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Telecom Paristech (TSI) - LTCI UMR Institut Telecom/CNRS 5141

stephan.clemencon@telecom-paristech.fr

Nicolas Vayatis
ENS Cachan & UniverSud - CMLA UMR CNRS 8536

vayatis@cmla.ens-cachan.fr

Abstract

We consider the extension of standard decision tree
methods to the bipartite ranking problem. In rank-
ing, the goal pursued is global: define an order
on the whole input space in order to have positive
instances on top with maximum probability. The
most natural way of ordering all instances con-
sists in projecting the input data x onto the real
line using a real-valued scoring function s and the
accuracy of the ordering induced by a candidate
s is classically measured in terms of the AUC. In
the paper, we discuss the design of tree-structured
scoring functions obtained by maximizing the AUC
criterion. In particular, the connection with recur-
sive piecewise linear approximation of the optimal
ROC curve both in the L1-sense and in the L∞-
sense is discussed.

1 Introduction

The statistical ranking problem can broadly be considered
as the problem of ordering instances from an abstract space
or a high-dimensional Euclidean space. A natural approach
consists of ”projecting” these instances onto the real line
through some real-valued scoring function. Such a func-
tion would allow to rank any list of instances in the ini-
tial space. Depending on the available information, vari-
ous approaches can be developed. For instance, both pref-
erence learning ([HGBSO98], [CSS98], [dEW06]) and ordi-
nal regression ([HGO00], [CS01]) deal with statistical rank-
ing but under different label information. We focus here on
the setup where a binary label characterizing each instance
is given. This problem is known as the bipartite ranking
problem ([FISS03], [AGH+05], [CLV05]). The calibration
of ranking rules can be performed in various ways. In scor-
ing applications, the standard approach is mostly in the spirit
of logistic regression and relies on the statistical modeling of
the regression function using additive models ([HT90]). The
statistical learning approach is different insofar as it avoids
the difficult problem of estimating the distribution in high
dimensions and focuses on prediction. Statistical learning
strategies can be thought as the optimization of performance
measures based on data. In the case of bipartite ranking, the
development of the statistical learning approach is involved

with AUC maximization. Indeed, a standard performance
measure for a scoring function in the presence of classifi-
cation data is the Receiver Operating Characteristic (ROC)
curve, together with the Area Under the ROC Curve, known
as the AUC (see [DS66], [vT68], [Ega75], [HM82]). But,
since their introduction, ROC curves and the AUC used to
serve mostly for validation and not as the basis for optimiza-
tion principles. More recently, several aspects of AUC max-
imization have been discussed in the machine learning litera-
ture ([CM04], [Rak04], [YDMW03]) and also from a statis-
tical learning perspective ([AGH+05], [CLV05], [CLVar]).
A particular class of learning algorithms will be at the cen-
ter of the present paper, namely decision trees in the spirit of
CART [BFOS84]. The investigation of decision trees in the
context of ranking was initiated only recently in the field of
machine learning ([FFHO02], [PD03], [XZW06]).

In the present work, we consider the problem of recover-
ing the optimal ROC curve from the perspective of approx-
imation theory, in conjunction with the one of adaptively
building a scoring function from training data with a ROC
curve close to the optimal approximate version. Our primary
goal is to relate linear-by-parts approximations with finite-
dimensional (piecewise constant) approximations of optimal
scoring functions. As the ROC curve provides a perfor-
mance measure of functional nature, the approximation can
be conceived in a variety of ways depending on the topology
equipping the space of ROC curves. For instance, the AUC
is related to the L1-distance but we will also consider con-
vergence to the optimal ROC curve in a stronger sense car-
ried by the L∞-distance. A recursive implementation of the
approximation procedure naturally leads to a tree-like struc-
ture for underlying scoring functions. We suggest that such
a tree-based ranker could serve as a weak learner and feed a
boosting-type algorithm such as RankBoost ([FISS03]). We
also provide mathematical results in terms of the approxima-
tion error and statistical consistency.

The paper is organized as follows. In Section 2, we
present a general approach for assessing optimality in the
bipartite ranking problem. We also recall the main concepts
and discuss the issue of AUC maximization. In Section 3, we
discuss the approximation of the optimal ROC curve with
piecewise constant scoring functions and provide an adaptive
tree-structured recursive procedure for which an approxima-
tion error result is established. This approximation scheme
can be carried out over empirical data by the means of the
TREERANK algorithm described in Section 4. The statisti-



cal consistency of the method is also studied. All proofs are
postponed to the Appendix section.

2 The nature of the ranking problem

We start off by describing the optimal elements for the bi-
partite ranking problem ([FISS03]). The use of the ROC
curve as a performance measure for bipartite ranking is then
strongly advocated by this enlightening approach, under which
the problem boils down to recovering the collection of level
sets of the regression function.

2.1 Setup and goal of ranking.

We study the ranking problem for classification data with
binary labels. This is also known as the bipartite ranking
problem. The data are assumed to be generated as copies
of a random pair (X, Y ) ∈ X × {−1,+1} where X is a
random descriptor living in the measurable space X and Y
represents its binary label (relevant vs. irrelevant, healthy
vs. sick, ...). We denote by P = (µ, η) the distribution
of (X, Y ), where µ is the marginal distribution of X and η
is the regression function (up to an affine transformation):
η(x) = P{Y = 1 | X = x}, x ∈ X . We will also denote
by p = P{Y = 1} the proportion of positive labels. In
the sequel, we assume that the distribution µ is absolutely
continuous with respect to Lebesgue measure.

The goal of a ranking procedure is to provide an order-
ing of the elements of X based on their labels. We expect to
end up with a list with positive labels at the top and negative
labels at the bottom. However, label information does not
permit to derive a total order on X and among relevant (pos-
itively labelled) objects in X , some might be more relevant
than others. In short, a good ranking should preserve the or-
dering induced by the likelihood of having a positive label,
namely the regression function η. We consider the approach
where the ordering can be derived by the means of a scoring
function s : X → R. The following definition sets the goal
of learning methods in the setup of bipartite ranking.

