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Harmonic oscillators with Neumann condition on the half-line

This paper is devoted to the computation of the minimum Θ 0 of the first eigenvalues for the Neumann realization of harmonic oscillators on the half-line. We propose an algorithm to determine this minimum and we estimate the accuracy of these computations. We also give numerical computations of constants appearing in superconductivity theory.

Introduction

Before motivating our analysis, we first define the parameters Θ 0 and Φ(0). We consider the operator -d 2 /dt 2 + (tζ) 2 on (0, +∞). Its Friedrichs extension from C ∞ 0 ([0, +∞)) is denoted by H(ζ) and defined on D = {u ∈ H 2 (0, +∞)| t 2 u ∈ L 2 (R + ) and u ′ (0) = 0}.

We denote by µ k (ζ) the k-th eigenvalue of this operator arranged in the ascending order with the multiplicity taken into account. The behavior of the first eigenvalue is well known (see, for example, [START_REF] Dauge | Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators[END_REF]):

Proposition 1.1. There exists ζ 0 > 0 such that µ 1 is strictly decreasing from (-∞, ζ 0 ) onto (+∞, Θ 0 ) and strictly increasing from [ζ 0 , +∞) onto [Θ 0 , 1). Furthermore, if Φ denotes a normalized positive eigenvector associated with µ 1 (ζ 0 ), then

∞ 0 (|Φ ′ (t)| 2 + (t -ζ 0 ) 2 |Φ(t)| 2 ) dt = Θ 0 , ∞ 0 (t -ζ 0 )|Φ(t)| 2 dt = 0, |Φ(0)| 2 = µ ′′ 1 (ζ 0 ) 2ζ 0 , Θ 0 = ζ 2 0 .
An estimate of Θ 0 by 0.59010 was already given in [START_REF] De Gennes | Onset of superconductivity in decreasing fields[END_REF], using the Weber functions but there is no mention of the accuracy of this estimate. Using an integral representation [START_REF] Chapman | Nucleation of superconductivity in decreasing fields[END_REF], Chapman approximates Θ 0 by 0.59 without any estimate of the error. In the literature, we can find some estimates of Θ 0 but there is no mention of the accuracy of the computations. To our knowledge, we do not find any computation of Φ(0). The aim of this article is to give accurate estimates of Θ 0 and Φ(0) and of the error between exact values and numerical computations. The numerical method implemented here is very standard since we use finite difference and element methods.

In Section 2, we remind of some results concerning the localization of the superconductivity and we notice that the parameters Θ 0 and Φ(0) appear frequently (see Propositions 2.1, 2.5). The analysis of the onset of superconductivity is based on those of the low-lying eigenmodes for the Schrödinger operator (see [START_REF] Ël | Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners[END_REF][START_REF] Ël | Computations of the first eigenpairs for the schrödinger operator with magnetic field[END_REF][START_REF] Fournais | Spectral methods in surface superconductivity[END_REF][START_REF] Raymond | On the semiclassical 3D Neumann Laplacian with variable magnetic field[END_REF] and Propositions 2.2, 2.3, 2.4, 2.6). To estimate the error of the computations, we establish in Section 3 error estimates on eigenmodes: Theorem 3.2 quantifies the gap between the eigenvalue Θ 0 and the energy associated with a quasi-mode for the operator H(ζ). In Theorem 3.3, we prove H1 -estimate between the normalized eigenfunction Φ associated with Θ 0 for the operator H(ζ 0 ) and a normalized quasi-mode for H(ζ). We deduce in Theorem 3.5 an estimate of Φ(0). In Section 4, we construct an adequate quasi-mode combining the finite difference method and analysis of the ODE theory for the differential equations depending on parameters. We implement this method in Subsection 4.5 and obtain an accurate approximation of Θ 0 and Φ(0):

Theorem 1.2.
|Θ 0 -0.590106125| ≤ ×10 -9 and |Φ(0) -0.87304| ≤ 5 × 10 -5 .

Section 5 presents computations with the finite element method. From a numerical point of view, we also mention papers [START_REF] Bolley | An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material[END_REF][START_REF] Bolley | Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation[END_REF] which deal with the numerical computations for the bottom of the spectrum of -d 2 /dt 2 + (tζ) 2 on a symmetric interval using a finite difference method.

Motivation

To highlight how is important to compute accurately these parameters Θ 0 and Φ(0), we recall some results about superconductivity modelled by Ginzburg-Landau theory. It is well-known that superconductors of type II lose their superconducting property when submitted to a sufficiently strong external magnetic field. This transition takes place for a value H C 3 1 of the field which appears as a function of a material-dependent parameter κ. We recall here results about the calculation of this critical field for large values of κ in two situations: smooth domains and domains with corners.

Let Ω ⊂ R 2 be a bounded simply-connected domain with Lipschitz boundary. The Ginzburg-Landau functional reads

E κ,H [ψ, A] = Ω |(-i∇ -κHA)ψ| 2 -κ 2 |ψ| 2 + κ 2 2 |ψ| 4 dx + κ 2 H 2 R 2 |curl A -1| 2 dx , with (ψ, A) ∈ W 1,2 (Ω; C) × {A = A 0 + à with à ∈ Ḣ1 (R 2 , R 2 ), div à = 0}, A 0 (x) = 1/2(-x 2 , x 1 ).
We use the notation Ḣ1 (R 2 ) for the homogeneous Sobolev spaces. We define the critical field H C 3 as the value of H where the transition between the normal and superconducting state takes place:

