it is also bounded by Λ∗d−1,k+1(C∗d,2k)−
Λ∗d−1,k+1(Bd,2k). Indeed, using the optimality of ROC∗, we
have:

β(Bd,2k) ≤ ROC∗(α(Bd,2k) + αd−1,k)− β∗d−1,k .

It is thus bounded by κd−1
2 B(d, n, δ). Now a Taylor expansion

of

α 7→ α(C∗d,k)(ROC∗(α)− β∗d−1,k)− β(C∗d,k)(α− α∗d−1,k)

at the second order around α∗d,2k+1 = α∗d−1,k + α(C∗d,2k)
implies that there exists ᾱ between α(C∗2,k) and α(Bd,2k) such
that

Λ∗d−1,k+1(C∗d,2k) − {α∗d−1,1ROC∗(α(Bd,2k))− β∗1,1α(Bd,2k)}

= −1
2
α(C∗d−1,k)ROC∗

′′
(ᾱ+ α∗d−1,k)

× (α(C∗d,2k)− α(Bd,2k))2.

We thus get that: ∀k ∈ {0, . . . , 2d−1 − 1},

|α(C∗d,2k)− α(Cd,2k)| ≤ |α(C∗d,2k)− α(Bd,2k)|
+ |α(Cd,2k)− α(Bd,2k)|

≤

√
2κd−1

2

α(C∗d−1,k)m
B(d+ 1, n, δ)

+ κd−1
2 B(d, n, δ).

Therefore, reproducing the argument used for proving Lemma
26, one may show that there exists a constant c <∞ such that:
∀d ≥ 1, α(C∗d,k) = α∗d,k+1 − α∗d,k ≥ c · 2−d. We eventually
obtain

|α(C∗d,2k)− α(Cd,2k)| ≤

√
2dκd−1

2

c
B(d+ 1, n, δ).

It follows that

|β(C∗d,2k)− β(Cd,2k)| ≤ 1
α(C∗d−1,k)

{

√
2dκd−1

2

c
B(d+ 1, n, δ)

+ κd2B(d, n, δ)}

≤ 2d

c

√
2dκd−1

2

c
B(d+ 1, n, δ).

Hence, we have ∀k ∈ {0, . . . , 2d−1 − 1},

|α(C∗d,2k)− α(Cd,2k)| + |β(C∗d,2k)− β(Cd,2k)|
≤ κd2B(d+ 1, n, δ),

provided that κ2 is chosen large enough. The desired bounds
are thus proved at level d, which establishes the result by
recurrence.

The sup norm case. The rate bound related to the L∞ distance
follows immediately from the fact that deviation d∞(sD, s∗D)
between the two piecewise linear curves may be bounded by

max
1≤k≤2D−1

{β∗D,k − β(RD,k−1) + ROC∗
′
(1)(α∗D,k − α(RD,k−1))},

combined with the next lemma.

Lemma 27. Under the assumptions of Theorem 23, there
exists a constant K such that, for all δ > 0, we have with
probability at least 1−δ: for all d ≥ 1, k ∈ {1, . . . , 2d−1−1},

|α∗d,k−α(Rd,k−1)|+ |β∗d,k−β(Rd,k−1)| ≤ KdB(d+ 1, n, δ).

It may be easily derived by recurrence from Lemma 26, the
proof is omitted.

REFERENCES

[1] R. Herbrich, T. Graepel, P. Bollmann-Sdorra, and K. Obermayer, “Learn-
ing a preference relation for information retrieval,” in Proceedings of the
AAAI Workshop Text Categorization and Machine Learning, 1998.

[2] W. Cohen, R. Schapire, and Y. Singer, “Learning to order things,” in
NIPS ’97: Proceedings of the 1997 conference on Advances in neural
information processing systems 10. Cambridge, MA, USA: MIT Press,
1998, pp. 451–457.

[3] M. desJardins, E. Eaton, and K. Wagstaff, “Learning user preferences
for sets of objects,” in Proceedings of the Twenty-Third International
Conference (ICML 2006), 2006, pp. 273–280.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 19

[4] R. Herbrich, T. Graepel, and K. Obermayer, Advances in Large Margin
Classifiers. MIT Press, 2000, ch. Large margin rank boundaries for
ordinal regression, pp. 115–132.