Definition 1 (Optimal scoring functions) A scoring function
s∗ : X → R is said to be optimal if it induces the same or-
dering over X as the function η(x) = P{Y = 1 | X = x},
∀x ∈ X . In other words:

∀x, x′ ∈ X , s∗(x) − s∗(x′) > 0 ⇒ η(x) − η(x′) > 0 .

According to the previous definition, the next proposition
is a trivial characterization of the class of optimal scoring
functions.

Proposition 2 The class of optimal scoring functions is given
by the set

S∗ = { s∗ = T ◦ η | T : [0, 1] → R strictly increasing }.

Interestingly, it is possible to make the connection be-
tween an arbitrary (bounded) optimal scoring function s∗ ∈
S∗ and the distribution P (through the regression function η)
completely explicit.

Proposition 3 (Optimal scoring functions representation)
A bounded scoring function s∗ is optimal if and only if there

exist a nonnegative integrable function w and a continuous
random variable V in (0, 1) such that:

∀x ∈ X , s∗(x) = inf
X

s∗ + E (w(V ) · I{η(x) > V })

Remark 1 In the case of the regression function η, we have
the following identity :

∀x ∈ X , η(x) = E (w(U)I{η(x) > U})

where U is a uniform random variable on [0, 1] and the func-
tion w is the indicator of the support of the random variable
η(X).

A crucial consequence of the last proposition is that solv-
ing the bipartite ranking problem amounts to recovering the
collection {x ∈ X | η(x) > u}u∈(0,1) of level sets of the
regression function η. Hence, the bipartite ranking prob-
lem can be seen as a collection of overlayed classification
problems. This view was first introduced in [CV07]. More-
over, the representation of optimal scoring functions pro-
vides the intuition for the approximation procedure of Sec-
tion 3 and the subsequent TREERANK algorithm of Section
4. By checking the proof of the Proposition, it looks like
the weight function w only plays the role of a scaling func-
tion. However, the general representation may suggest vari-
ous estimations schemes of the Monte-Carlo type in order to
recover optimal scoring functions.

2.2 (True) ROC curves

We now recall the concept of ROC curve and explain why
it is a natural choice of performance measure for the ranking
problem with classification data. In this section, we only
consider true ROC curves which correspond to the situation
where the underlying distribution is known.

Before recalling the definition, we need to introduce some
notations. For a given scoring rule s, the conditional cdfs of
the random variable s(X) are denoted by Gs and Hs. We
also set, for all z ∈ R:

Ḡs(z) = 1 − Gs(z) = P {s(X) > z | Y = +1} ,

H̄s(z) = 1 − Hs(z) = P {s(X) > z | Y = −1} .

to be the residual conditional cdfs of the random variable
s(X). When s = η, we shall denote the previous functions
by G∗, H∗, Ḡ∗, H̄∗ respectively. We will also use the nota-
tion, for all t:

α(t) = H̄∗(t) = P{η(X) > t | Y = −1} ,

β(t) = Ḡ∗(t) = P{η(X) > t | Y = 1} .

We introduce the notation Q(Z,α) to denote the quantile
of order 1 − α for the distribution of a random variable Z
conditioned on the event Y = −1. In particular, the follow-
ing quantile will be of interest:

Q∗(α) = Q(η(X), α) = H̄∗−1(α) ,

where we have used here the notion of generalized inverse
F−1 of a càdlàg function F :

F−1(z) = inf{t ∈ R | F (t) ≥ z} .



A classical way to assess the performance of a scoring
function s in separating the two populations (positive vs.
negative labels) is the Receiver Operating Characteristic known
as the ROC curve ([vT68], [Ega75]).

Definition 4 (True ROC curve) The ROC curve of a scor-
ing function s is the parametric curve:

z 7→
(

H̄s(z), Ḡs(z)
)

for thresholds z ∈ R. It can also be defined as the plot of the
function:

α ∈ [0, 1] 7→ Ḡs◦H̄
−1
s (α) = Ḡs (Q(s(X), α)) = ROC(s, α).

By convention, points of the curve corresponding to possible
jumps (due to possible degenerate points for Hs or Gs) are
connected by line segments, in order that the ROC curve is
always continuous.
For s = η, we take the notation ROC∗(α) = ROC(η, α).

The residual cdf Ḡs is also called the true positive rate
and H̄s is the false positive rate, so that the ROC curve is
the plot of the true positive rate against the false positive
rate. Basic properties of ROC curves can be found in the
Appendix A.

The ROC curve provides a visual tool for comparing the
ranking performance of two scoring rules.

Definition 5 Consider two scoring functions s1 and s2. We
say that s1 provides a better ranking than s2 when:

∀α ∈ (0, 1) , ROC(s1, α) ≥ ROC(s2, α) .

Remark 2 (GLOBAL VS. LOCAL PERFORMANCE.) Note
that, as a functional criterion, the ROC curve induces a par-
tial order over the space of all scoring functions. Some scor-
ing function might provide a better ranking on some part
of the observation space and a worst one on some other.
A natural step to take is to consider local properties of the
ROC curve in order to focus on best instances but this is not
straightforward as explained in [CV07].

Therefore, we expect optimal scoring functions to be those
for which the ROC curve dominates all the others for all
α ∈ (0, 1). The next proposition highlights the fact that the
ROC curve is relevant when evaluating performance in the
bipartite ranking problem.

Proposition 6 The class S∗ of optimal scoring functions pro-
vides the best possible ranking with respect to the ROC curve.
Indeed, for any scoring function s, we have:

∀α ∈ (0, 1) , ROC∗(α) ≥ ROC(s, α) ,

and

∀s∗ ∈ S∗ , ∀α ∈ (0, 1) , ROC(s∗, α) = ROC∗(α) .

Moreover, if we set the notations:

R∗
α = {x ∈ X | η(x) > Q∗(α)}

Rs,α = {x ∈ X | s(x) > Q(s(X), α)}

then we have, for any s and any α such that Q∗(α) < 1:

ROC∗(α) − ROC(s, α)

=
E(|η(X) − Q∗(α)| I{X ∈ R∗

α∆Rs,α})

p(1 − Q∗(α))

where ∆ denotes the symmetric difference between sets.

The last statement reveals that the pointwise difference
between the dominating ROC curve and the one related to a
candidate scoring function s may be interpreted as the error
made in recovering the specific level set R∗

α through Rs,α.