H C 3 (κ) = inf{H > 0 : (0, A 0 ) is a minimizer of E κ,H } .
The calculation of this critical field H C 3 for large values of κ has been the focus of much activity (see [START_REF] Helffer | Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells[END_REF][START_REF] Bernoff | Onset of superconductivity in decreasing fields for general domains[END_REF][START_REF] Lu | Eigenvalue problems of Ginzburg-Landau operator in bounded domains[END_REF][START_REF] Lu | Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity[END_REF][START_REF] Lu | Gauge invariant eigenvalue problems in R 2 and in R 2 +[END_REF][START_REF] Helffer | Upper critical field and location of surface nucleation of superconductivity[END_REF][START_REF] Fournais | Energy asymptotics for type II superconductors[END_REF][START_REF] Fournais | Accurate eigenvalue estimates for the magnetic Neumann Laplacian[END_REF][START_REF] Fournais | On the third critical field in Ginzburg-Landau theory[END_REF]). In the works [START_REF] Fournais | Energy asymptotics for type II superconductors[END_REF][START_REF] Fournais | Accurate eigenvalue estimates for the magnetic Neumann Laplacian[END_REF][START_REF] Fournais | On the third critical field in Ginzburg-Landau theory[END_REF][START_REF] Fournais | Spectral methods in surface superconductivity[END_REF], the definition of H C 3 in the case of samples with smooth section has been clarified and the asymptotic is given by: Proposition 2.1 (see [START_REF] Fournais | On the third critical field in Ginzburg-Landau theory[END_REF]). Suppose Ω is a bounded simply-connected domain in R 2 with smooth boundary. Let κ max be the maximal curvature of ∂Ω. Then

H C 3 (κ) = κ Θ 0 + C 1 Θ 3/2 0 κ max + O(κ -1/2 ) with C 1 = Φ 2 (0) 3 .
It was realized that the asymptotics of the critical field is completely determined by the linear eigenvalue problem. Indeed, if we denote by µ (n) (h) the n-th eigenvalue of the magnetic Neumann operator

P h = (-ih∇ -A 0 ) 2 defined on D(P h ) = {u ∈ H 2 (Ω)|ν • (-ih∇ -A 0 )u |∂Ω = 0}
, then the asymptotics of µ (n) (h) was established by Fournais-Helffer in [START_REF] Fournais | Accurate eigenvalue estimates for the magnetic Neumann Laplacian[END_REF]: Proposition 2.2 (see [START_REF] Fournais | Accurate eigenvalue estimates for the magnetic Neumann Laplacian[END_REF]). Suppose that Ω is a smooth bounded and simply connected domain of R 2 , that the curvature ∂Ω ∋ s → κ(s) at the boundary has a unique maximum κ max reached at s = s 0 and that the maximum is non-degenerate, i. e. k 2 := -κ ′′ (s 0 ) = 0. Then for all n ∈ N, there exists a sequence {ξ

(n) j } ∞ j=1 ⊂ R such that µ (n) (h)
admits the following asymptotic expansion (for h → 0):

µ (n) (h) ∼ Θ 0 h -κ max C 1 h 3/2 + C 1 Θ 1/4 0 3k 2 2 (2n -1)h 7/4 + h 15/8 ∞ j=0 h j/8 ξ (n) j .
To carry through an analysis of the critical field H C 3 in the case of domains with corners, a linear spectral problem, studied in depth in [START_REF] Bonnaillie | Analyse mathématique de la supraconductivité dans un domaine à coins; méthodes semi-classiques et numériques[END_REF][START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF][START_REF] Ël | Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners[END_REF][START_REF] Ël | Computations of the first eigenpairs for the schrödinger operator with magnetic field[END_REF], is usefull. Let us first give estimates for the Schrödinger operator in a model geometry: the infinite sector.

Proposition 2.3 (see [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF]). Let G α be the sector in R 2 with opening α and Q α be the Neumann realization of the Schrödinger operator -(∇ -iA 0 ) 2 on G α . We denote by µ k (α) the k-th smallest element of the spectrum given by the max-min principle. Then:

1. The infimum of the essential spectrum of Q α is equal to Θ 0 .

2. For all α ∈ (0, π/2], µ 1 (α) < Θ 0 and µ 1 (π) = Θ 0 .

3. Let α ∈ (0, 2π), k ≥ 1 be such that µ k (α) < Θ 0 and Ψ α k an associated normalized eigenfunction. Then Ψ α k satisfies the following exponential decay estimate:

∀ε > 0, ∃C ε,α > 0, e ( √ Θ 0 -µ k (α)-ε)|x| Ψ α k L 2 (G α ) ≤ C ε,α .
Thanks to the model situation given by the analysis of the angular sector, we are able to determine the asymptotic expansion of the low-lying eigenmodes of the Schrödinger operator on curvilinear polygons: Proposition 2.4 (see [START_REF] Ël | Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners[END_REF]). Let Ω be a bounded curvilinear polygon, Σ be the set of its vertices, α s be the angle at the vortex s. We denote by Λ n the n-th eigenvalue of the model operator ⊕ s∈Σ Q αs , and µ (n) (h) the n-th smallest eigenvalue of P h . Let n be such that Λ n < Θ 0 . There exist h 0 > 0 and (m j ) j≥1 such that for any N > 0 and h ≤ h 0 ,

µ (n) (h) = hΛ n + h N j=1 m j h j/2 + O(h N +1 2 ).
If Ω is a bounded convex polygon, there exists r n > 0 and for any ε > 0, C ε > 0 such that

