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Sébastien Bosca

Université de Bordeaux, Institut de Mathématiques de Bordeaux, 351 cours de la

Libération, 33405 TALENCE Cedex, France

With an Appendix by Georges Gras 1 and Jean-François Jaulent 2

Abstract

We give a self-contained proof of a general conjecture of G. Gras on principalization
of ideals in abelian extensions of a given field L, yet solved by M. Kurihara in the
case of totally real extensions L of the rational field Q.

More precisely, for any given extension L/K of number fields, in which at least
one infinite place of K is totally split, and for any ideal class cL of L, we build a
finite abelian extension F/K, in which all infinite places are totally split, such that
cL principalizes in the compositum M = LF .

A – INTRODUCTION

When M/L is an abelian extension of number fields, the problem of knowing
which ideals of L are principal in M is difficult, even if M/L is cyclic. Class
field theory gives partial answers. For instance, the Artin-Furtwängler theorem
states that when M = HL is the Hilbert class field of L, all ideals of L are
principal in M ; but the other cases are more mysterious.

When M/L is cyclic, we still have no general answer but the problem is easier.
The kernel of the natural map j : ClL → ClM is partly known by this way,
as explained below: at first, cohomology of cyclic groups says that this kernel
is a part of Ĥ1(G, EM), where G = Gal(M/L) and EM is the group of units
of M ; Ĥ1(G, EM) itself is not well known but its order can be deduced from
the order of Ĥ0(G, EM) using the Herbrand quotient; after that, the order of
Ĥ0(G, EM) depends partly from the natural map EL → US, where US is the
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subgroup of the unit idèles of L which is the product of the groups of local
units at the places ramified in M/L (S is the set of such ramified places);
finally, the map EL → US depends on the Frobenius’ of the primes of S in the

extension L[µh, E
1/h
L ]/L (where h = [M : L] and where µh is the group of hth

roots of unity). Obviously, this makes sense only if the primes of S are prime
to the degree of the extension.

However, even in this cyclic case, Ker(j) is not completely given by these
Frobenius’, so that knowing such Frobenius’, we cannot get really more than
a minoration of the order of Ker(j).

This article deals with such minoration techniques, which allow to prove, for
instance, this easy fact: if a cyclic extension M/L is ramified at only one
finite place q prime to [M : L], then, as soon as the ramification index eq is
large enough (precisely, when |ClL| divides eq), the capitulation kernel Kerj
contains at least the class of q in ClL. This can be easily established by studying
Ĥ1(G, EM) and may be seen as a particular case of our main theorem.

On the other hand, this article states a result which proves a conjecture of
Georges Gras and generalizes a result of Masato Kurihara (see [1] and [2]),
so that the theorem exposed here is not only an abstract minoration of Kerj,
using cohomology of cyclic groups, Minkowski–Herbrand theorem on units of
number fields, class field theory, and Kummer duality. Note also that here, we
use new asymptotic methods (“take n large enough”, where n is related to the
degree [F : K] in a suitable manner).

Note finally that in the theorem below the hypothesis “at least one infinite
place of K is totally split in L/K” is necessary: in [1], Georges Gras gives
examples of extensions L/K with ideals which do not principalize in the com-
positum LKab, where Kab is the maximal abelian extension of K.

B – MAIN THEOREM AND COROLLARIES

Main Theorem. Let L/K be a finite extension of number fields in which at
least one infinite place ofK totally splits. There exists a finite abelian extension
F/K, which is totally split at all infinite places, such that every ideal of K
principalizes in the compositum M = LF .

Corollary 1 (K = Q). If L is a totally real number field, any ideal of L
principalizes in a real cyclotomic extension of L (i.e., in the compositum of L
with a real subfield of a suitable cyclotomic extension of Q).

Corollary 1 was proved by Masato Kurihara in [2].

Notation: In the following, Kab denotes the maximal abelian extension of K
andKab

+ its maximal totally real subextension (i.e., the subextension of Kab/K
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fixed under the decomposition groups of the infinite places of K).

