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B.P 40109, 86961 Futuroscope, France

Abstract

We explore in this article physical processes describing heat transfer at short time and length
scales. First, we show that the physical phenomena describing classical heat transfer are no
longer valid when the dimension involved goes below some characteristic lengths like the heat
carrier mean free path or wavelength. In particular, we present heat transfer calculations in the
ballistic regime when heat carriers fly from one border of the considered system to the other.
Heat conduction which values in nature span only a range of 4 orders of magnitude will par-
ticularly focus our attention. We will show how the new development of nanotechnology paves
the way to the conception of new very low thermal conductivity materials with outstandingly
interesting properties. Finally, we will review thermal radiation properties in the near-field i.e.
at subwavelength distances. We will see that at such distances, thermal radiation coherence
properties drastically change and open the way to the conception of new thermal sources.

Introduction

Heat transfer can be defined as thermal energy in transit due to a spatial temperature difference
(Incropera et al. 2006). Usually, three transfer modes are considered. Conduction, that refers
to heat transfer across a material, convection occuring between a surface or a moving fluid and
radiation describing the transfer in vacuum between different temperature bodies by means
of electomagnetic waves. Classically, heat conduction is described by a diffusion equation.
Radiative heat transfer is governed by the so called Radiative Transfer Equation (RTE). In
convection, calculations are based on the existence of a boundary layer and the heat equation
resolution in the layer.

At short scale, all these theories are invalidated when distances involved become smaller
than characteristic lengths governing the phenomena physics. For example, in a fluid, when
typical distances involved become smaller than particle mean free path, the concept of fluid
cell is not pertinent anymore. In these conditions, hydrodynamics equations are not valid :
particles in the fluid are flying from one side of the system to the other side. This phenomenon
cannot be named convection anymore but molecular ballistic transfer. In the second section of
this article, we will show through the example of transfer between two interfaces or between
one tip and an interface how heat can be transmitted ballistically through air and reach a very
high equivalent heat transfer coefficient.

The third section of this article will focus on heat conduction. In a solid, it is the principal
heat transfer mode. Heat carriers can be free electrons of a metal or phonons in an insulator
or a semiconductor. Like in gas, heat carriers in classical conditions are submitted to a lot of
collisions. This leads to Fourier’s law and to heat equation (Kim et al. 2007). When carriers
mean free path is of the system size order, some carriers carry heat ballistically : heat transport
is not a diffusion process. It resembles more to a ballistic process similar to that is occuring
in thermal radiation. Heat flow obeys to the Boltzmann equation describing evolutions of a
distribution function equivalent to a phonon or electron specific intensity. We will examine
different collision processes occuring for phonons in solids. We will see through Boltzmann’s



equation solution in different geometries such as film, wires or tube that it is possible to describe
and predict thermal properties in nanostructures. We will note that concepts such as thermal
conductivity have to be used very cautiously. When distances approach the electron or the
phonon wavelength, quantum effects such as interference and quantification of the modes has
to be taken into account (Chen 1999). We will see that in such nanoscale systems thermal con-
ductance is quantified. (Schwab et al. 2000). Moreover, alternative stack of different material
(superlattices) can form phononic crystals with forbidden frequency band gaps where phonons
cannot propagate (Narayanamurti et al. 1979).

Radiative transfer will be treated in the fourth section. In participating medium, radiation
is classically described by Radiative Transfer Equation and radiometry laws. When the system
size is of the order of the thermal wavelength, wave effects appear. Thermal radiation has to
be treated with fluctuational electrodynamics theory (Rytov et al. 1989). The principles of the
calculation are the following : thermal motions initiates currents in materials that behave like
an antenna and radiate an electromagnetic field. Interference and tunelling effects can then be
dominant. Nevertheless, it can be shown that radiative heat transfer can be retrieved from the
Maxwell equations and that specific intensity can be defined under certain conditions from the
electromagnetic field.