µ (n) (h) -hΛ n ≤ C ε exp - 1 √ h (r n Θ 0 -Λ n -ε) .
For non constant magnetic field, the low-lying eigenvalues admit an asymptotic expansion in power of √ h. These results highlight the importance of comparing µ k (α) with Θ 0 and then of computing precisely Θ 0 . It is also natural to wonder for which angle α we have µ k (α) < Θ 0 . It was conjectured in [START_REF] Alouges | Numerical computations of fundamental eigenstates for the Schrödinger operator under constant magnetic field[END_REF][START_REF] Ël | Computations of the first eigenpairs for the schrödinger operator with magnetic field[END_REF] that µ 1 is strictly increasing from (0, π) onto (0, Θ 0 ) and is equal to Θ 0 on [π, 2π). This conjecture is based on numerical computations and could be strengthened with an accurate estimate of Θ 0 . As in the case of smooth domains, spectral informations produce results about the minimizers of the Ginzburg-Landau functional for domains with corners. We obtain in particular a complete asymptotics of H C 3 for large values of κ in terms of linear spectral data and precise estimates on the location of nucleation of superconductivity for magnetic field strengths just below the critical field: Proposition 2.5 (see [START_REF] Ël | Superconductivity in domains with corners[END_REF]). Let Ω be a curvilinear polygon and Λ 1 = min s∈Σ µ 1 (α s ). There exists a realvalued sequence {η j } ∞ j=1 such that

H C 3 (κ) = κ Λ 1   1 + ∞ j=1 η j κ -j   , for κ → +∞. Let µ ∈ (Λ 1 , Θ 0 ) and define Σ ′ = {s ∈ Σ|µ 1 (α) ≤ µ}. There exist constants κ 0 , M , C, ε > 0 such that if κ ≥ κ 0 , H/κ ≥ µ -1 , and (ψ, A) is a minimizer of E κ,H , then Ω e ǫ √ κHdist(x,Σ ′ ) |ψ(x)| 2 + 1 κH |(∇ -iκHA)ψ(x)| 2 dx ≤ C {x: √ κHdist(x,Σ ′ )≤M } |ψ(x)| 2 dx.
This Agmon type estimate describes how superconductivity can nucleate successively in the corners, ordered according to their spectral parameter µ 1 (α s ) seeing that µ 1 (α s ) < Θ 0 . This reinforces the interest to compare precisely µ 1 (α) and Θ 0 .

When we consider the Schrödinger operator in dimension 3, see [START_REF] Helffer | Magnetic bottles for the Neumann problem: the case of dimension 3[END_REF][START_REF] Helffer | Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case)[END_REF][START_REF] Raymond | On the semiclassical 3D Neumann Laplacian with variable magnetic field[END_REF], we have to analyze some new operators: the Neumann realization of

h 2 D 2 s + h 2 D 2 t + (hD r + t cos θ -s sin θ) 2 on R 3 + = {(r, s, t) ∈ R 3 : t > 0} where θ ∈ [0, π 2 ]
is the angle that makes the magnetic field with the boundary at each point (approximated by the tangent plane). We first make a Fourier transform in r. When θ = 0, we are led to the so-called de Gennes operator H(ζ) on the half-line (see [START_REF] Dauge | Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators[END_REF] and this present paper). If θ = 0, we perform a translation in s and a rescaling. Thus we are reduced to a Schrödinger operator with an electric potential on the half-plane

R 2 + = {(s, t) ∈ R 2 : t > 0}: L θ = D 2 s + D 2 t + (t cos θ -s sin θ) 2 .
This operator is deeply studied in [START_REF] Ël | Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions[END_REF], both theoretically and numerically. The authors prove an isotropic estimate and anisotropic estimate for the eigenvectors. They also analyze the asymptotics when θ → 0. In particular, they prove the following result: Proposition 2.6. We have the following upper-bound for the n-th eigenvalue σ n (θ) of L θ :

σ n (θ) ≤ Θ 0 cos θ + (2n -1) sin θ, ∀n ≥ 1. (2.1)
For all M 0 ≥ 1, there exist h 0 > 0 and C(M 0 ) > 0 such that for all 0 < θ ≤ h 0 and 1 ≤ n ≤ M 0 :

|σ n (θ) -Θ 0 -θ a 1 (2n -1)| ≤ C(M 0 ) θ 3/2 , with a 1 = µ ′′ 1 (ζ 0 ) 2 = Φ(0)Θ 1/4 0 . (2.2)
If we denote by n(θ) the number of eigenvalues of L θ below the essential spectrum, we have with (2.1):

n(θ) ≥ 1 -Θ 0 cos θ 2 sin θ + 1 2 . (2.3)
If we bound from below Θ 0 by 1, 0.6, 0.591, we lower-bound shows that n(π/2000) is greater than 0, 127 and 130 respectively. A greater approximation of Θ 0 we have, a greater lower-bound of n(θ) we deduce.

Error estimates on eigenmodes

This section concerns the analysis of the operator H(ζ) and error estimates between Θ 0 and the energy associated with a quasi-mode for H(ζ).

Notation 3.1. For any ζ ∈ R, we define q ζ 1 and q ζ 2 on D by 

q ζ 1 (u) = R + (t -ζ)|u(t)| 2 dt, q ζ 2 (u) = R + (t -ζ) 2 |u(t)| 2 dt. ( 3 
μ(ζ) = H(ζ)ϕ ζ , ϕ ζ , r ζ = H(ζ)ϕ ζ -μ(ζ)ϕ ζ .
We denote also

η ζ = μ(ζ) + 2(ζ -ζ 0 )q ζ 1 (ϕ ζ ) + (ζ -ζ 0 ) 2 , (3.2) 
a ζ = r ζ L 2 (R + ) + 2|ζ -ζ 0 | q ζ 2 (ϕ ζ ) 2 . (3.3) 
With these Notation 3.1, we have 

H(ζ)ϕ ζ = μ(ζ)ϕ ζ + r ζ with r ζ , ϕ ζ = 0.
η ζ ≤ µ 2 (ζ 0 ).
Then we can compare Θ 0 and μ(ζ):

η ζ - a ζ -4(ζ -ζ 0 ) 2 q ζ 1 (ϕ ζ ) 2 µ 2 (ζ 0 ) -η ζ ≤ Θ 0 ≤ μ(ζ).
Proof. The upper-bound is trivial: by definition of the minimum Θ 0 ,

