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Harmonic oscillators with Neumann condition on the half-line

V. Bonnaillie-Noël∗

November 3, 2010

Abstract

This paper is devoted to the computation of the minimum Θ0 of the first eigenvalues for the Neumann

realization of harmonic oscillators on the half-line. We propose an algorithm to determine this minimum

and we estimate the accuracy of these computations. We also give numerical computations of constants

appearing in superconductivity theory.

1 Introduction

Before motivating our analysis, we first define the parameters Θ0 and Φ(0). We consider the operator

−d2/dt2 + (t − ζ)2 on (0,+∞). Its Friedrichs extension from C∞
0 ([0,+∞)) is denoted by H(ζ) and

defined on

D = {u ∈ H2(0,+∞)| t2u ∈ L2(R+) and u′(0) = 0}.
We denote by µk(ζ) the k-th eigenvalue of this operator arranged in the ascending order with the multiplicity

taken into account. The behavior of the first eigenvalue is well known (see, for example, [12]):

Proposition 1.1. There exists ζ0 > 0 such that µ1 is strictly decreasing from (−∞, ζ0) onto (+∞,Θ0) and

strictly increasing from [ζ0,+∞) onto [Θ0, 1). Furthermore, if Φ denotes a normalized positive eigenvector

associated with µ1(ζ0), then

∫ ∞

0
(|Φ′(t)|2 + (t− ζ0)

2|Φ(t)|2) dt = Θ0,

∫ ∞

0
(t− ζ0)|Φ(t)|2 dt = 0,

|Φ(0)|2 =
µ′′1(ζ0)

2ζ0
, Θ0 = ζ2

0 .

An estimate of Θ0 by 0.59010 was already given in [13], using the Weber functions but there is no

mention of the accuracy of this estimate. Using an integral representation [11], Chapman approximates Θ0

by 0.59 without any estimate of the error. In the literature, we can find some estimates of Θ0 but there is no

mention of the accuracy of the computations. To our knowledge, we do not find any computation of Φ(0).
The aim of this article is to give accurate estimates of Θ0 and Φ(0) and of the error between exact values

and numerical computations. The numerical method implemented here is very standard since we use finite

difference and element methods.
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In Section 2, we remind of some results concerning the localization of the superconductivity and we

notice that the parameters Θ0 and Φ(0) appear frequently (see Propositions 2.1, 2.5). The analysis of the

onset of superconductivity is based on those of the low-lying eigenmodes for the Schrödinger operator (see

[7, 8, 17, 30] and Propositions 2.2, 2.3, 2.4, 2.6).

To estimate the error of the computations, we establish in Section 3 error estimates on eigenmodes: Theo-

rem 3.2 quantifies the gap between the eigenvalue Θ0 and the energy associated with a quasi-mode for the

operator H(ζ). In Theorem 3.3, we prove H1-estimate between the normalized eigenfunction Φ associated

with Θ0 for the operator H(ζ0) and a normalized quasi-mode for H(ζ). We deduce in Theorem 3.5 an es-

timate of Φ(0). In Section 4, we construct an adequate quasi-mode combining the finite difference method

and analysis of the ODE theory for the differential equations depending on parameters. We implement this

method in Subsection 4.5 and obtain an accurate approximation of Θ0 and Φ(0):

Theorem 1.2.

|Θ0 − 0.590106125| ≤ ×10−9 and |Φ(0) − 0.87304| ≤ 5 × 10−5.

Section 5 presents computations with the finite element method. From a numerical point of view, we

also mention papers [4, 3] which deal with the numerical computations for the bottom of the spectrum of

−d2/dt2 + (t− ζ)2 on a symmetric interval using a finite difference method.

2 Motivation

To highlight how is important to compute accurately these parameters Θ0 and Φ(0), we recall some results

about superconductivity modelled by Ginzburg-Landau theory. It is well-known that superconductors of

type II lose their superconducting property when submitted to a sufficiently strong external magnetic field.

This transition takes place for a value HC3
1 of the field which appears as a function of a material-dependent

parameter κ. We recall here results about the calculation of this critical field for large values of κ in two

situations: smooth domains and domains with corners.