At subwavelength distances, thermal emission is very different that in far field (Polder &
Van Hove 1971, Joulain et al. 2005). For example, contrary to classical thermal radiation, ther-
mal emission in near field i.e at subwavelength distances can be both spatially and temporally
coherent, when additional modes such as surface polaritons or guided modes exist. Experiments
have shown that these thermal emission near-field properties can be exploited to built thermal
coherent sources by microstructuring surfaces supporting surface waves. (Greffet et al. 2002).
Thermal emission in near field can also be a tool for new type of imagery or spectroscopy. Near
field optical microscopy experiments (DeWilde et al. 2006) have shown that thermal emission
can map the electromagnetic density of states near a surface or image subwavelength objects.

Heat transfer can also be reformulated : two bodies at different temperatures separated
by a vacuum distance d still exchange heat. But, in fluctuational electrodynamics, heat flux
given by the Poynting vector contains different contributions, electric, magnetic, propagative
or evanescent. In accordance with the type of material involved, these different contributions
can be dominant or negligible so that the transfer can occur for some specific electromagnetic
polarization or frequency.

Heat transfer in a fluid

Classically, heat transfer in a fluid is based on Navier-Stokes and heat equation resolution. The
assumption that the Knudsen number is small, that is the fluid is in the collision regime, is
required to derive these equations. When the fluid is rarefied, the system obeys a more general
equation called the Boltzmann equation (Reif 1965):
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where f(r,v,t)d®rd3v is the average number of particles at a time ¢ in an elementary volume
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is an integral over all the possible binary collisions that modifies f. Resolution of ([[) is in
general a difficult task. The Chapman Enskog development is the classical procedure to solve
it (Balian 1996). At the first two orders of approximation, this development recovers Navier-
Stokes and heat equation. At higher orders, other equations over macroscopic quantities can
be found : the so-called Burnett and super-Burnett equations (Burnett 1936). Other resolution

d*rd®v centered around (r,v). ( ) I is the collision contribution on the evolution of f. It
COo



procedures have been recently proposed (Struchtrup & Torrilhon 2003). Non trivial rarefied
fluid behaviour can be predicted from these procedures. For example, a rarefied viscous fluid
in a channel has its velocity field discontinuous at the wall.

Ballistic Transfer

An easy limit is the ballistic regime. It occurs in a fluid when the fluid particles undergo no
collision along a path of the system size. Heat flux calculation in such a system is easy. Let
us consider two planar interfaces at two different temperatures T} and 75 and separated by a
gap of width d filled with a gas. When the gas particle mean free path is much larger than
the system size, the particles fly ballistically from one side of the system to the other one.
We consider that the particles touching a surface at temperature 7' adopt instantaneously a
Maxwellian velocity distribution function. Using the fact that the heat flux

q= /%mv2vf(v)d3v (2)

and that no particle flux exist between the interfaces ([ vf(v)d®v = 0) the heat flux reads
(Carminati 2007)
n T1T2(2]€B)3/2

Bt = VT + V)

Let us note that the heat flux does not depend on the distance between interfaces. A heat
transfer coefficient can also written when T} ~ Ty ~ T :

(Th — T) (3)

(4)

At ambient temperature and for gaseous nitrogen, hy, = 1.310° W m~—2 K~!. Note that the
mean free path for nitrogen molecules in air is around 40 nm at ambient temperature. The
diffusive regime is therefore valid until the distance is around 10 times the mean free path say
400nm. In this regime, air has roughly a thermal conductivity k of 0.024 W m~* K~!. For two
interfaces separated by a 400 nm gap, a heat transfer coefficient h = k/d = 6 10* W m~2 K1