Θ 0 = µ 1 (ζ 0 ) ≤ µ 1 (ζ) and by the min-max principle µ 1 (ζ) ≤ μ(ζ) = H(ζ)ϕ ζ , ϕ ζ . Thus: Θ 0 = µ 1 (ζ 0 ) ≤ µ 1 (ζ) ≤ μ(ζ).
To prove the lower-bound, we bring to mind the Temple inequality (see [START_REF] Kato | On the upper and lower bounds of eigenvalues[END_REF], [START_REF] Harrell | Double wells[END_REF]Theorem 1.15]): Let A be self-adjoint and Ψ ∈ D(A), Ψ = 1. Suppose that λ is the unique eigenvalue of A in an interval

(α, β). Let η = Ψ, AΨ and ε 2 = (A -η)Ψ 2 . If ε 2 < (β -η)(η -α), then η - ε 2 β -η ≤ λ ≤ η + ε 2 η -α . (3.4)
We apply this inequality with

A = H(ζ 0 ), Ψ = ϕ ζ . Since Θ 0 is the first eigenvalue for H(ζ 0 ), we can choose α = -∞, β = µ 2 (ζ 0 ). We rewrite H(ζ 0 ) with H(ζ): H(ζ 0 ) = H(ζ) + 2(ζ -ζ 0 )(t -ζ) + (ζ -ζ 0 ) 2 . Since ϕ ζ is normalized and r ζ , ϕ ζ = 0, we obtain η = ϕ ζ , H(ζ 0 )ϕ ζ = η ζ with definition (3.2). The assumption ε 2 < (β -η)(η -α) is then obviously fulfilled. Consider now ε 2 . ε 2 = R + r ζ (t) + 2(ζ -ζ 0 )(t -ζ)ϕ ζ (t) -2(ζ -ζ 0 )q ζ 1 (ϕ ζ )ϕ ζ (t) 2 dt ≤ r ζ L 2 (R + ) + 2|ζ -ζ 0 | q ζ 2 (ϕ ζ ) 2 -4(ζ -ζ 0 ) 2 q ζ 1 (ϕ ζ ) 2 . (3.5)
Temple inequality (3.4) gives

η ζ - ε 2 µ 2 (ζ 0 ) -η ζ ≤ µ 1 (ζ 0 ) ≤ η ζ .
Let us now prove an estimate on the eigenfunction. 

η ζ ≤ µ 2 (ζ 0 ). Then ϕ ζ -Φ L 2 (R + ) ≤ 2 √ 2 a ζ + (ζ -ζ 0 ) 3 ζ -ζ 0 + 4q ζ 1 (ϕ ζ ) 1/2 µ 2 (ζ 0 ) -μ(ζ) , ϕ ′ ζ -Φ ′ L 2 (R + ) ≤ a ζ -4q ζ 1 (ϕ ζ ) 2 (ζ -ζ 0 ) 2 µ 2 (ζ 0 ) -η ζ + μ(ζ) Φ -ϕ ζ 2 L 2 (R + ) 1/2 .
To prove this result, we use an estimate of quasi-modes established in [ 

ζ -Φ L 2 (R + ) by noticing that d(E, F ) = ||ϕ ζ -ϕ ζ , Φ Φ|| L 2 (R + ) = 1 -| ϕ ζ , Φ | 2 ≥ 1 √ 2 ϕ ζ -Φ L 2 (R + ) . (3.6) Writing H(ζ 0 )ϕ ζ = μ(ζ)ϕ ζ + rζ with rζ = (H(ζ 0 ) -H(ζ))ϕ ζ + r ζ ,
we estimate rζ L 2 (R + ) using the orthogonality relation r ζ , ϕ ζ = 0: Let us now estimate the L 2 -norm of (ϕ ′ ζ -Φ ′ ). An integration by parts gives:

||r ζ || 2 L 2 (R + ) = R + 2(ζ -ζ 0 )(t -ζ)ϕ ζ (t) + (ζ -ζ 0 ) 2 ϕ ζ (t) + r ζ (t) 2 dt ≤ a ζ + (ζ -ζ 0 ) 3 ζ -ζ 0 + 4q ζ 1 (ϕ ζ ) . ( 3 
H(ζ 0 )(Φ -ϕ ζ ), Φ -ϕ ζ L 2 (R + ) ≥ Φ ′ -ϕ ′ ζ 2 L 2 (R + ) . (3.8) 
On the other hand,

H(ζ 0 )(ϕ ζ -Φ), ϕ ζ -Φ L 2 (R + ) = H(ζ 0 )ϕ ζ , ϕ ζ L 2 (R + ) -2Θ 0 Φ, ϕ ζ L 2 (R + ) + Θ 0 = η ζ -Θ 0 + Θ 0 Φ -ϕ ζ 2 L 2 (R + ) . (3.9) 
We deduce from (3.8), (3.9) and Theorem 3.2 a upper-bound for the

L 2 -norm of Φ ′ -ϕ ′ ζ : Φ ′ -ϕ ′ ζ 2 L 2 (R + ) ≤ a ζ -4q ζ 1 (ϕ ζ ) 2 (ζ -ζ 0 ) 2 µ 2 (ζ 0 ) -η ζ + μ(ζ) Φ -ϕ ζ 2 L 2 (R + ) .
We deduce now an estimate for ϕ ζ -Φ at point t = 0.

