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Abstract— Using an original approach, this work shows that the impedance of left-handed
materials (LHMs) is negative and a method to match left-handed materials to free space is
proposed. A full-wave technique is used to validate our analysis and proposed scheme.

1. INTRODUCTION

Veselago 1 explored the proprieties of isotropic media where both the permittivity and the perme-
ability are negative. He observed that in such media, the wave vector k, the electric field vector
E , and the magnetic field vector H form a left-handed system. For this reason, these materials
are called left-handed materials (LHMs). He deduced that these media possess negative refractive
indexes and proposed to use these materials to design flat lenses, by taking benefits of the negative
index of refraction. This idea has been recently reintroduced and further analyzed by Pendry 2.
Different methods have been proposed to design LHMs by using artificial periodic structures and
experimental prototypes have been fabricated 3,4. These artificial materials are also called meta-
materials, because they have characteristics that can not be found in materials of the nature.
Even if a homogeneous non-dispersive LHM has never been observed in the nature, to facilitate
the analysis, one should be able to consider an artificial LHM as a homogeneous non-dispersive
material, around a frequency of interest. However, several authors have noticed that the theoret-
ical analysis of a homogeneous non-dispersive LHM slab excited by a plane wave or a line source
leads to a divergent solution 5−7, even if the relative permittivity and permeability are negative
but different from -1.
In this work, we present a new analysis of media with negative permittivity and permeability.
According to our analysis, it is shown that, contrary to the usual assumption, the characteristic
impedance of an LHM is negative. From this, when a plane wave illuminates an LHM slab in free
space, the wave is reflected and transmitted with transmission and reflection coefficients that tend
to infinity, which is not physically meaningful. This can be explained only if someone knows that
surfaces waves are excited at the interface between air and LHM. To resolve the problem, it is shown
that by using a sheet of resistors and a sheet of amplifiers, it is possible to match the LHM to air.
To validate our approach, we present the analysis of the transmission and reflection coefficients of
an LHM slab illuminated by a plane wave at normal incidence, by using a transmission line model,
a Fabry-Perot cavity model and a full-wave time-domain technique.

2. CHARACTERISTIC IMPEDANCE OF A MEDIUM HAVING NEGATIVE
PERMITTIVITY AND PERMEABILITY

The objective of this section is to determine the characteristic impedance of a medium having, at
a given frequency, the following constitutive parameters : ε = −ε0 and µ = −µ0. ε0 and µ0 are the
permittivity and permeability of air, respectively.
Let us assume a medium, called Medium A, that has the permittivity ε0/p and the permeability
µ0p, where p is a real. For this medium, Maxwell‘s equations can be written

∇× E(r, t) = −pµ0
∂H(r, t)

∂t
,

∇×H(r, t) =
ε0
p

∂E(r, t)
∂t

(1)
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Because p is a scalar, it is obvious that (1) can be written as follows

∇× E(r, t) = −µ0
∂pH(r, t)

∂t
,

∇× pH(r, t) = ε0
∂E(r, t)

∂t

(2)

Solutions obtained for air can be used for Medium A by using pH instead of H. The impedance
of Medium A is obtained by calculating the ratio between an electric field component Ez and a
magnetic field component Hx. From the previous statement, Ez

pHx
= Z0 = 120π, which leads to

ZMediumA =
Ez

Hy
= pZ0 = p120π (3)

This equation can be tested for positive values of p. For example, for p = 0.5 (ε = 2ε0 and
µ = 0.5µ0), we obtain ZMediumA = p120π = 60π (=

√
µ/ε).

If we consider p = −1, Medium A is a LHM (ε = −ε0 and µ = −µ0) and the impedance can be
written ZLHM = −Z0 = −120π.
Note that the negative characteristic impedance of the left-handed medium does not mean neces-
sarily the use of active elements to design it. It is due to the fact that the signs of current and
charge change in a left-handed material 8.