We therefore see that ballistic heat transfer do exist when particles mean free path is smaller
than the distance involved. Such a situation occur in near field microscopy between a tip and
a substrate. Consider for example the typical case of a heated tip situated at a distance d of
a substrate (Fig[] left). This technology could be used for example in thermally assisted data
storage. The principle is to heat a sample at a sufficient high temperature and at sufficiently
high speed in order to write a bit on the sample (by vitreous transition or magnetic recording).
The question to be solved is what is the heat flow deposited below the tip and at what scale?
This problem can be addressed in the same way as the two interface situation in the ballistic
regime. Nevertheless, the distance between the tip and the sample is often of the order of the
molecules mean free path. In this mesoscopic regime, the effect of collision has to be taken into
account. Chapuis et al. (Chapuis et al. 2006) have calculated the heat flux between a tip at
800 K and a sample at ambient temperature by means of a Monte Carlo method. Particles are
emitted at the tip following a Maxwellian distribution. This particle may experienced a collision
along a path of length L according to an exponential collision probability law exp(—{/L) where
[ is the mean free path. The results are presented in Fig[l] right. A very high heat flux density
is reached. It has been shown also that powers of the order of 0.1 nW can be deposited for a
few tens of ps allowing the possibility for thermally assisted storage.
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Figure 1: Left: Pyramidal AFM tip above a substrate. Typical length used are [ = 40 nm and
h = 20 nm. The distance d is in the nanometric range. Right: Heat flux density along the
section of the sample for different tip-sample distances.

Conduction in solids

Thermal conduction in solids is also a phenomenon classically described by a diffusion process
of heat carriers. An interesting feature to note about heat conduction in solids is that its
magnitude does not change a lot with the materials concerned. For example, solids thermal
conductivity spans only on four orders of magnitude contrary to electrical conductivity. Indeed,
heat carriers can not only be electrons but also phonons in crystals. In metals, heat conduction
due to electrons dominates over phonon conduction. In insulators, only phonon heat conduction
is present, but it is impossible to be completely rid out of all heat carriers movement as it is
the case for electrical conduction. Therefore, conduction due to the presence of acoustic waves
in matter will always be present in the same way heat conduction is always present in gas due
to the presence of molecules.

In a crystal, an analogy can be done with thermal radiation : instead of photons, heat is
carried in solids by quasiparticles called phonons. These particles can be considered as boson in
the same way photons are. At thermal equilibrium phonons are populated according to a distri-
bution function that resembles to Planck’s law. If the particles collides, the regime is diffusive
and the heat flux follows the Fourier law (analogy with the Rosseland regime (Modest 2003)).
When the phonons are not submitted to collisions, heat conduction behaves like radiation in a
transparent medium.

Diffusive regime : Fourier’s law and limits

Fourier’s law is the fundamental macroscopic equation from which general equations such as
the heat equation are derived.

The kinetic theory, which considers that heat carriers behave like a gas, is a way to establish the
Fourier law. Let us come back to the Boltzmann equation reformulated for phonons or electrons.
In the collision regime, the collision integral is often written in the so-called relaxation time
approximation. In this model, it is stated that the main collison integral contribution is to
relax the distribution function to a local equilibrium distribution function. In steady state,
Boltzmann’s equation reduces to .

7 =7

7(k) (6)

where k is the particle wavenumber, f(r,k)d*rd®k is the number of phonons in the elementary
volume d®rd®k. f° is thus a local equilibrium distribution function. For example, phonons in
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a solid are in local thermal equilibrium when they follow the following function (Bose-Einstein

distribution)
1

1K) = TR 1 (M

7(k) is the phonon relaxation time or collision time. Different physical phenomena are at
the origin of phonon collisions. The presence of impurities, stack defaults, dislocations or
isotopes scatters phonons in the same way molecules or small particles of dust scatter phonon
in the atmosphere (Klemens 1958, Holland 1964). Phonons can also be scattered at the system
boundaries due to their roughness. Finally, the fact that crystal potential is not purely harmonic
makes the phonons not to be system eigenmodes. They can be scattered through a non-linear
process where one phonon can split into two phonons or, on the reverse process two phonons
interact to give a single one. In this last process, when the resulting phonon lies in the so called
Brillouin zone, this is a normal process (N). When, the resulting phonon is outside the zone,
this is an Umklapp process (U). Due to crystal periodicity, the final phonon is in the opposite
direction of the initial phonons. This last process is at the origin of thermal resistance (Landau
& Lifshitz 1981).