Theorem 3.5. Using the same notation and assumptions as Theorem 3.3, we have

|Φ(0) -ϕ ζ (0)| 2 ≤ 2 Φ -ϕ ζ L 2 (R + ) Φ ′ -ϕ ′ ζ L 2 (R + ) . (3.10) 
Proof. As Φϕ ∈ H 1 (R + ), it suffices to write

|Φ(0) -ϕ ζ (0)| 2 = 2 ∞ 0 |Φ(t) -ϕ ζ (t)||Φ ′ (t) -ϕ ′ ζ (t)| dt.
We conclude with the Cauchy-Schwarz inequality.

4 Construction of a quasi-mode by a finite difference method Theorem 3.2 gives bounds for Θ 0 as soon as we get quasi-modes for the operator H(ζ). Of course, the closer ζ is from ζ 0 , the better the bounds. A heuristic approach based on finite difference method and the ODE theory gives a sequence of approximated values for ϕ ζ . Then we use this sequence to construct a testfunction with energy as small as possible and thus try and give a good approximation of Θ 0 . We organize this approximation in several steps: 

Reduction to a finite interval

In a first step, we reduce the domain R + to an interval [0, L]: We know that the eigenvector is exponentially decreasing so, if L is large enough, the error due to cut-off is exponentially small. Let ϕ ζ be a normalized eigenvector associated with µ 1 (ζ) for the operator H(ζ). This function ϕ ζ is decreasing like t → exp -t 2 2 as t → +∞. Therefore there exists a positive constant C such that, for L > 0,

∞ a |ϕ ζ (t)| 2 dt ≤ 2 C L ∞ L te -t 2 dt = Ce -L 2 L . (4.1) 
Consequently, to approximate

ϕ ζ L 2 (R + ) by L 0 |ϕ ζ (t)| 2 dt with a better accuracy than 10 -N , it is enough that L satisfies e -L 2 L ≤ 10 -N C .
It is equivalent to find L such that L 2 + ln L ≥ N ln 10 + ln C. So it is reasonnable to restrict the study to the interval (0, 10) for numerical computations. The numerical quasi-mode will be extend by 0 on (L, +∞) to define a function on R + . We will control the error due to the cut-off.

We conclude this section with a comparaison between the fundamental energy on a finite interval and Θ 0 . 

µ N,D (ζ, L) ≥ µ 1 (ζ) ≥ Θ 0 . (4.2) 
For L large enough, the function µ N,N (ζ, •) is increasing on (L, +∞) and

µ N,N (ζ, L) ≤ µ 1 (ζ). (4.3)
Proof. The monotonicity of L → µ N,D (ζ, L) is obvious: For L ′ ≥ L, we extend the functions of {u ∈ H 1 (0, L)|u(L) = 0} by 0 on (L, L ′ ) and use the min-max principle.

To deal with µ N,N (ζ, L), we compute the derivative of µ N,N (ζ, L) with respect to L:

∂ L µ N,N (ζ, L) = ((L -ζ) 2 -µ N,N (ζ, L))|u ζ,L (L)| 2 , (4.4) 
with u ζ,L a normalized eigenvector associated with µ N,N (ζ, L). The positivity of the first derivative is directly deduced for L large enough.

Finite difference scheme

Instead of looking for a normalized eigenfunction, we impose the value of Φ at t = 0. Therefore, we try to determine (ζ 0 , Φ) ∈ R + × D such that: Varying parameter ζ 0 and working on a finite interval, it is natural to look for a function ϕ ζ defined on (0, L) and satisfying:

   H(ζ 0 )Φ(t) = ζ 2 0 Φ(t), ∀t > 0, Φ(0) = 1, Φ ′ (0) = 0.
   H(ζ)ϕ ζ (t) = ζ 2 ϕ ζ (t), ∀t ∈ (0, L), ϕ ζ (0) = 1, ϕ ′ ζ (0) = 0.
(4.6)

The system (4.6) is numerically solved by a finite difference scheme. Let n be the number of discretization points in (0, L) and h = L/n. We determine recursively an approximation φζ j of ϕ ζ (jh) for any integer j ∈ {0, . . . , n}. For this, ϕ ′′ ζ (jh) and ϕ ′ ζ (0) are classically approximated respectively by ( φζ j+1 -2 φζ j + φζ j-1 )/h 2 and ( φζ 1φζ 0 )/h. The boundary condition at t = 0 determines completely the sequence ( φζ j ) j=0,...,n : The change of variables x = t-ζ in the eigenmonde equation leads to the second order differential equation:

     φζ 0 = 1, φζ 1 = 1, φζ j+1 = (2 + jh 3 (jh -2ζ)) φζ j -φζ j-1 , ∀j = 1, . . . , n -1. 
u ′′ (x) -x 2 u(x) -ζ 2 u(x) = 0. (4.8) 
The Sturm-Liouville equation (cf [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Hartmann | Ordinary differential equations[END_REF][START_REF] Sibuya | Global theory of a second order linear ordinary differential equation with a polynomial coefficient[END_REF][START_REF] Dauge | Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators[END_REF]) admits a basis of fundamental solutions 

u ± ζ with u - ζ = O(exp(-x 2 /2)) and u + ζ = O(x -(1+ζ
ϕ ζ = a ζ f - ζ + b ζ f + ζ . (4.9) 
We now use this dependence on ζ to determine Θ 0 . Indeed, for ζ = ζ 0 , ϕ ζ 0 = Φ is integrable and then b ζ 0 = 0. To determine Θ 0 , it is then enough to find the smallest ζ such that the solution ϕ ζ is bounded. Furthermore, we know that the eigenvector Φ associated with the first eigenvalue Θ 0 and normalized with Φ(0) = 1, holds strictly positive. The positivity of Φ gives a criterion to select functions which constitute a good quasi-modes. Indeed, if for some ζ, the sequence ( φζ j ) has positive and strictly negative coefficients, then the coefficient b ζ in the decomposition (4.9) of the associated interpolated function φζ is negative and consequently ζ > ζ 0 . At the opposite, the parameter b ζ is positive for ζ < ζ 0 .