3. METHOD TO MATCH A LHM SLAB TO FREE SPACE

Let us consider a slab of the previously discussed LHM in free space. We assume that a plane wave
is illuminating this slab at normal incidence. If nothing is added, the transmission and reflection
coefficients at the interfaces would be infinite. This is not physically meaningful, of course.
If we introduce loss inside the LHM, by considering non-null imaginary parts of the permittivity
and permeability, we obtain also a divergent solution. This is due to the sum of the successive
transmitted plane waves that is infinite 5. This solution is also confirmed by Finite Difference
Time Domain (FDTD) simulations that we had carried out. Note that this result and the results
presented in this paper can be obtained by any researcher active in Electromagnetic domain and
it is not necessary to develop new numerical methods.

Air LHM

-ε0

-µ0

ε0
µ0

Air

ε0

µ0

Sheet of resistors

Incident
plane
wave

Sheet of resistors

(a)

R2 Z0R1

(b) (c)

-Z0

Z0 -Z0

(R1) (R2)

Figure 1: Principle of the matched left-handed material. (a) An incident plane wave illuminates a matched
LHM. (b) Matching condition at the left-side interface. (c) Matching condition at the right-side interface.

Now we consider that two sheets of resistors are placed in both sides of the LHM as illustrated in
Fig. 1. According to Figs. 1(b) and (c), the impedance matching conditions at the left and right
interfaces, respectively, can be written as

−Z0R1

−Z0 + R1
= Z0 (4)

and
Z0R2

Z0 + R2
= −Z0 (5)
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Which result in
R1 =

Z0

2
= 60π (6)

and
R2 = −Z0

2
= −60π (7)

The matching sheets can be designed by using 2-D periodic structures and are assumed to be
characterized in the air. From this, R1 corresponds to an absorbtion of the wave and R2 corresponds
to an amplification of the wave, which can be obtained in practice by using linear amplifiers.

4. TRANSMISSION AND REFLECTION CHARACTERISTICS OF A MATCHED OR
IMPERFECTLY MATCHED LHM SLAB IN AIR

In this section, we use a transmission line model to calculate the transmission and reflection co-
efficients of the LHM slab with matching sheets. The effect of imperfectly matching is also analyzed.

k = 2πf/c = ω/c is the propagation constant of air, f is the frequency and c is the speed of
light in air. The propagation constant of the left-handed medium can be expressed by

kLHM = nLHMk = −k (8)

In this paper, we use the convention exp(−jωt) to express the propagation of a wave with time.
From this, the term exp(−jkx) expresses the propagation of a plane wave in positive x direction
in air. If we consider a plane wave propagating from x = 0 to x = x1, the transmission coefficient
of this line section of width x1 can be written exp(−jkx1) and x1/c express the time that the wave
makes for travelling from x = 0 to x = x1.
In addition, it should be noted that if we obtain the expression exp(jkd) for the transmission
coefficient of a slab of width d and made of a material, in air, for a monochromatic plane wave, it
means that this slab introduces a time advance. This is, of course, not in accordance with Causality
neither with Einstein’s theory of Relativity (the free space speed of light would be surpassed when
the slab is present by comparison with the slab not present).
The ABCD matrix (or chain matrix) of a line section of air of width d can be written by

(
cos(kd) jsin(kd)
jsin(kd) cos(kd)

)
(9)

The ABCD matrix of a line section of LHM of width d can be written as(
cos(kd) −jsin(kd)
−jsin(kd) cos(kd)

)
(10)

The ABCD matrix of a sheet of resistors R can be written as(
1 0
Z0
R 1

)
(11)

The chain matrix of the system composed of the LHM and the two sheets of resistors can be
expressed as follows :

(
A B
C D

)
=

(
1 0
Z0
R1

1

)(
cos(kd) −jsin(kd)
−jsin(kd) cos(kd)

)(
1 0
Z0
R2

1

)

=
(

1 0
2 1

)(
cos(kd) −jsin(kd)
−jsin(kd) cos(kd)

)(
1 0
−2 1

)

=
(

cos(kd) + 2jsin(kd) −jsin(kd)
3jsin(kd) cos(kd)− 2jsin(kd)

)
(12)

The transmission and reflection factors of the matched LHM slab, excited from the left, TMLHM

and RMLHM , respectively, are given by

TMLHM =
2

A + B + C + D
= exp(−jkd) (13)
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RMLHM =
A + B − C −D