A simple consequence of the previous result (and its proof)
is that the one-dimensional statistic η(X) (instead of the sup-
posedly high-dimensional observation X) suffices to recover
the optimal ROC curve. In other words, projecting the orig-
inal data onto (0, 1) using the regression function leaves the
ROC curve untouched.

Corollary 7 Consider the statistical model corresponding
to the observation of the random pair (η(X), Y ). Then the
optimal ROC curve under this statistical model is exactly the
same as the optimal ROC curve for the random pair (X, Y ).

The following result will be needed later.

Proposition 8 (Derivative of the ROC) We assume that the
optimal ROC curve is differentiable. Then, we have, for any
α such that Q∗(α) < 1:

d

dα
ROC∗(α) =

1 − p

p
·

Q∗(α)

1 − Q∗(α)
.

2.3 AUC maximization

Although the ROC curve is a useful graphical tool for eval-
uating the performance of a scoring function, its use as the
target of an optimization strategy to estimate ROC-optimal
scoring functions turns out to be quite challenging. Indeed,
selecting a scoring function by empirical maximization of
the ROC curve over a class S of scoring functions is a highly
complex task because of the functional nature of the ROC
curve criterion.

Of course, the closer to ROC∗ the ROC curve of a candi-
date scoring function s ∈ S, the more pertinent the ranking
induced by s. However, various metrics can be considered
for measuring the distance between curves. We focus on two
essential cases:

• the L1 metric

d1(s
∗, s) =

∫ 1

0

(ROC(s∗, α) − ROC(s, α)) dα.

• the L∞ metric

d∞(s∗, s) = sup
α∈(0,1)

(ROC(s∗, α) − ROC(s, α)) .

Remark 3 In order to avoid a possible confusion due to the
notation, we bring to the reader’s attention the fact that d1

and d∞ do not denote metrics on the space of scoring func-
tions S, but on the set of ROC curves.

As far as we know, the L∞ metric has not been con-
sidered in the literature yet, although it is a natural choice
given the view on the goal of ranking previously developed,
i.e. recovering the collection of level sets {R∗

α}α∈(0,1) (see



subsection 2.2). Of course, L∞-convergence implies conver-
gence in the L1-sense, while the reverse is generally false.
However, the L1-metric actually corresponds to a very pop-
ular criterion which is at the heart of most practical ranking
methods. It is known as the Area Under an ROC Curve (or
AUC, see [HM82]).

Definition 9 (AUC) For any scoring function s, define the
AUC as:

AUC(s) =

∫ 1

0

ROC(s, α) dα ,

and set AUC∗ = AUC(η). We then have:

d1(s
∗, s) = AUC∗ − AUC(s) .

When it comes to finding a scoring function, based on
empirical data, which will perform well with respect to the
AUC criterion, various strategies can be considered.

A possible angle is the plug-in approach ([DGL96]). The
idea of plug-in consists in using an estimate η̂ of the regres-
sion function as a scoring function. It is expected that, when-
ever η̂ is close to η in a certain sense, then ROC(η̂, ·) and
ROC∗ are also close.

Proposition 10 Consider η̂ an estimator of η. We have:

AUC∗ − AUC(η̂) ≤
1

p(1 − p)
E (|η̂(X) − η(X)|) .

Assume furthermore that H∗ has a density which is bounded

by below on [0, 1]: ∃c > 0 such that ∀α ∈ [0, 1], dH∗

dα (α) ≥
c−1. Then, we have: ∀α ∈ [0, 1] such that Q∗(α) < 1,

ROC∗(α) − ROC(η̂, α) ≤
cE (|H∗(η(X)) − Hη̂(η̂(X))|)

p(1 − Q∗(α))
.

However, plug-in rules face difficulties when dealing with
high-dimensional data ([GKKW02]). Another drawback of
plug-in rules is that they are not consistent with respect to
the supremum norm. This observation provides an addi-
tional motivation for exploring algorithms based on empir-
ical AUC maximization.

A nice feature of the AUC performance measure is that
it may be interpreted in a probabilistic fashion.

Proposition 11 ([CLVar]) For any scoring function s such
that Gs and Hs are continuous cdfs, we have:

AUC(s) = P(s(X) > s(X ′) | Y = 1, Y ′ = −1)

=
1

2p(1 − p)
P{(s(X) − s(X ′))(Y − Y ′) > 0} .

where (X, Y ) and (X ′, Y ′) are i.i.d. copies.

From this observation, ranking can be interpreted as clas-
sification of pairs of observations. We refer to [CLVar] for a
systematic study of related empirical and convex risk mini-
mization strategies which involve U -statistics. From a ma-
chine learning perspective, there is a growing literature in
which existing algorithms are adapted in order to perform
AUC optimization (such as, for instance: [CM04], [Rak04],
[YDMW03]). The tree-based method we propose in the se-
quel consists in an adaptive recursive strategy for building
a piecewise constant scoring function with nearly maximum
AUC.

3 Piecewise linear approximation of the

optimal ROC curve

In this section, we assume that the distribution, and hence
the optimal ROC curve, are known. We also assume that
the optimal ROC curve is differentiable and concave (check
Proposition 22). We consider the problem of building, in a
stepwise manner, a scoring function whose ROC curve is a
piecewise linear approximation/interpolation of the optimal
curve ROC∗.

3.1 Piecewise constant scoring functions

The motivation for considering piecewise constant scoring
functions comes from the representation result on optimal
scoring functions given in Proposition 3. When it comes to
approximations of the optimal s∗, a natural idea is to intro-
duce discrete versions and to replace the expectation by a
finite sum.

We recall that a partition of X is a finite class CN =
(Cj)1≤j≤N of sets such that

⋃

j Cj = X and Ci ∩ Cj = ∅
for i 6= j.

We now introduce D-representation of a piecewise con-
stant scoring function where the ’D’ stands for ’disjoint’.

Definition 12 (D-representation) The D-representation of
a piecewise constant scoring function sN taking values in
{a1, . . . , aN} is given by:

∀x ∈ X , sN (x) =
N

∑

j=1

aj I{x ∈ Cj} ,

for some decreasing sequence (aj)j≥1 and some partition
CN = (Cj)1≤j≤N of X .