Definition: Let us say that a number field N is principal when ClN is trivial.
Then:

Corollary 2. (i) Let K be a number field with at least one complex place.
Then any field containing Kab is principal.

(ii) Let K be a totally real number field. Any field containing Kab
+ and whose

Galois closure has at least one real place is principal.

Corollary 3. (i) Any totally real field containing Qab
+ is principal.

(ii) Any field containing Q(i)ab is principal.

Corollary 3, for Q(i) or any imaginary quadratic field in (ii), was proved by
Masato Kurihara (see [2], theorem 1.1 p. 35 and theorem A.1 p. 46).

Corollary 4. (i) Let K be a number field with at least one complex place.
Then Kab is principal.

(ii) Let K be a totally real number field. Any field containing Kab
+ which is

contained in one of the subfields of Kab fixed by a complex conjugation is
principal.

Corollary 4 proves a conjecture of Georges Gras, Conjecture (0.5) p. 405 of [1].

C – PROOFS

I. Proof of the main theorem : preliminaries

To prove the theorem, we fixe an ideal aL of L, and we shall build a finite
abelian extension F of K, which is totally split at all infinite places, cyclic
in most cases, such that aL principalizes in the compositum LF . Obviously,
any ideal bL of L with the same class in ClL will become principal in LF
as well, so that it is enough to fix the class cL of aL in ClL. Now, if (ci)i

is a finite generating system of ClL, we will obtain a corresponding set (Fi)i

of extensions, and every ideal of L will principalize in LF , where F is the
compositum of the (Fi)i; this will prove the theorem.

So, in the following, we fixe cL in ClL, and must find F . As the class group of
L is the direct sum of its p-parts, for all prime numbers p, one can suppose
that the order of cL in ClL is a power of a prime p. So, cL and p are fixed; ClL
is now the p-part of the class group of K, and HL the maximal p-extension
contained in the Hilbert class field of L.

(1) One can suppose cL ∈ Clp
a

L for an arbitrary given integer a:

Definition: Let us call abelian compositum of the extension L/K any extension
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N = LF , where F is a finite abelian extension of K, totally split at all infinite
places of K.

One fixes an integer a; in case cL /∈ Clp
a

L , one will build an abelian compositum
L′ of L/K, such that the extended class cL′ = j(cL) satisfies cL′ ∈ Clp

a

L′ ; so, if
N ′ is an abelian compositum of L′/K in which cL′ is principal, it is as well an
abelian compositum of L/K, so that one can legitimately replace L by L′, in
which case one has cL′ ∈ Clp

a

L′ .

Let’s build such a L′ = LF0 as follows: let q be a prime of L satisfying the
three following conditions:

(i) q totally splits in L/Q;

(ii) Frob(q, L[µ2pa]/L) = id;

(iii) Frob(q, HL/L) = cL.

If such a q exists with say q|q, the first two conditions imply the existence
of a (cyclic) subfield F ′

0 of Q(µq), with degree [F ′
0 : Q] = pa, which is totally

ramified at the prime q; the first condition implies that the compositums
F0 = KF ′

0 and L′ = LF0 have again a degree pa over K and L, respectively.
Now L′/L is totally ramified at q, say q = q′ pa

, for a prime q′ in L′; so,
according to the third condition, the extended class cL′ = j(cL) satisfies:

cL′ = q = q′ pa

∈ Clp
a

L′

as expected.

Now we only have to verify the existence of such a prime q. The three con-
ditions defining q all depend on Frob(q, H̃L[µ2pa]/Q), where H̃L is the Galois
closure of HL over Q; the first two conditions are equivalent to the fact that
this Frobenius is in the subgroup Gal(H̃L[µ2pa]/L[µ2pa ]); so they are com-
patible with the last condition for any cL in ClL, if and only if one has:
L[µ2pa ] ∩ HL = L; if this is right, the Čebotarev theorem states there are
infinitely many q satisfying the conditions. When this is wrong, we replace L
by L′′ = L[µ2pa] ∩HL which verifies L′′[µ2pa ] ∩HL′′ = L′′.