A + B + C + D
= O (14)

which are the same results as those obtained for a wave propagating in air. It can be concluded
that the time for the wave to pass through the matched LHM slab is the same as that for the wave
to propagate if the LHM is replaced by air. The normalized transmission coefficient of the slab is
then written as T = TLHM/TAIR = 1.
Let us analyze the case where the matching conditions are not perfectly achieved. We consider
that the equivalent impedance of the sheets are not equal to the ideal case due to an additional
imaginary admittance, jδ/Z0, which leads to the followings values of the equivalent impedances of
the sheets, Z1 and Z2 :

Z1 =
Z0

2 + jδ
(15)

and

Z2 = − Z0

2 + jδ
(16)

where δ is a real close to zero.
The chain matrix of the system composed of the LHM and the two imperfect matching sheets can
be written by

(
A B
C D

)
=

(
1 0

2 + jδ 1

)(
cos(kd) −jsin(kd)
−jsin(kd) cos(kd)

)(
1 0

−2− jδ 1

)
(17)

After some algebraic manipulation, one can obtain the transmission and reflection coefficients of
the imperfectly matched LHM slab, TIMLHM and RIMLHM :

TIMLHM =
2

A + B + C + D
=

2
2exp(jkd) + (4δj − δ2)jsin(kd)

(18)

RIMLHM =
A + B − C −D

A + B + C + D
=

−(2δ + δ2)jsin(kd)
2exp(jkd) + (4δj − δ2)jsin(kd)

(19)

Note that δ = 0 corresponds to the perfectly matched LHM slab. These results will be used to
explain the numerical results obtained with the FDTD method in Section 6.

5. FABRY-PEROT CAVITY MODEL AND ANALYSIS OF CONVERGENCE
CONDITIONS FOR IMPERFECTLY MATCHED LHM

In this section, we use the Fabry-Perot cavity model to analyze the transmission coefficient of the
imperfectly matched LHM slab. In other words, we analyze the multiple wave-reflections between
the two interfaces. This model shows more clearly the physical insight of the characteristics of the
slab and allows to determine the conditions that must be verified to ensure the convergence of the
solution.
We consider that an imaginary admittance jδ/Z0 is added to the equivalent admittance of the
matching sheets. The reflection coefficients at the left and right sides of the slab, respectively, can
be written as

r = −δj + 4
δj + 2

(20)

and

r′ = − δj

δj + 2
(21)

The transmission coefficients at the left and right interfaces are

t = t′ =
2

δj + 2
(22)

By considering the multiple reflections of the plane waves between the two interfaces, and by adding
the successive transmitted rays, the transmission coefficient of the imperfectly matched LHM slab
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can be written by

TIMLHM = tt′TMLHM

∞∑

i=0

(rr′T 2
MLHM )i

=
4

(δj + 2)2
exp(−jkd)

∞∑

i=0

(
δj(δj + 4)
(δj + 2)2

exp(−2jkd)
)i

(23)

To ensure the convergence of the sum of geometrical series in (23), i.e. to ensure that the sum of
the successive transmitted rays is finite, we need to verify the following relation

∣∣∣∣
δj(δj + 4)
(δj + 2)2

∣∣∣∣ < 1 (24)

When this relation is satisfied, (23) can be written

TIMLHM =
4

(δj+2)2 exp(−jkd)

1− δj(δj+4)
(δj+2)2 exp(−2jkd)

=
2

2exp(jkd) + (4δj − δ2)jsin(kd)
(25)

This is the same result as (18). However, by using the Fabry-Perot cavity model we have now
also the information on the convergence condition. If one want to simulate this problem with a
numerical method, it is clear that the convergence condition (24) must be satisfied, independently
of the numerical technique that is used.
Note that jδ = −2 corresponds to the LHM without matching sheets. If jδ tends to −2, it can be
seen from (24) that the solution diverges. This is in accordance with the result obtained by Hooft5.
We can conclude that the divergence problem observed in 5 can be resolved by adding a sheet of
resistors and a sheet of amplifiers. In the next Section, the analytical formulas are validated by
using a numerical method.