[5] K. Crammer and Y. Singer, “Pranking with ranking,” in Proceedings of
the conference on Neural Information Processing Systems (NIPS), 2001.

[6] Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer, “An efficient
boosting algorithm for combining preferences,” Journal of Machine
Learning Research, vol. 4, pp. 933–969, November 2003.

[7] S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth,
“Generalization bounds for the area under the ROC curve,” Journal of
Machine Learning Research, vol. 6, pp. 393–425, 2005.

[8] S. Clémençon, G. Lugosi, and N. Vayatis, “Ranking and scoring using
empirical risk minimization.” in Proceedings of COLT 2005, ser. Lecture
Notes in Computer Science, P. Auer and R. Meir, Eds., vol. 3559.
Springer, 2005, pp. 1–15.

[9] T. Hastie and R. Tibshirani, Generalized Additive Models. Chapman
& Hall/CRC, 1990.

[10] D.M.Green and J. Swets, Signal detection theory and psychophysics.
Wiley, 1966.

[11] H. van Trees, Detection, Estimation, and Modulation Theory, Part I.
John Wiley, 1968.

[12] J. Egan, Signal Detection Theory and ROC Analysis. Academic Press,
1975.

[13] J. Hanley and J. McNeil, “The meaning and use of the area under a
ROC curve,” Radiology, no. 143, pp. 29–36, 1982.

[14] C. Cortes and M. Mohri, “Auc optimization vs. error rate minimization,”
in Advances in Neural Information Processing Systems 16, S. Thrun,
L. Saul, and B. Schölkopf, Eds. MIT Press, Cambridge, MA, 2004.

[15] A. Rakotomamonjy, “Optimizing area under roc curve with svms,” in
Proceedings of the First Workshop on ROC Analysis in AI, 2004.

[16] L. Yan, R. Dodier, M. Mozer, and R. Wolniewicz, “Optimizing classi-
fier performance via an approximation to the wilcoxon-mann-whitney
statistic,” in Proceedings of the Twentieth International Conference on
Machine Learning (ICML 2003), T. Fawcett and N. Mishra, Eds., 2003,
pp. 848–855.

[17] S. Clémençon, G. Lugosi, and N. Vayatis, “Ranking and empirical risk
minimization of U-statistics,” The Annals of Statistics, vol. To appear,
To appear.

[18] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Wadsworth and Brooks, 1984.

[19] C. Ferri, P. Flach, and J. Hernández-Orallo, “Learning decision trees
using the area under the roc curve,” in ICML ’02: Proceedings of
the Nineteenth International Conference on Machine Learning. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002, pp. 139–
146.

[20] F. Provost and P. Domingos, “Tree induction for probability-based
ranking,” Machine Learning, vol. 52, no. 3, pp. 199–215, 2003.

[21] F. Xia, W. Zhang, and J. Wang, “An effective tree-based algorithm for
ordinal regression,” IEEE Intelligent Informatics Bulletin, vol. 7, no. 1,
pp. 22–26, December 2006.

[22] S. Clémençon and N. Vayatis, “Ranking the best instances,” Journal of
Machine Learning Research, vol. 8, pp. 2671–2699, 2007.

[23] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern
Recognition. Springer, 1996.

[24] L. Györfi, M. Köhler, A. Krzyzak, and H. Walk, A Distribution-Free
Theory of Nonparametric Regression. Springer, 2002.

[25] R. Devore and G. Lorentz, Constructive Approximation. Springer, 1993.
[26] L. Breiman, “Bagging predictors,” Machine Learning, vol. 26, pp. 123–

140, 1996.
[27] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:

A statistical view of boosting,” Annals of Statistics, vol. 28, pp. 337–407,
2000.

[28] D. Hsieh and B. Turnbull, “Nonparametric and semiparametric esti-
mation of the receiver operating characteristic curve,” The Annals of
Statistics, vol. 24, pp. 25–40, 1996.