We now list some obvious properties of piecewise con-
stant scoring function.

Proposition 13 Consider some piecewise constant scoring
function sN taking N different values.

(i) The ROC curve of sN is piecewise linear with N linear
parts.

(ii) The ROC curve of sN does not depend on the particu-
lar values of the sequence (aj)j≥1 appearing in its D-
representation but only on their ordering.

We introduce the class SN of piecewise constant scoring
functions which take N distinct values.

Definition 14 (Class SN ) We define SN to be the class of
scoring functions with D-representations of order N :

SN = {sN =
N

∑

j=1

aj ICj
: (Cj)j≥1 is a disjoint partition ,

(aj)j≥1 is a decreasing sequence } .



Our purpose in this section is to design an iterative pro-
cedure which outputs a piecewise constant scoring function
sN ∈ SN whose ROC curve is as close as possible to the op-
timal ROC∗. Closeness between ROC curves will be mea-
sured both in terms of AUC and in the L∞-sense. The itera-
tive procedure described in the sequel satisfies the following
approximation error result, see Proposition 15’s proof.

Proposition 15 Assume that the optimal ROC curve is twice
differentiable and concave and that its second derivative takes
its values in a bounded interval which does not contain zero.
There exists a sequence of piecewise constant scoring func-
tions (sN )N≥1 such that, for any N ≥ 1, sN ∈ SN and:

AUC∗ − AUC(sN) = d1(s
∗, sN) ≤ C · N−2 ,

d∞(s∗, sN ) ≤ C · N−2 ,

where the constant C depends only on the distribution.

The proof can be found in the Appendix. The approx-
imation rate O(N−2) is actually reached by any piecewise
linear approximant provided that the mesh length is of order
O(N−1). This result is well-known folklore in approxima-
tion theory, see [DL93]. We underline that the piecewise
linear approximation method we describe next is adaptive
in the sense that breakpoints are not fixed in advance and
strongly depend on the target curve (which suggests that this
scheme possibly yields a sharper constant C). It highlights
the explicit relationship between the ROC∗ approximant and
the corresponding piecewise constant scoring function. The
ranking algorithm proposed in the sequel (Section 4) will
appear as a statistical version of this variable knot approx-
imation, where the unknown quantities driving the recursive
partitioning will be replaced by their empirical counterparts.

3.2 An alternative representation of scoring functions

It will be useful to consider another possible representation
of piecewise constant scoring functions which is based on
increasing sequences of sets.

Definition 16 (Increasing sequence of sets) We call an in-
creasing sequence of sets of X a finite class of sets RN =
(Rj)1≤j≤N such that

⋃

j Rj = X and Ri ⊂ Rj for i < j.

In particular, we have RN = X .

Definition 17 (I-representation) Consider a piecewise con-
stant scoring function sN taking values in {1, . . . , N}. Its
I-representation is given by:

∀x ∈ X , sN (x) =
N

∑

j=1

I{x ∈ Rj} ,

for some increasing sequence RN = (Rj)1≤j≤N of subsets
of X .

The relationship between D- and I-representations is strai-
ghtforward. Assume that sN takes values in {1, . . . , N} and
consider the sequence RN arising from the I-representation.
We can then obtain the D-representation by taking C1 = R1

and:

∀i > 2 , Ci = Ri \ Ri−1 and ∀j , aj = N − j + 1 .

3.3 One-step approximation to the optimal ROC curve

We now provide some insights on the general construction
by describing the one-step modification of a given piecewise
constant scoring function sN . As advocated by Proposition
3, modifications are picked up in the class G of level sets of
the regression function η:

G = {{x ∈ X : η(x) > t} : t ∈ (0, 1)}

Definition 18 (One-step approximation) Given sN ∈ SN ,
we define:

σN = arg max
σ∈G

d1(sN , sN + σ).

Then, the one-step approximation sequence to some optimal
scoring function s∗ is defined as the sequence (sN )N≥1 of
scoring functions such that:

s1 = IX

sN+1 = sN + σN , N ≥ 1 .

At this point, we shall consider the I-representation of
piecewise constant scoring functions. A constructive proce-
dure will rely on a particular choice of subsets (Rj)j≥1. Fol-
lowing the result from Proposition 3, we focus on partitions
with sets of the form:

Rj = {x ∈ X : η(x) > uj}

for some positive decreasing sequence (uj)j≥1 with u1 > 0.

First iteration. We initialize the procedure for N = 1 with
the scoring function:

∀x ∈ X , s1(x) = I{x ∈ X} ≡ 1 ,

which ranks all instances equally. It is clear that adding up
the indicator of any region of the form {η(x) > t} for some
t ∈ (0, 1) would provide a piecewise linear approximation
of the optimal ROC curve. We choose the one which maxi-
mizes the AUC criterion.

Proposition 19 (First iteration) Assume that the optimal ROC
curve is differentiable and concave. Then the one-step ap-
proximation at the first iteration is given by the piecewise
constant scoring function:

∀x ∈ X , s2(x) = I{x ∈ X} + I{η(x) > t∗} .

with t∗ = p, where p = P{Y = 1}. We also have:

(dβ/dα)(t∗) = 1.

Remark 4 (RANKING VS. CLASSIFICATION.) We point
out that the optimal binary-valued scoring function in the
AUC sense does not correspond to the Bayes classifier g∗(x) =
2I{η(x) > 1/2} − 1, except when p = 1/2. Indeed, if we
consider classifiers gt(x) = 2I{η(x) > t} − 1 of the form
and look for the minimizer of the classification error:

P{Y 6= gt(X)} = p(1 − α(t)) + (1 − p)β(t),

which is minimum for t such that dβ
dα (t) = (1 − p)/p (if

such a value can be reached), and hence t = 1/2 by Propo-
sition 8. Denote by rmax = (d/dα)(ROC∗)(0) and rmin =
(d/dα)(ROC∗)(1). When p falls out of the interval ((1 +
rmax)

−1, (1 + rmin)−1) then one of the two extremal values
will give the solution.