6. NUMERICAL RESULTS USING THE FDTD TECHNIQUE

In this section, the full-wave simulation results of a homogeneous non-dispersive LHM slab, excited
by a plane wave in air, are presented for the first time.

(a)

Observation
point P1

Observation
point P2

Air AirLHM

Sheet of resistors
R1

Sheet of resistors
R2

Incident TMz

plane wave

x

y

lP1 d PML

PML

PMC

PMC

(b)

Resistor
R

y

z

∆z
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8

8
8

8

Figure 2: (a) Schematic for the calculation of the transmission and refection coefficients in the FDTD
method. (b) Model of the resistors sheet in the FDTD method. Note that for a TMz wave excitation, only
the resistors in z-direction are required.

We use a Finite Difference Time Domain (FDTD) code, which has been well validated for mod-
eling and simulating a wide range of electromagnetic problems. This method is based on a direct
discretization in space and time domains of Maxwell’s equations.
Note that no arithmetic mean was used to force the permittivity at the interface. This introduces
a space shift between the sheets of resistors and the actual interfaces between the two media.
In the FDTD method, we use a TMz polarized plane wave and a gaussian pulse in the frequency
band 0− 5 GHz. Figure 2(a) shows the computational domain. Perfect Electric Conductors, Per-
fect Magnetic Conductors, and Perfect Matched Layers9 are used at the boundaries to limit the
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computational domain. Two observation points, P1 and P2, before and after the slab, respectively,
are used for the calculation of the reflection and transmission coefficients. At the interfaces, match-
ing resistors are located in each cells in y-z plane, as illustrated in Fig. 2(b). Simulations without
the LHM slab were also carried out for normalization. The space mesh in all the directions is ∆ =
5mm. The LHM is made by using a medium with the following parameters : ε = −ε0 and µ = −µ0.
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Figure 3: Amplitude of the field versus x-direction at different time instants. The slab width is d = 40 mm.
A plane wave with a gaussian pulse comes from the left side. The position of the LHM is indicated in the
figure. Note that the wave appears to propagate in the LHM as in the air (except for a small reflected energy
part that is due to imperfection of the matching).
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Figure 4: (a) Computed amplitudes of the transmission and reflection coefficients, T and R, of the matched
LHM slab vs. frequency, for different values of the slab width (FDTD). (b) Phase of the transmission
coefficient vs. frequency, for different values of the slab width.

Figure 3 shows the amplitude of normalized field Ez versus x-direction at different time instants.
This figure demonstrates that the results converge with a wide frequency band excitation. These
curves show also that the direction of the wave propagation does not change inside the LHM slab.
Inside the LHM slab, the wave propagates like in free space, except for a small reflected energy
part that is due to the imperfections in impedances values at the interfaces, as it will be developed
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later.
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Figure 5: Distributions of the phase and the amplitude of the normalized field in x-direction for d = 40 mm
at 3.7 GHz (d ≈ λ/2). At this frequency the LHM is matched (T = 1, R = 0). The position of the LHM
is indicated in the figures. (a) Distribution of the phase. (b) Distribution of the amplitude. Note that the
amplitude varies inside the LHM, which indicates that a stationary waves regime appears.
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Figure 6: Comparison between analytical and FDTD results for the characteristics the LHM slab with
matching sheets vs. frequency, for d = 40 mm and ∆ = 5mm: (a) amplitudes of the transmission and
reflection coefficients, T and R (b) phase of the transmission coefficient