Let us look for a solution of the form f = £+ nf° where n < 1. The Boltzmann equation
(@) reads in presence of a temperature gradient nf° = —7(k)v.V,T0f°/0T. Heat flux obtained
from this Boltzmann equation solution is
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for an isotropic medium. In this last expression, the summation is done on the polarization p
and wavevector k. v, is the group velocity of the polarization branch p, Ky, is the maximum
phonon wave vector (Brillouin zone limit), C, is the contribution to the thermal conductivity
of one single mode C, = kpr?e”/(e* — 1)* with = hw/kgT.

Therefore, the thermal conductvity k& depends on the temperature but also of the modes
group velocities and relaxation times. The higher is velocity and the lower are the collisions,
the larger is the thermal conductivity.

Low thermal conductivities

Low thermal conductivities would be very useful for thermal barrier or for thermoelectric ma-
terials. In the diffusive regime, the simplest way to decrease crystal thermal conductivity is to
introduce impurities that scatters phonons. This is the so called alloy limit. It can be shown
that phonon scattering cross section is very analogous to Rayleigh light scattering when the
phonon wavelength is much larger than the scatterer : o ~ a%/A\* where a is the impurity
typical size. The smaller is phonon wavelength, the more it is scattered. In alloys, the impurity
size is of the order of 1071%m. Impurities with larger sizes could scatter more efficiently phonon
wavelength of the nanometer range that contribute the most to the thermal transport. This
technique has been used (Kim et al. 2007, Chitirescu et al. 2007) where nanometer size particles
are introduced in a bulk medium in order to reach thermal conductivity approaching those of
strong insulators. In the same idea, materials with a large disorder like amorphous materials
exhibit a low thermal conductivity, because the heat carriers mean free path is of a few atomic
spacing. For examples, glasses like fused silica have a typical thermal conductivity of 1 W m™!
K1

It is possible to decrease phonon mean free path increasing phonon collisions with borders.
A way is to confine phonons in nanostructure such as nanofilms or nanowires. Thermal conduc-
tivity is then mostly governed by nanometric boundary conditions. In Fig. B, we show nanowire
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Figure 2: Silicon nanowire thermal conductivity for different wire diameter versus temperature.
Calculations compared with experiments.

thermal conductvity calculation (Terris et al. 2007) compared with nanowire thermal conduc-
tivity measurements (Li et al. 2003). We see that Si nanowire thermal conductivity is highly
reduced compared to bulk silicon. This is due to phonon scattering at wire boundaries. The
same behaviour explains the in-plane conductivity decreasing in thin films, where the phonon
mean-free path is of the order of the system width.

The other effect of phonon confinement is to modify phonon dispersion relation. The result
is a reduction of phonon group velocity which has also a reduction effect on thermal conduction.

High thermal conductivities

High thermal conductivity materials are useful to design new heat sinks in electronics. Indeed,
the increasing progress in nanotechnology has led to very high power dissipated in components.
More efficient heat sinks are now required in order to ensure the electronic components ther-
mal management. Following the reasoning done concerning low thermal conductivities, one
can imagine two reasons for high conductivity. High phonon velocity and very long collision
time. The phonon velocity, which can also be seen as a velocity of sound, is higher when
molecular bound is stiff. For example, diamond is a well known thermal conductor with a
thermal conductivity larger than 2300 W m~! K~!. Carbon nanotubes have been pointed to
be very good thermal conductors from both theoretical calculations (Mingo & Broido 2005)
and experiments (Kim et al. 2001, Fujii et al. 2005, Chang et al. 2006). Indeed, the stiffness of
carbon atoms bounds is even higher than in diamond. Morevoer, carbon nanotube cylindrical
structure makes that phonons follow their way along the surface of the nanotube without seeing
any border. Thus, their collision time is very long. Single walled carbon nanotube seems to
have particular high thermal conductivity whereas the results is more controversial concerning
Multiwalled carbon nanotubes.