As explained above, this last replacement is legitimate in case L′′ = L[µ2pa ]∩
HL is an abelian compositum of L/K. In fact, one has L′′ = LF where F is
contained in the maximal p-subfield of K[µ2pa], which is clearly abelian and
finite but in which infinite places are maybe not totally split for p = 2.

So, for p = 2, we shall complete the proof, and we take in this particular case
L′′ = LK[µ2b ]+, where the symbol + denotes the maximal ∞-split subexten-
sion over K, and where b is an integer, which is choosen large enough so that
L′′ contains HL ∩ LK[µ2a+1]+ and L′′/L has degree at least 2.
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Suppose we have found a prime q′′ of L′′ satisfying the following conditions:

(i) q′′ totally splits in L′′/Q;

(ii) Frob(q′′, L′′[µ2a+1]/L′′) = id;

(iii) Frob(q′′, HL′′/L′′) = cL′′ ,

where cL′′ is extended from cL. So, let F ′
0 be the totally real subfield of Q[µq]

of degree 2a over Q, thus F0 = K[µ2b ]+F
′
0 and L′′′ = LF0 = L′′F ′

0 (which is an
abelian compositum of L/K). If q′′′ denotes the unique prime of L′′′ above q′′,
the extended class c′′′L′′′ in ClL′′′ satisfies the expected condition:

cL′′′ = q′′ = q′′′ 2a

∈ Cl2
a

L′′′ .

So to conclude we only have to prove the existence of such a prime q′′ verify-
ing the threee conditions above. But this existence follows from the Čebotarev
theorem as soon as the image of cL ∈ Gal(HL′′/L′′) in Gal(HL′′∩L′′[µ2a+1]/L′′)
is trivial. To check this last point, let us observe that in the class field descrip-
tion the extension of ideal classes j corresponds to the transfert map Ver. Here
L′′ contains HL ∩ LK[µ2a+1 ]+, so HL′′ ∩ L′′[µ2a+1] = L′′′ is either L′′ or L′′[i],
and the image of jL′′/L(cL) in Gal(L′′′/L′′) is trivial, since one has:

VerB/A→B′/A′(σ) = σ[A′:A]

when B′/A is abelian, so:

Res L′′′(VerHL/L→H
L′′/L′′(cL)) = VerHL/L→L′′′/L′′(cL) = c

[L′′:L]
L = id.

(2) One can suppose that L/K is Galois:

Let L̃ denotes the Galois closure of L over K. Imagine the theorem is proved
for L̃/K (in which at least one infinite place totally splits as in L/K). Hence,
there exists an abelian compositum L̃F of L̃/K such that every ideal of L̃
principalize in L̃F ; so, cL principalizes in L̃F but maybe does not in LF and
we have to study this case.

(a) When cL is norm in L̃/L, say cL = NL̃/L(c̃
L̃
), the class c̃

L̃
∈ ClL̃ princi-

palizes in L̃F , say jL̃F/L̃(c̃
L̃
) = 1 in ClL̃F ; so we obtain: cL = NL̃∩LF/L(c′

L̃∩LF
)

with c′
L̃∩LF

= (NL̃/(L̃∩LF )(c̃L̃)) and the class c′
L̃∩LF

, which satisfies jLF/L̃∩LF ◦
NL̃/(L̃∩LF )(c̃L̃) = NL̃F/LF ◦ jL̃F/L̃(c̃

L̃
) = 1, principalizes in FL; and so is cL.