Figure 4(a) presents simulated amplitudes of the transmission and reflection coefficients, T and R,
for different slab widths. One can note that the transmission coefficient is not equal to one for all
frequencies. This is due to the fact that the sheets are not at the same positions as the interfaces,
which introduces additional terms in the equivalent admittance values of the interfaces. However,
the transmission coefficient is equal to one at resonant frequencies at which the slab widths are
equal to a multiple of the half-wavelength.
In Fig. 4(b), is plotted the phase of the transmission coefficient for different slab widths. From
these curves, it can be seen that the phase is never positive, which indicates that the slab does
not accelerate the propagation of wave, but can only introduce a time-delay. The fact that the
speed of light can not be surpassed is in accordance with the theory of relativity10. When the LHM
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is matched (T = 1 and R = 0), the time-delay is null. On the other hand, if we look into the
distribution of the phase of the normalized field, at a resonant frequency, as shown in Fig. 5(a),
the phase can be positive inside the slab. This is due to the stationary waves regime that occurs
inside the slab, as it can be seen from the distribution of amplitude of the normalized field in Fig.
5(b).
The previous numerical results show that the matching sheets are not perfect. This is due to the
fact that the distance between the sheets and the boundary between the two media are spaced by
half space mesh, i.e. ∆/2, due to the FDTD technique. Physically, this distance represents the
electrical distance between a matching sheet and the LHM.
At the interface between the two media, the matching conditions impose that the admittance is
null. Therefore, the equivalent admittance of the interface at the sheet position is given by

jδ/Z0 = jtan(k∆/2)/Z0 (26)

where ∆ = 5mm. jδ/Z0 represents the additional term that appears in the equivalent admittances
of the sheets. Equation (26) is introduced in Eqs. (18)-(19). In Fig. 6(a), are plotted the
amplitude of the transmission and reflection coefficients and in Fig. 6(b) is plotted the phase of
the transmission coefficient. In the same Figures, the FDTD results are also added. These curves
show that the numerical and analytical calculations yield the same results. We have also validated
the analytical results for other values of d (not shown here). From this, we can conclude that our
theory is validated.
If the mesh ∆ tends to zero, i.e. if the space between the sheet and the interface tends to zero,
then δ tends to zero and the LHM slab becomes perfectly matched to air.

7. CRITICS ON CLASSICAL THEORY OF LHMS AND CONSEQUENCES OF THE
PROPOSED THEORY

In this work, we have presented an analyze that shows that the characteristic impedance of a LHM
(i.e. a material having the the following constitutive parameters : ε = −ε0 and µ = −µ0) is
negative. An important number of papers can be found in the literature about LHMs. All have
demonstrated or considered that the characteristic impedance of the LHM is positive. For this
reason, we believe that is is important to review some ideas proposed in these papers in order to
show where we believe that an error has been made.

Several researchers have considered that there is an ambiguity in the sign of the impedance (or
the index of refraction) and that the positive sign should be “chosen” to satisfy physical principles
such as conservation of energy or Causality. However, in Maxwell’s equations there is no ambiguity
in the signs of the impedance or of the index and the ambiguities can be observed only if one use
the wave equation.

From the plane-wave equation, we obtain easily (kLHM )2 = (−µ0)(−ε0)ω2. Because of this,
several authors have proposed to use the expression kLHM =

√
(−µ0)

√
(−ε0)ω, to determine the

sign of nLHM . This demonstration is not satisfactory because it is mathematically wrong. A similar
method is often used to demonstrate that the impedance of the LHM is positive. It is obvious that
it is mathematically impossible to determine the signs of the index or of the impedance by using
the wave equation. As stated, the negative sign of the index can also be obtained from Maxwell’s
equations and the ambiguity in the sign is only observed when the wave equation is used to obtain
the solution. For uniform plane waves, Maxwell’s equations in LHM can be written by

kLHM ∧ E = −(−µ0)ωH

kLHM ∧H = (−ε0)ωE
(27)

By doing the identification with the following relations

kLHM ∧ E = −µ0nLHMωH

kLHM ∧H = ε0nLHMωE
(28)

it is found nLHM = −1.
At an interface, the resonance equation Z+ + Z− = 0 (Fig. 7) is often used to determine the
frequency of a surface wave or a leaky wave11−13. Our theory, which shows and considers that
the impedance of air and LHM have opposite signs, reveals that surface wave is excited at their
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interface. The presence of a surface wave is not obvious if we use the classical theory on LHM.
However, from the literature, several simulations that consider the flat lens made of a dispersive
LHM slabs show clearly that the surface wave is excited and important14. The surface wave is
often more important than the image and the source itself. A consequence of our work is that it is
possible to reduce or suppress this surface wave by adding matching sheets.