Ballistic regime

Fourier’s law is valid when heat transport is in the diffusive regime. When it is not the case, i.e
when heat carriers have a mean free path of the order of the typical system size, the transport
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Figure 3: Surface thermal conductance of silicon films at different temperatures versus film
thickness.

is mesoscopic or even ballistic when the mean free path is much lower than the system size.
This last situation is particularly simple to analyse.

Let us consider as a simple illustration the following system : a solid which acoustic modes
follow a single phonon branch in the Debye approximation (Kittel 2004) and with plane parallel
borders (orthogonal to z direction) separated by a distance d are at temperatures 77 and 75
small compared to the Debye temperature. In this approximation, the specific phonon intensity
emitted by a wall at temperature T" reads :

hw?
- 2m3v2[exp(hw/kyT) — 1] )

I'(w)

Here the group velocity v, is constant. The heat flux emitted by a wall at temperature 7} is
therefore :

x K e ot
q :/0 dw /Q:27r I°(w) cos 0dS) = 717/0 qu = o T} (10)
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where 6 is the angle between the direction z and the direction of the intensity considered,
opn = kym?/ (307131)3). The total heat flux exchanged is obtained by subtracting the heat flux
emitted by the wall at temperature T so that ¢ = o, (T} —T3). We see that the heat flux does
not depend on the distance between the two interfaces. Phonons are flying from one interface
to the other. Conductive heat flux behaves like thermal radiation. If T} ~ T, ~ T', the total
heat flux can be approximated by ¢ ~ 40,,T%(T; —Ty). Following the definition of the thermal
conductivity by the Fourier law, a ballistic conductivity along the z direction can be written :

kb = 4,,dT? (11)

This conductivity depends on the system size. This is the opposite situation from the bulk
where thermal conductance depends on the system size and thermal conductivity is an intrisic
material property. At small distance, thermal conductance is the relevant quantity independent
on the system size, contrary to thermal conductivity.

Transition between diffusive and ballistic regime is exhibited in Fig.pf where surface thermal
conductance in silicon films is represented versus film thickness in log-scale. At distances
larger than 10 pm, conductance decreases as 1/d where d is the film thickness. The film
behaves like the bulk. When the thickness is of the mean free path order, the film is in the
mesoscopic regime. Film conductance still increases with decreasing thickness. At extremely
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Figure 4: Temperature profile in a 2-micron-thick film for different temperatures. Note the
transition between the Fourier regime (linear profile relating extreme temperatures) and the
ballistic regime (flat profile).

small distance, the conductance is ballistic. Temperature inside the film confirms this behaviour
(FigH). In the Fourier regime, the temperature profile is linear between extreme temperatures.
In the mesoscopic regime, there exists a temperature jump at boundaries similar to temperature
jumps occuring in thermal radiation for optically thin media. In the ballistic regime, the profile
is flat. One therefore sees that thermal conductivity, which is undoubtetly linked to the Fourier
law can hardly be used in the last two regimes.

Wave effects

Due to Bose-Einstein statistics, phonons in a material at temperature 7" are distributed accord-
ing to a function that resembles the Planck law. Their wavelength are peaked around a value
given by an analog of Wien’s law. For example at ambient temperature, phonons wavelength
peak around a few nanometer. When the temperature is in a few Kelvins order, the wavelength
is a fraction of a micrometer. When the system characteristic size is of the order of phonon
wavelength, wave effects appear. For example, phonons can tunnel across a junction such as
a quantum well. In the case of superlattices, that are periodic stacks of alternating different
materials, forbidden band gaps may open in phonon dispersion relation : propagation is not
possible at band gap wavelengths. This phenomenon is analog to Bragg reflection in optics.