(b) When cL is not a norm in L̃/L, maybe cL is not principal in LF . But

NL̃/L(ClL̃) contains Cl
[L̃:L]
L = Clp

a

L , where pa is the largest power of p dividing

[L̃ : L]. According to Section (1) we replace L by L′ = LF0 such that cL ∈ Clp
a

L′ .
Since [L̃′ : L′] = [L̃F0 : LF0] divides [L̃ : L], cL is norm in L̃′/L′ and (a) applies.
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II. Proof of the theorem : building the extension F

(3) The method and a first condition about the prime q:

By now we suppose L/K Galois. The prime p and the class cL are fixed and
we must build an abelian compositum LF of L/K such that cL principalizes
in LF . For convenience, we choose F/K as a cyclic p-extension, ramified at
only one finite place q of K, and whose ramification index is eq(F/K) = pn

for a given integer n. We will see that with many conditions about q, when
n is large enough, cL is principal in LF , or in L′F , where L′ is a convenient
abelian compositum of L/K. At the end of the proof, in Section (6), we will
study the existence of such q verifying all conditions.

Now for a given integer n and a given prime q of K, we wonder if cL is
principal inM = LF , where F is a cyclic p-extension ofK with eq(F/K) = pn,
unramified but at q and in which all infinite places are totally split. The first
question is the existence of such an extension F/K and class field theory gives
the answer as follows.

Indeed, N being the maximal abelian extension of K unramified but at q

and ∞-split, class field theory describes the Galois group Gal(N/K) from the
quotient

JK

/

K×.
∏

v|∞

K×
v .
∏

q′ 6=q

Uq′ ,

where JK is the idèle group of K and Uq′ the subgroup of local units of the
completion Kq′ of K at the place q′. The inertia subgroup of q in N/K is,
according to class field theory, isomorphic to the quotient

Uq

/

Uq ∩ (K×.
∏

v|∞

K×
v .
∏

q′ 6=q

Uq′) = Uq

/

EK ,

where EK is the group of global units in K and the overlining means closure
in Uq of the diagonal embedding. Of course if F exists, it is contained in
the maximal p-extension of N , whose ramification subgroup is the p-part of
Uq

/

EK , denoted (Uq

/

EK)p.

We suppose now:

• q ∤ p.

So, if F exists, pn divides |(Uq

/

EK)p|, that is, under the assumption q ∤ p:

• µpn ⊂ K×
q

,

and

• EK ⊂ Upn

q
. 3

3 The canonical embedding of EK in K×
q must be contained in Upn

q since (Uq)p is
here a cyclic group.
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These necessary conditions are enough to ensure the existence of F , according
to an obvious lemma, which states: if A is an abelian finite group and C is a
cyclic subgroup of A of which pn divides the order, then there exists a cyclic
quotient of A in which the image of C has order pn.

Now we suppose that q ∤ p verifies the two above conditions and the additional
assumption:

• q is unramified in L/K. 4

So F exists; all primes qL | q are ramified in M/L = LF/L with the same
index eq = pn; and we have [M : L] = pn+d for some positive integer d.

(4) Obtaining a big cohomology group Ĥ0(G, EM):

Let G denotes the Galois group Gal(M/L), which is cyclic with order pn+d,
and G = Gal(L/K).

According to the Minkowski–Herbrand theorem, the character of the repre-
sentation Q ⊗Z EL of G = Gal(L/K), given by the group of global units EL,
is:

χ(EL) =
∑

v|∞

IndG
Dv

1Dv
− 1G ,

where 1G is the trivial character of G and 1Dv
the trivial character of the

decomposition subgroup Dv.

Since at least one infinite place is totally split in the extension L/K, the
character of Q ⊗Z (EL/µLEK) satisfies

χ(EL/µLEK) ≥ χ(Z[G]) − 1 ,

and we can deduce from this the existence of a map: 5

ϕ : EL/µL.EK −→ Z

such that, in Hom(EL/µL.EK ,Z), ϕ generates a Z[G]-submodule whose char-
acter is χ(Z[G]) − 1.