Construction of quasi-modes

Discretization (4.7) gives two behaviors for ( φζ j ) j (see Figures 1 and2) and we modify coefficients of ( φζ j ) j consequently:

• The sequence ( φζ j ) j remains positive (see Figure 1). We determine j 0 the smallest integer where the sequence ( φζ j ) j reaches its minimum and we denote L ′ = j 0 h. The restriction of φζ on (0, L ′ ) makes a better quasi-mode than the function defined enterely on (0, L) and we have µ

N,N (ζ, L ′ ) ≤ μ(ζ, L ′ ) with μ(ζ, L ′ ) the energy of ( φζ j ) j computed on [0, L ′ ].
Nevertheless, as we can not compare µ N,N (ζ, L ′ ) and Θ 0 for any L ′ , we modify the sequence by translation so that the minimum equals to 0 and dilation to keep the normalization φζ 1 = 1. We then define the new sequence:

ϕ ζ j =      φζ j -φζ j 0 φζ 1 -φζ j 0
for j = 1, . . . , j 0 -1, 0 for j = j 0 , . . . , n.

(4.10)

The energy associated with a regular interpolation of (ϕ ζ j ) j gives a upper-bound of Θ 0 according to Lemma 4.1. The initial sequence (see Figure 1) corresponds to b ζ > 0 in the decomposition (4.9).

• The sequence ( φζ j ) j has positive and negative terms (see Figure 2). Let j 0 be the smallest integer such that φζ j 0 < 0. We set ϕ ζ j = φζ j for j = 1, . . . , j 0 -1, 0 for j = j 0 , . . . , n. Let us now be more explicit about the interpolation of the sequence (ϕ ζ j ) j to construct the quasi-mode ϕ ζ . If we make an interpolation of (ϕ ζ j ) j by a piecewise linear function, this function does not belong to H 2 (R + ) and is necessarly not in the operator domain D. So we interpolate (ϕ ζ j ) j on [0, L] by a piecewise polynomial function ϕ ζ of degree 2 defined by:

∀j = 0, . . . , n -1, ∀t ∈ [jh, (j + 1)h], ϕ ζ (t) = α j (t -jh) 2 + τ j (t -jh) + ϕ ζ j , (4.12) 
with τ 0 = 0 and

       τ j+1 = 2 ϕ ζ j+1 -ϕ ζ j h -τ j , α j = ϕ ζ j+1 -ϕ ζ j h 2 - τ j h . (4.13)
We notice that τ j = ϕ ′ ζ (jh). We extend ϕ ζ by 0 on (L, +∞). With such a construction, ϕ ζ is continuous, its derivative is continuous, piecewise linear and the second derivative is constant on [jh, (j + 1)h] for j = 0, . . . , n -1. Furthermore, any computations (norm, energy, . . . ) are explicit. With the change of variables x = tjh, we have:

||ϕ ζ || 2 L 2 (R + ) = n-1 j=0 h 0 |α j x 2 + τ j x + ϕ ζ j | 2 dx = h n-1 j=0 h 4 5 α 2 j + h 3 2 α j τ j + h 2 3 (τ 2 j + 2α j ϕ ζ j ) + hτ j ϕ ζ j + (ϕ ζ j ) 2 . (4.14) 
Let us compute the energy of ϕ ζ :

||ϕ ′ ζ || 2 L 2 (R + ) = n-1 j=0 h 0 |2α j x + τ j | 2 dx = h n-1 j=0 4 3 h 2 α 2 j + 2hα j τ j + τ 2 j . (4.15) 
To compute

R + (t -ζ) k |ϕ ζ (t)| 2 dt, we define δ j = jh -ζ. Put x = t -jh gives: R + (t -ζ) k |ϕ ζ (t)| 2 dt = n-1 j=0 h 0 (x + δ j ) k |(α j x 2 + τ j x + ϕ ζ j | 2 dx. Consequently R + (t -ζ)|ϕ ζ (t)| 2 dt = h n-1 j=0 h 5 6 α 2 j + h 4 5 α j (2τ j + α j δ j ) + h 3 4 (τ 2 j + 2α j ϕ ζ j + 2α j τ j δ j ) + h 2 3 (2τ j ϕ ζ j + 2α j ϕ ζ j δ j + τ 2 j δ j ) + h 2 ((ϕ ζ j ) 2 + 2τ j δ j ϕ ζ j ) + (ϕ ζ j ) 2 δ j . (4.16) ||(t -ζ)ϕ ζ || 2 L 2 (R + ) = h n-1 j=0 h 6 7 α 2 j + h 5 3 α j (τ j + α j δ j ) + h 4 5 ((τ j + α j δ j ) 2 + 2α j (ϕ ζ j + τ j δ j )) + h 3 2 (α j ϕ ζ j δ j + (τ j + α j δ j )(ϕ ζ j + τ j δ j )) + h 2 3 ((ϕ ζ j + τ j δ j ) 2 + 2ϕ ζ j δ j (τ j + α j δ j )) + hϕ ζ j δ j (ϕ ζ j + τ j δ j ) + (ϕ ζ j ) 2 δ 2 j . (4.17) 
Expressions (4.14), (4.15) and (4.17) present the main advantage to be exact. Let μ(ζ) be the Rayleigh quotient of ϕ ζ :