It is noteworthy that the one-step approximation obtained
by optimization of the AUC criterion is the same as the one
obtained through optimization of the sup-norm. The proof of
the following proposition is simple and left to the reader.

Proposition 20 Consider the increments at the first step:

σ1 = arg max
σ∈G

d1(s1, s1 + σ)

σ̃1 = arg max
σ∈G

d∞(s1, s1 + σ) .

We have: σ̃1 = σ1.

N -th iteration. Now consider a piecewise constant scor-
ing function sN ∈ SN . The ROC curve of sN is a broken
line with N linear pieces defined by the sequence of points
((αj , βj))0≤j≤N where (α0, β0) = (0, 0) and (αN , βN ) =

(1, 1).

We look for the optimal splitting which would increase
the AUC by adding a knot (α(t), β(t)) such that α(t) is be-
tween αj and αj+1. We take the notation

s
(j)
N+1,t(x) = sN (x) + I{η(x) > t} ,

with t ∈ (Q∗(αj+1), Q
∗(αj)). The AUC can then be writ-

ten, for some constant cj , as:

AN+1(t) = AUC(s
(j)
N+1,t)

= cj +
1

2
(αj+1 − αj)β(t) −

1

2
α(t)(βj+1 − βj) ,

which is maximized at t∗ such that:

dβ(t∗) =

(

βj+1 − βj

αj+1 − αj

)

dα(t∗) .

We can set α∗
j = α(t∗) and we get, thanks to Proposition 8,

the following relationship:

1 − p

p
·

Q∗(α∗
j )

1 − Q∗(α∗
j )

=
βj+1 − βj

αj+1 − αj
.

This leads to a one-step optimal splitting point (α∗
j , β

∗
j ) on

the ROC curve such that:

α∗
j = H̄∗ (∆j) and β∗

j = Ḡ∗ (∆j)

where

∆j =
p(βj+1 − βj)

(1 − p)(αj+1 − αj) + p(βj+1 − βj)
= t∗ .

Remark 5 (INTERPRETATION IN TERMS OF PARTITIONS.)
The insertion of the new knot (α∗

j , β
∗
j ) is materialized by the

splitting of subset Rj+1 with a subset R∗
j containing Rj and

we have:

R∗
j = {x ∈ X : η(x) > Q∗(α∗

j )} ,

while Rj = {x ∈ X : η(x) > Q∗(αj)}. In terms of
D-representations, we can write:

sN =
N

∑

j=1

(N − j + 1) ICj

where

Cj = {x ∈ X : Q∗(αj+1) < η(x) ≤ Q∗(αj)} .

After the splitting, in the new partition, the set Cj+1 is re-
placed by C∗

j and Cj+1 \ C∗
j where

Cj+1 = {x ∈ X : Q∗(αj+1) < η(x) ≤ Q∗(α∗
j )} .

The previous computations quantify the improvement in
terms of AUC after adding one knot for each linear part of
the ROC curve at step N . Instead of sticking to one-step
approximations, we can introduce an approximation scheme
which will add 2N knots after the N -th iteration.

3.4 A tree-structured recursive approximation scheme

We now turn to the full recursive procedure. At each step,
an adaptively chosen knot is added between all consecutive
points of the current meshgrid. We take N = 2D with
D ≥ 0 and we describe iterations over D for constructing
a sequence of piecewise constant scoring functions. It will
be easier to work with D-representations of the form:

∀x ∈ X , sD(x) =
2D−1
∑

k=0

(2D − k) I{x ∈ CD,k} ,

where, for fixed D, the class of sets (CD,k)0≤k≤2D−1 is a
disjoint partition of X .

We will use the following notations:

α(C) = P{X ∈ C | Y = −1}

β(C) = P{X ∈ C | Y = 1} .

The iterative procedure goes as follows.

Initialization (d = 0 and d = 1). For the extremal points,
we set:

∀d ∈ N , α∗
d,0 = β∗

d,0 = 0 and α∗
d,2d = β∗

d,2d = 1 ,

and for the first iteration points (d = 1):

α∗
1,1 = H̄∗(p) and β∗

1,1 = Ḡ∗(p) ,

From d to d + 1, for d ≥ 1. We are given the collec-
tion of points {(α∗

d,k, β∗
d,k)}k=0,...,2d−1. On each interval

(α∗
d,k, α∗

d,k+1), we apply the one-step approximation. Hence,

the new point is given by:

α∗
d+1,2k+1 = H̄∗

(

∆∗
d+1,2k+1

)

,

β∗
d+1,2k+1 = Ḡ∗

(

∆∗
d+1,2k+1

)

,

where

∆∗
d+1,2k+1 =

p(β∗
d,k+1 − β∗

d,k)

(1 − p)(α∗
d,k+1 − α∗

d,k) + p(β∗
d,k+1 − β∗

d,k)
.

Moreover, the previous cut-off point is renamed:

α∗
d+1,2k = α∗

d,k and β∗
d+1,2k = β∗

d,k ,

and also ∆∗
d+1,2k = ∆∗

d,k.



Figure 1: Piecewise linear approximation of the ROC curve.

C0,0

C1,0 C1,1

C2,2 C2,3

Figure 2: Numbering of the nodes and order for reading the
ranks.

C2,2

C1,0

C2,3

X1

X2

Figure 3: Partitioning induced by the tree structure with per-
pendicular splits.



Note that, for each level d, the resulting partition is given
by the class of sets:

C∗
d,k = {x ∈ X : ∆∗

d,k < η(x) ≤ ∆∗
d,k+1},

for all k = 0, . . . , 2d − 1 with the convention that ∆∗
d,0 = 0

and ∆∗
d,2d = 1 for all d ≥ 0.

We also define the sets R∗
d,k by: R∗

d,k = C∗
d,k ∪ R∗

d,k−1

with R∗
d,0 = C∗

d,0.

Remark 6 (A TREE-STRUCTURED RECURSIVE INTERPO-
LATION SCHEME.) A nice feature of the recursive approxi-
mation procedure is its binary-tree structure. Owing to their
crucial practical advantages regarding implementation and
interpretation, tree-structured decision rules have been proved
useful for a wide range of statistical tasks and are in particu-
lar among the most popular methods for regression and clas-
sification (we refer to Chapter 20 in [DGL96] for an excellent
account of tree decision rules in the context of classification).