On the other hand, since L[µpn , E
1/pn

L ]/L[µpn] is a Kummer extension, if qL is
one of the primes of L dividing q, the Frobenius automorphism

σ = Frob(qL, L[µpn, E
1/pn

L ]/L)

4 In fact, in the sequel Bosca will suppose that q is totally split in L/K.
5 See the details in the Appendix.
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corresponds, in the Kummer duality, to the map:

u 7→ (u1/pn

)(σ−1) ∈ µpn, for all u ∈ EL,

and we impose the new condition:

• this map σ coincides with λn : EL −→ EL/µL.EK
ϕ

−→ Z −→ µpn,

where the left map is the natural one and the right one is surjective (we must
choose a primitive pnth root of unity for the right map, but this choice does
not change the Frobenius defined up to conjugation: changing the choice of
the root of unity is the same that changing the choice of a prime q′ | q in
L[µpn]).

So, the property of ϕ leads to the following facts:

Let φ denotes the map (see the Appendix):

EL −→RG := {
∑

g

αg g ∈ Z[G] |
∑

g

αg = 0}

u 7−→
∑

g

ϕ(g−1(u)) g ;

Im(φ) has finite index, say r. So, pδ being the maximal power of p dividing r,
one has:

|{EL/{u ∈ EL | ∀g ∈ G, λn(g(u)) = 1}| ≥ |RG/R
pn

G |/pδ = pn(|G|−1)−δ .

On the arithmetical side, the ramification indices in M/L of all primes qL | q

of L are all equal to pn; so, with qM |qL|q in M/L/K, one has 6 :

NM/L(EM) ⊂ NM/L

(

∏

q
M

|q

Uq
M

)

=
∏

q
L
|q

Upn

q
L

,

and then,

{u ∈ EL | ∀g ∈ G, λn(g(u)) = 1} = EL ∩
∏

q
L
|q

Upn

q
L

⊃ NM/L(EM) ,

so that

|H0(G, EM )| = |EL/NM/L(EM)| ≥ |EL/{u ∈ EL | ∀g ∈ G, λn(g(u)) = 1}| ,

and we finally have from the character theory side:

|H0(G, EM)| ≥ pn(|G|−1)−δ .

6 Using the fact that the global norm is the product of the corresponding local
norms.
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(5) Study of Ĥ1(G, EM) and majoration of |IGM/P
G
M |:

Recal that M := FL. According to [4], chapter IX, §1, since the cyclic exten-
sion M/L is totally split at all infinite places, the Herbrand quotient q(G, EM)
of the units is given by:

q(G, EM) :=
|Ĥ0(G, EM)|

|Ĥ1(G, EM)|
=

1

[M : L]
=

1

pn+d
,

and this gives:

|Ĥ1(G, EM)| = pn+d . |Ĥ0(G, EM)| ≥ pn+d . pn(|G|−1)−δ = pn|G|+d−δ .

On the other hand, one has the canonical isomorphism:

Ĥ1(G, EM) ≃ P G
M/PL

where P G
M is the group of principal ideals of M which are invariant under G.

So one obtains:
|P G

M/PL| ≥ pn|G|+d−δ.

Thus, from the formula: 7

|IGM/IL| =
∏

q
L
|q

eqL
= pn|G| ,

where IM is the group of fractional ideals of M , one deduces:

|IGM/P
G
M | =

|IGM/PL|

|P G
M/PL|

=
|IGM/IL| . |IL/PL|

|P G
M/PL|

=
pn|G| . |ClL|

|P G
M/PL|

≤
pn|G| . |ClL|

pn|G|+d−δ
,

that is:
|IGM/P

G
M | ≤ |ClL| . p

δ−d .

Note that the number at the right hand side does not depend on n.

(6) Does the class cL principalize in M ?

Here, we also suppose:

• Frob(qL, HL/L) = cL.

M ′ being the maximal subfield of M/L in which qL totally splits, one has:

qL =
∏

q′
M

|q
L

in M ′/L

q′M ;

7 Since we have supposed that q is totally split in L/K.
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and for all prime q′M |qL of M ′/L, we have q′M = q
pn

M , where qM is the unique
prime of M dividing q′M .