μ(ζ) = ||ϕ ′ ζ || 2 L 2 (R + ) + ||(t -ζ)ϕ ζ || 2 L 2 (R + ) ||ϕ ζ || 2 L 2 (R + ) . (4.18) 
To apply Theorem 3.2, we have to estimate the residus

r ζ 2 L 2 (R + ) with r ζ : = (H(ζ) -μ(ζ))ϕ ζ .
As we extend ϕ ζ by 0 on (L, +∞), we have just to compute the norms on (0, L). We notice that for any j = 0, . . . , n -1 and t ∈ [jh, (j + 1)h], we get:

r ζ (t) = -2α j + ((t -ζ) 2 -μ(ζ))(α j (t -jh) 2 + τ j (t -jh) + ϕ ζ j ).
As in (4.14), (4.15) and (4.17), the computation of r ζ L 2 (R + ) is explicit. For j = 0, . . . , n -1, we define:

r 0,j = ϕ ζ j (δ 2 j -μ(ζ)) -2α j , r 1,j = 2ϕ ζ j δ j + τ j (δ 2 j -μ(ζ)), r 2,j = ϕ ζ j + 2τ j δ j + α j (δ 2 j -μ(ζ)), r 3,j = τ j + 2α j δ j .
A change of variables gives:

||r ζ || 2 L 2 (R + ) = h n-1 j=0 h 8 9 α 2 j + h 7 4 α j r 3,j + h 6 7 (2α j r 2,j + r 2 3,j ) + h 5 3 (α j r 1,j + r 3,j r 2,j ) + h 4 5 (2α j r 0,j + 2r 3,j r 1,j + r 2 2,j ) + h 3 2 (r 3,j r 0,j + r 2,j r 1,j ) + h 2 3 (2r 2,j r 0,j + r 2 1,j ) + hr 1,j r 0,j + r 2 0,j . (4.19) 

Algorithm and results

We described how interpolate the sequence (ϕ ζ j ) to construct an appropriate quasi-mode and proposed criteria to estimate Θ 0 . Let us now explain the algorithm to determine Θ 0 accurately. Algorithme 4.2.

1. We choose a length L for the finite interval and a step h for the discretization for finite difference method.

2. We initialize a value for ζ with n decimals.

3. We construct the sequence (ϕ ζ j ) by (4.7).

4. If (ϕ ζ j ) j has negative coefficients, we return to the first step with a smaller value for ζ. Otherwise, we modify (ϕ ζ j ) j according to (4.10). Let us now use the finite element method to approximate Θ 0 and Φ 0 . With this method, we do not have exact estimate of the error but only a upper-bound for Θ 0 . To determine accurately ζ 0 , we use a finite element method of degree Q 8 or Q 10 and nbel elements. The computational domain is [0, L] and we impose Dirichlet condition on t = L. We compute the first eigenvalue μ(ζ) and compare it with ζ 2 . These computations give also an accurate value for Φ(0) and a 1 . Let φζ be the computed normalized positive eigenvector associated with μ(ζ). Then, we compute ȃ1 = √ ζ φζ (0). Table 2 gives the results of these computations. In particular we obtain approximation for Θ 0 , Φ(0) and a 1 : Θ0 = 0.590106125, Φ(0) = 0.873043139, ȃ1 = 0.765188147. 
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  21, Proposition 4.1.1, p. 30] : Proposition 3.4. Let A be a self-adjoint operator in a Hilbert space H. Let I ⊂ R be a compact interval, Ψ 1 , . . . , Ψ N ∈ H linearly independent in D(A) and µ 1 , . . . , µ N ∈ I such that AΨ j = µ j Ψ j + r j with r j H ≤ ε. Let a > 0 and assume that Sp(A) ∩ (I + B(0, 2a) \ I) = ∅. Then if E is the space spanned by Ψ 1 , . . . , Ψ N and if F is the space associated to σ(A) ∩ I, we have d(E, F ) ≤ ε √ N a λ min S , where λ min S is the smallest eigenvalues of S = ( Ψ j , Ψ k H ) and d the non-symmetric distance defined by d(E, F ) = Π E -Π F Π E H , with Π E , Π F the orthogonal projections on E and F . Proof of Theorem 3.3. We apply Proposition 3.4 with N = 1, A = H(ζ 0 ), Ψ 1 = ϕ ζ , E the space spanned by ϕ ζ and F the space spanned by Φ. We first connect the distance d with the norm ϕ
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 7 Relations (3.6), (3.7) and Proposition 3.4 with a = (µ 2 (ζ 0 )μ(ζ))/2 give the L 2 -estimate of (ϕ ζ -Φ).
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 2345 Write a finite difference scheme, Study the dependence of the discrete solution on the parameter ζ, Construct a regular function on R + from the discrete solution, Deduce an algorithm to approximate Θ 0 , 6. Estimate the accuracy of the computations.
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 41 Let L > 0. We denote by µ N,N (ζ, L) and µ N,D (ζ, L) the smallest eigenvalue of -d 2 /dt 2 + (tζ) 2 with Neumann condition at t = 0 and respectively Neumann and Dirichlet condition at t = L. Then µ N,D (ζ, L) is decreasing with respect to L and for any L > 0,
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 743 Dependence on ζ of the sequence ( φζ j ) j=0,...,n
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 12 Figure 1: ( φζ j ) j for ζ = 0.76818.

(4. 11 )

 11 Lemma 4.1 bounds from above Θ 0 by the energy of the function constructed from (ϕ ζ j ) j . For the initial sequence, b ζ < 0 in the decomposition (4.9).

Figure 3

 3 illustrates the fact that the minimum of ζ → µ k (ζ) is achieved on the curve ζ → ζ 2 . We observe also the convergence of ζ → µ k (ζ) to 2k -1 as ζ → +∞. For these computations, we use a finite element method with 10 elements of degree Q 10 on [0, 10].