Remark 7 (A PIECEWISE CONSTANT APPROXIMANT OF

THE REGRESSION FUNCTION.) Although the angle embraced
in this paper consists of directly building a partitioning of the
input space corresponding to a nearly optimal ranking in the
spirit of popular machine-learning algorithms, we point out
that, as a byproduct, the resulting partition provides a step-
wise approximation of the regression function:

η̃(x) =
2D−1
∑

k=0

∆∗
D+1,2k+1 I{x ∈ C∗

D,k}

Provided that H∗ is strictly increasing, the scoring function
s(x) = H∗(η(x)) is also optimal and is approximated by:

s̃(x) =
2D−1
∑

j=0

(α∗
D,j+1 − α∗

D,j) I{x ∈ R∗
D,j},

which should be seen as a Riemann’s discretization of the
integral

∫ 1

0
I{η(x) > Q∗(α)} dα (see Remark 1).

4 A tree-structured weak ranker

It is time to exploit the theory developed in the previous sec-
tions to deal with empirical data. We formulate a practical
algorithm which implements a top-down strategy to build a
binary tree-structured scoring function. This algorithm mim-
ics the ideal recursive approximation procedure of the opti-
mal ROC curve from Section 3, where probabilities are re-
placed by their empirical counterparts.

4.1 The TREERANK algorithm

We assume now that a training data set

Dn = {(X1, Y1), . . . , (Xn, Yn)}

of n independent copies of the pair (X, Y ) is available. We
set

n+ =

n
∑

i=1

I{Yi = 1} and n− =

n
∑

i=1

I{Yi = −1} .

We introduce the following data-based quantities, for any
subset C:

α̂(C) =
1

n−

n
∑

i=1

I{Xi ∈ C, Yi = −1}

β̂(C) =
1

n+

n
∑

i=1

I{Xi ∈ C, Yi = +1}

which correspond respectively to the empirical false positive
rate and the empirical true positive rate of a classifier pre-
dicting +1 on the set C.

For notational convenience, we set αd,0 = βd,0 = 0 and
αd,2d = βd,2d = 1 for all d ≥ 0. We assume that we are
given a class C of subsets of X .

TREERANK ALGORITHM

1. Initialization. Set C0,0 = X and α0,1 =
β0,1 = 1.

2. Iterations. For d = 0, . . . , D − 1 and for
k = 0, . . . , 2d − 1:

(a) (OPTIMIZATION STEP.) Set the entropy
measure:

Entd,k+1(C) = (αd,k+1 − αd,k)β̂(C)

− (βd,k+1 − βd,k)α̂(C) .

Find the best subset Cd+1,2k of rectangle
Cd,k in the AUC sense:

Cd+1,2k = arg max
C∈C, C⊂Cd,k

Entd,k+1(C) .

Then, set Cd+1,2k+1 = Cd,k \ Cd+1,2k.

(b) (UPDATE.) Set

αd+1,2k+1 = αd,k + α̂(Cd+1,2k)

βd+1,2k+1 = βd,k + β̂(Cd+1,2k)

and

αd+1,2k+2 = αd,k+1

βd+1,2k+2 = βd,k+1 .

3. Output. After D iterations, we get the piece-
wise constant scoring function sD:

sD(x) =
2D−1
∑

k=0

(2D − k) I{x ∈ CD,k}

The main features of the TREERANK algorithm are listed
in the following remarks.



Remark 8 (READING THE RANKS.) The resulting ranking
induced by the scoring function sD may be read from the left
to the right looking at the terminal nodes (see Figure 2).

Remark 9 (A SIMPLISTIC STOPPING CRITERION.) If there
is more than one subrectangle solution in the OPTIMIZATION

STEP, take the larger. Hence, if there is no improvement
in terms of AUC maximization when splitting the current
rectangle Cd,k, set Cd+1,2k = Cd,k, so that Cd+1,2k+1 = ∅.

Remark 10 (ON THE SPLITTING CRITERION.) In the con-
text of classification, this splitting rule has been considered
previously in [FFHO02]. We point out that, in contrast to
tree-based classification methods, such as CART, the split-
ting criterion depends on the node through the parent’s false

and true positive rates α̂(C) and β̂(C). This can be explained
by the fact that the goal pursued in the ranking problem is
global: one attempts to order all input data with respect to
each other.

Remark 11 (ORTHOGONAL SPLITS.) As a practical strat-
egy, one could use a class R of decision stumps which are
obtained by cutting a certain coordinate of the input vector
X at a certain level (the split variable and the level being
chosen so as to maximize the AUC). The subclass to be
enumerated is then the intersection of decision stumps with
the set represented in the parent node.

4.2 Consistency of TREERANK

We now provide a consistency result for the class of parti-
tions induced by the TREERANK algorithm. The formula-
tion (and the proof) mimics Theorem 21.2 from [DGL96].

Theorem 21 We consider scoring functions sn correspond-
ing to partitions Fn of X . We assume that the Fn’s are ran-
dom partitions of X resulting from runs of TREERANK with
training sets of size n. We also assume that X is bounded
and that the partitions Fn belong to a VC class of sets with
VC dimension V , for any n and any training set. If the diam-
eter of any cell of Fn goes to 0 when n tends to infinity, then
we have that:

AUC(s∗) − AUC(sn) = d1(s
∗, sn) → 0

almost surely, as n goes to ∞.

If we have, in addition that H∗ has a density which is
bounded by below on [0, 1] and that, for any α, Q∗(α) <
1 − ǫ, for some ǫ > 0, then:

d∞(s∗, sn) → 0

almost surely, as n goes to ∞.

Remark 12 (BOUNDEDNESS OF X .) This assumption is a
simplification which can be removed at the cost of a longer
proof (the core of the argument can be found in [DGL96]).

Remark 13 (COMPLEXITY ASSUMPTION.) Instead of as-
suming a finite VC dimension, a weaker assumption on the
combinatorial entropy of the class of partitions may be pro-
vided (again check [DGL96] for this refinement).