Finally in M ,

qL =

(

∏

q′
M

|q
L

qM

)pn

,

with
∏

q′
M

|q
L

qM ∈ IGM . According to Section (5), one has:

|IGM/P
G
M | ≤ |ClL| . p

δ−d,

then:
(

∏

q′
M

|q
L

qM

)|ClL| . pδ−d

∈ P G
M .

Hence, in ClM , the extended class cM of cL satisfies both:

cM = qL =

(

∏

q′
M

|q
L

qM

)pn

and

(

∏

q′
M

|q
L

qM

)|ClL| . pδ−d

= 1 .

So, w being such that |ClL| = pw, cL is principal in M under the assumption:

n ≥ w + δ − d.

(7) Existence of q:

We just proved that cL principalizes in M when n is large enough and when
q (or qL|q) satisfies the following six conditions:

(1) q ∤ p,

(2) µpn ⊂ K×
q

,

(3) EK ⊂ Upn

q
,

(4) q is totally split in L/K,

(5) Frob(qL, L[µpn, E
1/pn

L ]/L) = λn,

(6) Frob(qL, HL/L) = cL.

The definition of λn ∈ Gal(L[µpn, E
1/pn

L ]/L) shows it is trivial on L[µpn, E
1/pn

K ]
then conditions (4) and (5) imply (2) and (3), so we only study compatibility
between conditions (1), (4), (5), (6). This compatibility is possible if and only

if cL and λn are equal on the extension HL ∩ L[µpn, E
1/pn

L ] of L.

Let m be the integer such that |(µL)p| = pm; one has, where the exponent ab
means abelian subextension over L:

HL ∩ L[µpn, E
1/pn

L ] ⊂ HL ∩ (L[µpn , E
1/pn

L ])ab = HL ∩ L[µpn+m, E
1/pm

L ] ;
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let m′ be the integer such that HL ∩ L[µp∞] = L[µpm′ ], so m′ ≥ m and

HL ∩ L[µpn , E
1/pn

L ] = HL ∩ L[µpm′ , E
1/pm

L ] .

The exponent of the Galois group Gal(L[µpm′ , E
1/pm

L ]/L) is less than pm′

, so is

this of Gal(HL ∩ L[µpn, E
1/pn

L ]/L). According to Section (1), taking a = m′,

one can suppose that cL ∈ Clp
m

′

L (replacing L by L′ as in Section(1); note
that m′(L′) = m′(L) because L′/L is unramified at all places dividing p, so

that cL ∈ Clp
m

′(L′)

L as expected); in that case, the restriction of cL is trivial on

HL ∩ L[µpn, E
1/pn

L ].

About the restriction of λn on HL ∩ L[µpn , E
1/pn

L ], we can as well suppose it

is trivial, by replacing eventually λn by λpm
′

n (i.e. ϕ by pm′

ϕ) which has the
same properties. 8

Up to replacing L by L′ and choosing a convenient ϕ, the restrictions of cL
and of λn are both trivial on HL ∩ L[µpn , E

1/pn

L ]: Čebotarev theorem then
ensures the existence of infinitely many convenient primes q of K satisfying
all conditions, and each one gives us an abelian compositum M in which L
principalizes. This proves the Main Theorem.

III. Proofs of corollaries

Corollary 1 is just the case K = Q, and the Kronecker-Weber theorem which
states that abelian extensions of Q are cyclotomic.

Corollary 2 is equivalent to the following fact: Let K be a number field and
Kab

+ its maximal ∞-split abelian extension. Any field L containing Kab
+ and in

which at least one infinite place totally splits over K is principal.

To prove this, Let a be a fractional ideal of finite type of L. Of course a is as
well a fractional ideal of a subfield La of L with finite dimension over Q. We
can suppose La ⊃ K, then La/K is an extension of number fields in which
at least one infinite place is totally split. According to the main theorem, a

principalizes in an abelian compositum LaF of La/K; but LaF is contained
in LaK

ab
+ ⊆ L and so a is principal in L.