At low temperature, structures like nanowires can have their lateral size of the order of the
most populated wire acoustic modes wavelength. At these wavelength, modes are quantified in
the wire as optical modes are quantified in an optical fiber. Heat can only be carried at these
special authorized modes. In a monodimensional structure, the heat flux between the system
extremities separated by d at temperature T} and T is :

1 1 !
¢ = g2 Pkl [expmw/km_exp<hw/kT2>]

= %/owm hwﬁdw [exp(hi/kﬂ) - exp(hi/k:TQ)] (12)




If Th ~ Ty < Wpas, the heat flux reads
k?

b=

6h

where Guant = mk*T /31 is the quantum of conductance. Such a quantum of conductance has
been observed by Roukes et al.(Schwab et al. 2000) at low temperature for suspended wire.

(T7 = T3) = Gouans (T — T2) (13)

Radiative heat transfer

(Classical heat transfer is based on the concepts of radiometry i.e. of geometrical optics. Ray
lights propagate in straight line and wave effects such as interferences and tunelling are not
taken into account. This approximation fails when distances involved go below the typical
wavelength. As in the case of light propagation, phenomena such as diffraction occur when
light is confined at a subwavelength size. Fluctuational electrodynamics is the theory which
has to be used to treat such problems.

Fluctuational electrodynamics

The framework of fluctuational electrodynamics has been introduced by Rytov (Rytov et al.
1989). The idea is that in any material at thermal equilibrium, random thermal fluctuations
make charges such as electrons or ions moving. These charge motions initiate thermal currents
that radiate an electromagnetic field. From an electromagnetic point of view, the problem will
be solved if the currents characteristics are known as well as the radiation of an elementary
dipole in the geometry considered. The currents are actually given through their cross-spectral
correlation function by the fluctuation-dissipation theorem (FDT) whereas the system Green
function gives the answer to the radiation problem.

In a medium at thermal equilibrium 7T characterized by its dielectric constant €, thermal
electric currents cross spectral correlation function is given by the FDT

(r(r,w) (v, w")) = dmegIm(e)O(w, T) 0o (r — r')d(w — ') (14)

where © is the mean energy of an oscillator ©(w,T') = hw/[exp(hw/kT) — 1]. The electromag-
netic field is related to the currents by the system Green function. For example, the electric

field reads _
E(r,w) = i,uow/G(r,r’,w).j(r',w)d?’r' (15)

In thermal radiation, we are interested in quantities such as the emitted radiative flux given by
the Poynting vector 1/2Re [(E(r,w) x H*(r,w)))] and the density of energy. It can be shown
that the specific intensity itself is related to a Wigner transform of the electric field cross spectral
correlation function (Apresyan & Kravtsov 1996). Therefore, we have to calculate quantities
such as (E(r,w)E*(r’,w)). In all these equations, the brakets denote ensemble average over all
the system realization.

Thermal radiation near an interface

The Green function of a system consisting of an interface separating a dielectric (medium 2)
from a vacuum (medium 1) is well known. It is then straightforward to apply the FDT to
currents in the heat flux or energy density expressions. The result is an integration over the
wavevector parallel to the interface K and represents the summation of the individual plane
wave contributions. The heat flux reads

hw

1 w/c s
(S:(r,w)) = HW/O KdK (1 —|rfa? + 1 - |7”fz|2) (16)
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Figure 5: Energy density above a semi-infinite medium of SiC at 7" = 300 K.

whereas the energy density expression reads
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[Im(rfy) + Im(rfy)] e 2 (17)

In the preceding expressions, 77, is the Fresnel reflection coefficient in A = s, p polarization. 7,
is the wavevector component perpendicular to the interface.

The heat flux expression is similar to the classical one. Only propagative waves are emitted
and carry energy from a heated body. Emissivity can be identified from the heat flux expression.
It is equal to 1/2(1 — |r5,|2 + 1 — |1, [?).