Sketch of proof. The proof of the consistency result in the
case of decision trees for classification is based on the con-
trol of the excess risk in terms of the L1-distance between
the regression function and its plug-in estimator obtained as
a local estimation on one cell. In the case of ranking, we
can use a similar argument both for the AUC criterion and
the supremum norm over the ROC curves thanks to Propo-
sition 10. For a given sample Dn, consider the sequences of
sets (Rd,k)d,k, (Cd,k)d,k and the sequences {(αd,k, βd,k)}d,k

arising from a run of TREERANK with depth N = 2D. We
can then deal with the two metrics in a similar way:

• L1 metric (AUC) - we can consider the following plug-
in estimator of the regression function (see Remark 7):

η̂(x) =
2D−1
∑

k=0

∆D+1,2k+1 I{x ∈ CD,k},

where

∆D+1,2k+1 =
n+(βd,k+1 − βd,k)

n−(αd,k+1 − αd,k) + n+(βd,k+1 − βd,k)
.

Now denote by j0 the index of the set such that x ∈
CD,j0 and we have:

η̂(x) = ∆D+1,2j0+1 .

Then use the inequality from Proposition 10:

AUC∗ − AUC(η̂) ≤
1

p(1 − p)
E (|η̂(X) − η(X)|) .

• L∞ metric - here we introduce the estimator:

ŝ(x) =
2D−1
∑

j=0

(αD,j+1 − αD,j) I{x ∈ RD,j}

for H∗ ◦ η. But we have, by construction:

I{x ∈ RD,j} =

j
∑

k=0

I{x ∈ CD,k} .

As before, take j0 to be the index of the set such that
x ∈ CD,j0 and we have:

ŝ(x) = 1 − αD,j0 .

Then we have, also by Proposition 10, for any α:

ROC∗(α) − ROC(ŝ, α) ≤
cE (|H∗(η(X)) − ŝ(X))|)

p(1 − Q∗(α))
.

Note that

αD,j0 =
1

n−

n
∑

i=1

I{Xi ∈ CD,j0 , Yi = −1}

βD,j0 =
1

n+

n
∑

i=1

I{Xi ∈ CD,j0 , Yi = 1} .

This observation indicates that the same argument will
work for the two metrics. From there, the rest of the proof
is exactly as in Theorem 21.2 from [DGL96], except that
n+, n− are random. We can write, for instance:

1

n−
=

1

n−
−

1

n(1 − p)
+

1

n(1 − p)
,

and we can see that there will be a corrective term of the
order of n−1/2 which will not affect the convergence.



Appendix A - Properties of ROC curves

We now recall some simple properties of ROC curves (see
[vT68], [HT96]).

Proposition 22 (Properties of the ROC curve) For any dis-
tribution P and any scoring function s : X → R, the follow-
ing properties hold:

1. Limit values. We have: ROC(s, 0) = 0 and ROC(s, 1) =
1

2. Invariance. For any strictly increasing function T :
R → R, we have, for all α ∈ (0, 1): ROC(T ◦ s, α) =
ROC(s, α).

3. Concavity. If the likelihood ratio dGs/dHs is a mono-
tone function then the ROC curve is concave.

4. Linear parts. If the likelihood ratio dGs/dHs is con-
stant on some interval in the range of the scoring func-
tion s then the ROC curve will present a linear part on
the corresponding domain.

5. Differentiability. Assume that the distribution µ of X
is continuous. Then, the ROC curve of a scoring func-
tion s is differentiable if and only if the conditional dis-
tribution of s(X) given Y is continuous.

Appendix B - Proofs

Proof of Proposition 3

First note that, for any scoring function s with range equal to
(m,M), if U has a uniform distribution in (m,M), then:

∀x ∈ X , E(I{s(x) > U}) =
s(x) − m

M − m
.

Assume that the range of η has no holes. Then for s∗ ∈ S∗

with range equal to [m,M ], there exists a strictly increasing
function T : (0, 1) → [m,M ] such that s∗ = T ◦ η. We
have:

∀x ∈ X , s∗(x) = m+(M −m)E(I{η(x) > T−1(U)}) .

We can set V = T−1(U) and w(V ) = M−m, and the ’only
if’ part is proved in the case where η(X) has a support equal
to [0, 1]. For the general case, we only have to take w to be
the indicator of the support of η(X).

Now assume that s∗ has the given form. In order to show
that s∗ is an optimal scoring function, it suffices to prove that
the ordering induced by s on a pair (x, x′) is the same as the
one induced by η. Denote by φ the df of V with respect to
the Lebesgue measure. We have:

∀x, x′ ∈ X , s∗(x) − s∗(x′) =

∫ η(x)

η(x′)

w(v)φ(v) dv ,

which gives the result since φ and w are nonnegative.

Proof of Proposition 6 and Corollary 7

The proposition is a simple consequence of Neyman-Pearson’s
lemma formulated in the appropriate setting. Consider the
following hypothesis testing problem: given the observation

X , test the null assumption H0 : Y = −1 against the al-
ternative H1 : Y = +1. Denote by p = P{Y = 1}. The
optimal test statistic is then given by the likelihood ratio test:

φ∗(x) =
P{X = x | Y = 1}

P{X = x | Y = −1}
=

1 − p

p
·

η(x)

1 − η(x)
.

Denote by Q(Z,α) the quantile of order 1−α for the distri-
bution of Z conditioned on the event Y = −1. By Neyman-
Pearson’s lemma, we have that among all test statistics φ(X)
with fixed type I error α = P{φ(X) > Q(φ(X), α) | Y =
−1}, the test defined by the statistic φ∗(X) maximizes the
power β = P{φ(X) > Q(φ(X), α) | Y = 1}. Moreover,
the class of distributions {P{X = x | Y = θ}}θ∈{0,1} is a

monotone likelihood ratio family in η(X). Indeed, since the

function u 7→ 1−p
p · u

1−u is strictly increasing on (0, 1), the

test based on the statistic φ∗(X) is obviously equivalent to
the one based η(X). Hence η is an optimal scoring function
in the sense of the ROC curve. Any element of the class S∗

will also maximize the ROC curve thanks to the invariance
property under strictly increasing transforms.

The last statement of Proposition 6 is proved as follows.
First, we use the fact that, for any measurable function h, we
have:

E(h(X) | Y = +1) =
1 − p

p
E

(

η(X)

1 − η(X)
h(X) | Y = −1

)

.