Corollary 3 comes from corollary 2, by taking K = Q and K = Q(i), respec-
tively.

Corollary 4 comes from Corollary 2.

8 See the Appendix.
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D – APPENDIX 9

The original project of publication of S. Bosca was first written in french
from his thesis and a provisional text, in english, was given to us before his
departure from the University. Thus, due to the interest of the ideas of this
work, it has been decided to publish it, with suitable corrections in the text
and with a complement which is given below in this Appendix.

Definition of ϕ. For a group of global units E we denote by E the quotient
of E by its torsion subgroup µ.

Let N be the norm in L/K and let NE be the kernel of N in E. From the exact
sequence:

1 −→ NEL −−−→ EL −−−→ N(EL) ⊆ EK −→ 1 (finite index)

we get:

Q ⊗Z (EL) = Q ⊗Z (NEL) ⊕ Q ⊗Z (EK) i.e. Q ⊗Z (EL/EK) = Q ⊗Z (NEL).

Since at least one infinite place of K is totally split in the extension L/K,
the Dirichlet–Herbrand theorem implies that the character of Q ⊗Z (NEL)
contains χ(Q[G])− 1 and the representation Q⊕Q⊗Z (NEL) contains at least
a representation R isomorphic to Q[G].

We can put R = Q ⊗Z 〈 θ 〉 with θ = ρ . ε∗ where ρ ∈ Q×, ρ 6= ±1, and where
ε∗ ∈ NEL may be seen as a “ relative Minkowski unit ”.

Thus any element u ∈ R is written, in a unique manner, u = θω with ω =
∑

g∈G αg g ∈ Q[G]. It follows that u is a unit (in 〈 ε∗ 〉Z[G]) if and only if
∑

g∈G αg = 0. We note that in this case the αg can be taken in 1
m

Z[G] for a
suitable m ∈ Z (for instance m = |G |, but if necessary we can adjust the value
of m large enough; at the end of the reasoning, Bosca uses this possibility); in
any case m depends only on L/K and not on n.

For the same reasons, the choice of ε∗ is not crucial and 〈 ε∗ 〉Z[G] is not neces-
sarily a direct summand in NEL.

The map ϕ is then defined as follows: noting that

EL/NEL . EK = EL/NEL ⊕ EK

is killed by |G |, for ε ∈ EL, we have ε|G| = η∗ . ε0, η∗ ∈ NEL, ε0 ∈ EK .

9 Written by G. Gras and J.-F. Jaulent.
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Working in Q⊕Q⊗Z (NEL), in which R is a direct summand, we associate with
ε ∈ EL the component of εm on R, of the form θω, with ω =

∑

g∈G αg g ∈ Z[G],
where

∑

g∈G αg = 0, then we put:

ϕ(ε) = α1 ∈ Z.

This map is trivial on EK and defines an element of Hom(EL/µL . EK ,Z) with
the G-module action defined as usual by:

ψh(x) := ψ(xh−1

), for all ψ ∈ Hom(EL/µL . EK ,Z) and all h ∈ G.

It is clear that ϕ generates a Z[G]-submodule whose character is χ(Z[G])− 1.
More precisely, a straightforward computation gives ϕg(ε) = αg for any g ∈ G,
thus ω =

∑

g∈G αg g =
∑

g∈G ϕ(εg−1
) g .

In the sequel of the main text we will put ω := φ(ε).

At this step, Bosca introduces the map λn:

λn : EL −−−→ EL/µL . EK
ϕ

−−−→Z −−−→ µpn −→ 1

by a choice of a primitive pnth root of unity.

This yields an element of Hom(EL, µpn) which will be, by abuse of notation,
identified, via the Kummer duality between radicals and Galois groups, to the
corresponding element σ′ of the Galois group of L[µpn , E

1/pn

L ]/L[µpn]; then one
creates a new condition by saying that σ′ coincide with a suitable Frobenius
σ, which is the key idea for the proof of the conjecture involving the necessary
and sufficient condition about the splitting of at least an infinite place.
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