Energy density has not only a propagative contribution, but also a contribution from the
evanescent waves. Due to the exponentially decaying term, this contribution only exists if
the distance to the interface is smaller than the wavelength considered. This supplementary
term depends on the imaginary part of the surface reflection coefficient. A blackbody, for
example, has no envanescent wave contribution to the energy density near its surface. If the
reflection coefficient imaginary part is large, the difference in the energy density near or far from
the surface is very important. This occurs in particular close to materials that exhibit surface
waves such as polar materials (SiC or Silica). Surface waves are evanescent waves that propagate
along the interface but decay exponentially in both directions perpendicular to the interface.
They are associated to polarization waves in the material such as plasmon of phonon-polaritons
(Ashcroft & Mermin 1976). In Fig[j from (Shchegrov et al. 2000), energy density spectrum
above a semi infinite medium of SiC separated from vacuum by an interface is represented. We
note that at distances large compared to the mean wavelength, the energy spectrum is very
similar to a blackbody spectrum. When the distance to the interface is reduced, the energy
density increases at a particular frequency. At a 100nm distance, the energy density spectrum
is almost monochromatic. In the case of SiC, this peak is due to the presence of surface waves
(phonon polaritons). At the peak frequency, the density of electromagnetic modes increases
due to the presence of phonon polaritons.

At thermal equilibrium, energy density reads as the product of the electromagnetic density
of states by the mean energy of an oscillator. Therefore, an instrument able to measure the



electromagnetic energy density close to a surface also measures the electromagnetic density of
states (Joulain et al. 2003). This instrument exists. This is an apertureless Scanning Near-
Field Optical Microscope. An AFM tip approached at a nanometric distance of an interface
can scatter the evanescent thermal field and convert evanescent waves into propagating waves
that can be detected by a classical optical device. This experiment has been performed by De
Wilde et al. (DeWilde et al. 2006). Note that this kind of instrument is nothing else than
an infrared near-field microscope where illuminated light is thermal radiation emitted by the
sample.

Near-field thermal exchange between two semi-infinte bodies

Let us consider two flat interfaces delimiting two semi-infinite bodies separated by a distance
d in vacuum. The two bodies are maintained at their temperature 77 and 75 and a heat flux
is exchanged between the two bodies. This heat flux is obtained through the calculation of
the Poynting vector ensemble average by means of the fluctuation dissipation theorem. As in
the single plane interface case, the heat flux expresses as a summation of the individual plane
waves. Two contributions can be identified:

dwd$) cos l(l — |4 2)(1 = |5, %)

7w = Y | (s - 22

i—s,p 2 |1 — 74 riyeinsd|?
0 i i 0 70
qevan<w> _ Z /dw/ 2KdKef2Im(73)d Im(Tg,l)-ImQ(-’f‘:sz) [Lw(Tl) QLLU(TQ)] (18)
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where LY is the blackbody specific intensity. ¢P"°? denotes the propagative wave contribution.
It is very close to the classical expression provided that the emissivity is identified to 1 —|rya|*.
Nevertheless, the denominator, a Fabry-Perot like expression with a rapidly fluctuating term
is slightly different from the classical expression. After summation on the angular frequency, it
can be averaged so that the propagative contribution can be indentified to

dwd) cos b € el
classw — / [ 12 ‘| LOT —LOT 19
pre) = 5 [ S A [ — 1) (19

which is the classical radiative heat transfer flux between two opaque blackbodies. Here, €
and p are the material emissivity and reflectivity. The evanescent contribution describes the
heat flux due to tunnelling. This term is important when the reflection coefficient imaginary
part is important. This can happen for material supporting surface waves when the surface
waves supported by each of the interfaces interact each other. In Fig.f(a), the heat transfer
coefficient (hf*(w) = limp, 7, ¢(w)/(Ty — Ty)) is represented for SiC and glass versus sample
separation distances. We note that h®(w) increases as 1/d? at small distances. We also note in
Fig.fl(b) that the heat transfer coefficient is almost monochromatic important at the resonant
surface wave frequency, where the collision between the polaritons occurs. This collision process
between polaritons also exists in bulk materials and is responsible of thermal conduction due
to optical phonon modes (Joulain 2007)