We apply this with h(X) = I{X ∈ R∗
α}− I{X ∈ Rs,α}

to get:

ROC∗(α) − ROC(s, α)

=
1 − p

p
E

(

η(X)

1 − η(X)
h(X) | Y = −1

)

.

Then we add and substract
Q∗(α)

1−Q∗(α) and using the fact that

1 − α = P{X ∈ Rs,α} = P{X ∈ R∗
α} ,

we get:

ROC∗(α) − ROC(s, α)

=

(

1 − p

p

)

E

((

η(X)

1 − η(X)
−

Q∗(α)

1 − Q∗(α)

)

h(X)

∣

∣

∣

∣

Y = −1

)

.

We remove the conditioning with respect to Y = −1 and
using then conditioning on X , we obtain:

ROC∗(α) − ROC(s, α)

=
1

p
E

((

η(X) − Q∗(α)

1 − Q∗(α)

)

h(X)

)

.

It is then easy to see that this expression corresponds to the
statement in the Proposition.

Proof of Proposition 8

In the proof of Proposition 6, we saw that the likelihood ratio
test statistic was given by:

φ∗(x) =
P{X = x | Y = 1}

P{X = x | Y = −1}
=

1 − p

p
·

η(x)

1 − η(x)
.



Now consider, for any measurable function m, the following
conditional expectation with respect to the random variable
X given Y = 1:

E(m(η(X)) | Y = 1) = E (m(η(X)) · φ∗(X) | Y = −1)

which can also be expressed as a conditional expectation
with respect to the random variable Z = η(X) given Y = 1:

E(m(Z) | Y = 1) = E

(

m(Z) ·
dG∗

dH∗
(Z)

∣

∣

∣

∣

Y = −1

)

.

We can then proceed to the following identification:

φ∗(X) =
dG∗

dH∗
(η(X))

We have obtained the following formula for the likelihood
ratio of the random variable η(X):

∀u ∈ (0, 1) ,
dG∗

dH∗
(u) =

1 − p

p
·

u

1 − u
,

which gives the result.

Proof of Proposition 10

We recall (see [CLVar]) that:

AUC∗ − AUC(η̂) =
E (|η(X) − η(X′)|I{(X,X′) ∈ Γ})

2p(1 − p)
.

where

Γ = {(x, x′) : sgn(η̂(X)− η̂(X ′)) 6= sgn(η(X)− η(X ′))}

But, one may easily check that:
if sgn(η̂(X) − η̂(X ′)) 6= sgn(η(X) − η(X ′)), then

|η(X) − η(X ′)| ≤ |η(X) − η̂(X)| + |η(X ′) − η̂(X ′)| ,

which gives the first part of the result.

Turning to the second assertion, consider the event

E = {X ∈ R∗
α∆Rη̂,α}.

Notice first that, after Proposition 6, we have:

ROC∗(α) − ROC(η̂, α) =
E(|η(X) − Q∗(α)| IE)

p(1 − Q∗(α))

≤
cE(|H∗(η(X)) − 1 + α| IE)

p(1 − Q∗(α))

by virtue of the finite increments theorem. Now, observing
that

E = {sgn(H∗(η(X))−1+α) 6= sgn(Hη̂(η̂(X))−1+α)},

we have in a similar fashion as above: if X ∈ R∗
α∆Rη̂,α,

then

|H∗(η(X)) − 1 + α| ≤ |H∗(η(X)) − Hη̂(η̂(X))|,

which, combined to the previous bound, proves the second
part.

Proof of Proposition 15

We now show that the recursive approximation procedure de-
scribed in Subsection 3.4 provides a sequence of piecewise
constant scoring functions (sD)D≥0 with N constant parts
which achieves an approximation error rate for the AUC of
the order of 2−2D.

For any α ∈ (αD,k, αD,k+1), we have, for any optimal
scoring function s∗, by concavity of η:

ROC(s∗, α) − ROC(sD, α) ≤ −
1

8
(αD,k+1 − αD,k)2

×
d2

dα2
ROC(s∗, αD,k) .

By assumption, the second derivative of the optimal ROC is
bounded and hence, it suffices to check that, for some con-
stant C, we have:

∀k , αD,k+1 − αD,k ≤ C · 2−D .

This inequality follows immediately from a recurrence based
on the next lemma.

Lemma 23 Consider f : [0, 1] → [0, 1] a twice differen-
tiable and concave function such that: m ≤ f ′′ ≤ M < 0.
Take x0, x1 such that x0 < x1 and set x∗ such that

f ′(x∗) =
f(x1) − f(x0)

x1 − x0
.

Then, we have:

x∗ − x0 ≤ C(x1 − x0)

for some constant C which does not depend on x0, x1.

PROOF. Set the notations: ∆f = f(x1) − f(x0) and ∆x =
x1 − x0 As f ′ is continuous and strictly increasing, we can
use the following expression for x∗:

x∗ = f ′−1

(

∆f

∆x

)

.

By applying the theorem of finite increment to f ′−1 between

and f ′(x1) and ∆f
∆x , we have

x∗ − x0 = x1 − x0 +

(

∆f

∆x
− f ′(x1)

)

(f ′−1)′(c)

for some c. But we also have by Taylor’s formula that:

∆f

∆x
− f ′(x1) =

1

2
(x1 − x0)f

′′(c′)

for some c′. This leads to the result, as m ≤ f ′′ ≤ M < 0
since:

(f ′−1)′ =
f ′′

f ′′ ◦ (f ′)−1
.



Proof of Proposition 19

The ROC curve of s2,t is a broken line with the extremities
of the two linear parts being (0, 0), (α(t), β(t)) and (1, 1).
Hence, the corresponding AUC can be written as:

A2(t) =
1

2
(1 + β(t) − α(t)) .

As the ROC curve is differentiable, the maximum of A2(t)
is obtained at the point t∗ such that:

dβ(t∗) = dα(t∗) ,

and hence d
dαROC∗(α∗) = 1 for α∗ = α(t∗). We use

Proposition 8 to get α∗ = H̄∗(p) and this ultimately leads
to t∗ = p.
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