Z+Z-

Interface

Figure 7: At an interface, the resonance equation Z+ + Z− = 0 reveals the presence of a surface wave or a
leaky wave

Tab. 1: Comparison between the proposed theory and the classical theory on LHMs
Classical theory Our theory

Sign of ZLHM “must be” positive < 0 from Maxwell‘s equations
Sign of nLHM negative negative

Interface air-LHM char. We “have” to use ZLHM
14 We can use ZLHM or nLHM

LHM slab char. Time advance Matched LHM: time delay
εr = −1 and µr = −1 Theoretically not possible7 Theoretically possible
Surface wave: theory no evidence of existence exists for unmatched LHM

Surface wave: simulation always exists doesn’t exist for matched LHM

A different demonstration that ZLHM is positif has been presented in 15 (Note that the authors
use the wave equation). However, their demonstration is not satisfactory. Indeed, they assume a
priori that ZLHM is positif and their final conclusion is that ZLHM is positif: below Eq. (5)15, the
authors use the equation ZLHM = µLHM/nLHM . If µLHM and nLHM are negative, it is obvious
that ZLHM is positive. If we replace the equation by ZLHM = −µLHM/nLHM , Eq. (13) of 15

becomes Re(ZLHM ) < 0.
In 14, it is stated that to calculate the characteristic of the interface LHM-air we “must” use the

impedance and not the index. However, if one consider that the impedance is positive and use the
proposed method, one obtains that the LHM slab introduces a time advance. In addition, this is in
contradiction with the work in 2, where the author considers the multiple wave-reflections between
the interfaces, because, for the matching case, no reflection between interfaces should occur.

In 2, the author uses a sum of geometrical series that does not converge, as it has been observed
also in 5,6. Nothing can be deduced from this sum. According to 7, this series can converge by using
the “notion of analytic continuation”, even if it “does not converge in the current sense”. However,
what does it mean physically? Does it mean that the amplitude of the successive transmitted waves
increases and that we have to wait during an infinitely long time to obtain the transmission of all
waves? In our work, the convergence of the sum of the geometrical series (i.e. the sum of the
successive transmitted waves) is verified (Section 5).

In 7, the authors conclude that a “left-handed material with both relative permittivity and
permeability equal to −1 cannot exist”. In our work, there is theoretically no contradiction with the
existence of a LHM. There is no problem for simulating a LHM by using available electromagnetic
simulators. One encounters a problem when an interface between air and the LHM is introduced.
Thanks to the proposed matching sheets, this problem can be resolved.

In 3, the authors present an experimental demonstration of the negative index of refraction, by
measuring the angle of the refracted field on a wedge shaped body made of an artificial metamaterial.
They also measured the refracted field for a Teflon wedge (ε ≈ 2.1) for comparison. As noticed by
Munk16 and other researchers, an important feature of the presented results is that “the refracted
field for the synthesized material is 20 dB or more below the refracted field from the Teflon case.
Such a large loss can not be attributed to either ohmic or dielectric loss for frequencies below
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100 GHz”. We believe that this low transmission level is due to the fact that the material is not
matched to free space, according to our theory.

Table 1 summarizes the results obtained with our theory and the classical theory.

8. CONCLUSION

In this work, a new theory on the characteristic impedance of media with simultaneously negative
permittivity and permeability, called left-handed materials (LHMs), has been proposed. This theory
shows that the characteristic impedance of these media is negative. A method has been proposed
to match a LHM slab to free space, by using sheets of resistors and amplifiers. We have also
considered the effect of an imperfectly matching. The transmission and reflection characteristics of
an imperfectly matched LHM slab has been calculated by using analytical methods (transmission
line and multiple-reflections methods). For the first time, the full-wave simulation results (FDTD)
of a homogeneous non-dispersive LHM slab excited by a plane wave in air have been presented.
The agreement between analytical and FDTD results confirms our theory that the characteristic
impedance of a medium with simultaneously negative permittivity and permeability is negative.
Future work will concentrate on the analysis of the excitation by plane wave at oblique incidence
of an LHM slab and on the flat lens. For oblique incidence, the matching conditions should be
modified. We will also verify our theory with artificial LHMs made with periodic structures.
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