The heat transfer also increases when two metals are approched to each other but for
completely different reasons : eddy currents appear at the surface metal creating an important
magnetic near-field (Chapuis et al. 2008)

Radiation spatial coherence properties

Spatial coherence of a field is related to its cross spectral correlation function. The field is
spatially coherent on a distance r if its component can interfere when taken at two different
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Figure 6: (a) Heat transfer coefficient for two semi-infinite samples of SiC or glass at 7' = 300 K
versus separation distance d. (b) Monochromatic heat transfer coefficient for two semi-infinite
samples of SiC or glass at T' = 300 K for d = 10 nm.
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Figure 7: Electric field correlation function versus separation distance normalized to the wave-
length. The different curves represents the field correlation above gold at 620 nm. (a) Correla-
tion in far field : the correlation length is about A/2. (b) Correlation in the surface wave regime
. the correlation length is a few tens of the gold surface plasmon wavelength. (c) Correlation
in the extreme near field : the correlation length is of the order of the distance to the interface.

points separated by r. Electromagnetic field cross spectral correlation function can be obtained
by the FDT. Thermal radiation field emitted by a blackbody is correlated on a maximum
distance of the order A/2. In the near-field, the electromagnetic field correlation length is
radically changed depending on the nature of the thermal evanescent electromagnetic field
(Fig[]). At a surface plasmon wavelength, the electromagnetic field correlation function is
determined by the surface wave propagation distance along the interface. In the extreme near-
field, the field is static. Retardation effects disappear and the field is correlated on the order
of the distance to the interface. Therefore, thermal electromagnetic field coherence greatly
changes depending on the regime considered.

These near-field correlation properties have been exploited to design and construct thermal
sources that are spatially coherent (i.e are directional) in the far-field. The idea is to rule a
grating on a material that support surface waves in a wavelength domain where thermal emission
is important. The physical process is the following. Thermally excited surface waves propagate
along the interface and are scattered by the grating lines that are regularly spaced. In the far
field, and for a particular direction, scattered waves interfere constructively. This kind of grating
has been succesfully ruled on SiC to give a spatially coherent thermal source (Greffet et al. 2002).
The source emission diagram is represented in Fig.§. Coherent thermal sources based on a
waveguide rather than a material supporting surface waves have been designed. Guided waves
propagate along the guide on which a grating has been ruled. Scattered guided waves interfere
in the far-field to produce emission in a particular direction (Joulain & Loizeau 2007).
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Figure 8: SiC grating emission diragram at two different wavelengths. Grating period: A = 6.25
pm, filling factor F' = 0.5 and height h = 0.285 pm.

Conclusion

We have investigated in this paper physical phenomena that underlie heat transfer at micro-
scopic scale. We have seen that depending on the distances involved, the phyics explaining heat
transfer is not the same. Two typical lengths are determinant. Mean free path and wavelength
heat carriers. When the carriers mean free path is small compared to the system size, the sys-
tem is diffusive and obeys a diffusion equation like the heat equation. In the opposite situation,
the transfer is ballistic and does not depend on the system size. At distances large compared
to the carriers wavelength, wave effects are not present. Carriers behave like particles going
in straight line and obey Boltzmann equation. At subwavelength distances on the contrary,
band gaps open and transfer is forbidden at some frequency. Phonon filtering is then possible
in order to reduce thermal transfer. The increasing improvement in nanotechnology has open
the way to reach and go below these two characteristic lengths. It is now possible to engineer
nanocomponent thermal properties in order to create new materials with exciting properties
such as thermal barriers, heat sink or very high efficiency thermoelectric converters.
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