Figure 3 :

 3 Figure 3: µ k (ζ) for ζ ∈ [-1, 5], k = 1, . . . , 4 and curve ζ → ζ 2 in dashed line.

Table 1 :

 1 (d) we estimate the residusr ζ L 2 (R + ) = ||(H(ζ)μ(ζ))ϕ ζ || L 2 (R + ) with relation (4.19),Table 1 sums up the results obtained with this algorithm: we choose h = 1/26000 and L = 7. In each part, results given at the last line correspond to a function ϕ ζ which takes negative values. The last colum gives ȃ1 = ϕ ζ j (0) √ ζ which aims to approximate the constant a 1 in the asymptotics expansion (2.2). Of course, a dichotomy method should be faster but we aim at determining decimals step by step. Results obtained with Algorithm 4.2. In this section, we use a finite element method to analyze the dependence of µ k (ζ) with ζ. We compute the eigenvalues of the operator D 2 t + (tζ) 2 on [0, L] with Dirichlet condition on t = L and Neumann condition on t = 0. The computed eigenvalues μk (ζ) give a upper-bound of µ k (ζ).

	(ϕ ζ j ) j has only positive coefficients,
	(a) we define the function ϕ ζ by relations (4.12) and (4.13),
	(b) we compute the L 2 -norm of ϕ ζ thanks to (4.14) and deduce the value of ϕ ζ (0) after normaliza-
	tion,
	(c) we compute the energy μ(ζ) associated with ϕ ζ thanks to relations (4.14), (4.15), (4.17) and
	(4.18),
	(e) we raise ζ of 10 -(n+1) .
	6. We go back to the first step with the last value of ζ with the n + 1 decimals for which the sequence (ϕ ζ j ) has only positive terms.

Table 2 :

 2 Table 2 provide better upper-bounds for Θ 0 than in Proposition 4.4. Computation with the finite element method.

	L	nbel Q	ζ	μ(ζ)	ζ 2 -μ(ζ)	φζ (0)	ȃ1
	7	70	8	0.768183653140 0.590106124950497	1.0e-12	0.873043138513904 0.765188146985675
	7	70	8	0.768183653141 0.590106124949945	3.1e-12	0.873043138513613 0.765188146985918
	7	70	10 0.768183653140 0.590106124952671	-1.2e-12	0.873043138513392 0.765188146985226
	7	70	10 0.768183653141 0.590106124952394	6.6e-13	0.873043138513095 0.765188146985464
	8	100	8	0.768183653140 0.590106124949903	1.6e-12	0.873043138513603 0.765188146985411
	8	100	8	0.768183653141 0.590106124949336	3.7e-12	0.873043138513245 0.765188146985595
	8	100 10 0.768183653140 0.590106124952819	-1.3e-12	0.873043138513197 0.765188146985055
	8	100 10 0.768183653141 0.590106124952989	6.3e-14	0.873043138512816 0.765188146985219
	9	90	8	0.768183653140 0.590106124950496	1.0e-12	0.873043138513906 0.765188146985677
	9	90	8	0.768183653141 0.590106124949943	3.1e-12	0.873043138513614 0.765188146985919
	9	90	10 0.768183653140 0.590106124952671	-1.2e-12	0.873043138513392 0.765188146985226
	9	90	10 0.768183653141 0.590106124952389	6.6e-13	0.873043138513095 0.765188146985464
	10 100	8	0.768183653140 0.590106124950496	1.0e-12	0.873043138513906 0.765188146985677
	10 100	8	0.768183653141 0.590106124949948	3.1e-12	0.873043138513614 0.765188146985919
	10 100 10 0.768183653140 0.590106124952670	-1.2e-12	0.873043138513391 0.765188146985225
	10 100 10 0.768183653141 0.590106124952392	7e-13	0.873043138513095 0.765188146985464
	12 110	8	0.768183653140 0.590106124948481	3.0e-12	0.873043138514059 0.765188146985811
	12 110	8	0.768183653141 0.590106124948091	5.0e-12	0.873043138513689 0.765188146985984
	12 110 10 0.768183653140 0.590106124949202	2.3e-12	0.873043138513313 0.765188146985156
	12 110 10 0.768183653141 0.590106124949127	3.9e-12	0.873043138513068 0.765188146985440
	15 200	8	0.768183653140 0.590106124951757	-2e-13	0.873043138513820 0.765188146985601
	15 200	8	0.768183653141 0.590106124951625	1.4e-12	0.873043138513444 0.765188146985769
	15 200 10 0.768183653140 0.590106124949226	2.3e-12	0.873043138513258 0.765188146985109
	15 200 10 0.768183653141 0.590106124949262	3.8e-12	0.873043138512969 0.765188146985353

The first rigorous definition of the critical field HC 3 appeared in[START_REF] Lu | Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity[END_REF].

Estimates of the second eigenvalue

To apply Theorem 3.2, we need an estimate of the second eigenvalue µ 2 (ζ 0 ) of H(ζ 0 ). For this point, we do not need to be very accurate and so we consider the matrix A ζ defined by the discretization of H(ζ) for ζ ∈ [0.76818, 076819]. If we denote by A ζ i,j the coefficients of the matrix A ζ , we have:

We 

Proof. The upper-bound was proved in [START_REF] Dauge | Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators[END_REF] and recalled in Proposition 1.1. Let us prove the lower-bound.

For any ζ ∈ R, we write

Choosing ζ = 0 and using Proposition 1.1, we deduce the lower-bound.

We apply Algorithm 4.2 for h such that 1/h ∈ {100 × k, k = 10, . . . , 40} and for L = 7, 8, 9, 10. For each value, we obtain characteristic values as in Table 1 and we complete this table by computing the lower-bound of Θ 0 given by Theorem 3.2, a lower-bound and a upper-bound for Φ(0) given in Theorem 3.5. To make these computations, we need a lower-bound of |ζζ 0 |. We start with the coarse estimate of Lemma 4. This proposition estimates Θ 0 ≃ 0.590106125 with an error less than 10 -9 and of Φ(0) ≃ 0.87304 at 5 × 10 -4 .