Let Ω ⊂ R2 be a bounded simply-connected domain with Lipschitz boundary. The Ginzburg-Landau func-

tional reads

Eκ,H [ψ,A] =

∫

Ω

{

|(−i∇− κHA)ψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4

}

dx+ κ2H2

∫

R2

|curlA− 1|2 dx ,

with (ψ,A) ∈ W 1,2(Ω; C) × {A = A0 + Ã with Ã ∈ Ḣ1(R2,R2),div Ã = 0}, A0(x) = 1/2(−x2, x1).
We use the notation Ḣ1(R2) for the homogeneous Sobolev spaces. We define the critical field HC3 as the

value of H where the transition between the normal and superconducting state takes place:

HC3(κ) = inf{H > 0 : (0,A0) is a minimizer of Eκ,H} .
The calculation of this critical field HC3 for large values of κ has been the focus of much activity (see

[22, 2, 27, 28, 29, 25, 14, 15, 16]). In the works [14, 15, 16, 17], the definition of HC3 in the case of samples

with smooth section has been clarified and the asymptotic is given by:

Proposition 2.1 (see [16]). Suppose Ω is a bounded simply-connected domain in R2 with smooth boundary.

Let κmax be the maximal curvature of ∂Ω. Then

HC3(κ) =
κ

Θ0
+

C1

Θ
3/2
0

κmax + O(κ−1/2) with C1 =
Φ2(0)

3
.

1The first rigorous definition of the critical field HC3
appeared in [28].
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It was realized that the asymptotics of the critical field is completely determined by the linear eigenvalue

problem. Indeed, if we denote by µ(n)(h) the n-th eigenvalue of the magnetic Neumann operator Ph =
(−ih∇ − A0)

2 defined on D(Ph) = {u ∈ H2(Ω)|ν · (−ih∇ − A0)u|∂Ω = 0}, then the asymptotics of

µ(n)(h) was established by Fournais-Helffer in [15]:

Proposition 2.2 (see [15]). Suppose that Ω is a smooth bounded and simply connected domain of R2, that

the curvature ∂Ω ∋ s 7→ κ(s) at the boundary has a unique maximum κmax reached at s = s0 and that

the maximum is non-degenerate, i. e. k2 := −κ′′(s0) 6= 0. Then for all n ∈ N, there exists a sequence

{ξ(n)
j }∞j=1 ⊂ R such that µ(n)(h) admits the following asymptotic expansion (for h→ 0):

µ(n)(h) ∼ Θ0h− κmaxC1h
3/2 + C1Θ

1/4
0

√

3k2

2
(2n− 1)h7/4 + h15/8

∞
∑

j=0

hj/8ξ
(n)
j .

To carry through an analysis of the critical fieldHC3 in the case of domains with corners, a linear spectral

problem, studied in depth in [5, 6, 7, 8], is usefull. Let us first give estimates for the Schrödinger operator in

a model geometry: the infinite sector.

Proposition 2.3 (see [6]). Let Gα be the sector in R2 with opening α and Qα be the Neumann realization

of the Schrödinger operator −(∇ − iA0)
2 on Gα. We denote by µk(α) the k-th smallest element of the

spectrum given by the max-min principle. Then:

1. The infimum of the essential spectrum of Qα is equal to Θ0.

2. For all α ∈ (0, π/2], µ1(α) < Θ0 and µ1(π) = Θ0.

3. Let α ∈ (0, 2π), k ≥ 1 be such that µk(α) < Θ0 and Ψα
k an associated normalized eigenfunction.

Then Ψα
k satisfies the following exponential decay estimate:

∀ε > 0,∃Cε,α > 0, ‖e(
√

Θ0−µk(α)−ε)|x|Ψα
k‖L2(Gα) ≤ Cε,α.

Thanks to the model situation given by the analysis of the angular sector, we are able to determine the

asymptotic expansion of the low-lying eigenmodes of the Schrödinger operator on curvilinear polygons:

Proposition 2.4 (see [7]). Let Ω be a bounded curvilinear polygon, Σ be the set of its vertices, αs be the

angle at the vortex s. We denote by Λn the n-th eigenvalue of the model operator ⊕s∈ΣQ
αs , and µ(n)(h) the

n-th smallest eigenvalue of Ph. Let n be such that Λn < Θ0. There exist h0 > 0 and (mj)j≥1 such that for

any N > 0 and h ≤ h0,

µ(n)(h) = hΛn + h
N
∑

j=1

mjh
j/2 + O(h

N+1
2 ).

If Ω is a bounded convex polygon, there exists rn > 0 and for any ε > 0, Cε > 0 such that

∣

∣

∣µ(n)(h) − hΛn

∣

∣

∣ ≤ Cεexp

(

− 1√
h

(rn
√

Θ0 − Λn − ε)

)

.

For non constant magnetic field, the low-lying eigenvalues admit an asymptotic expansion in power of√
h. These results highlight the importance of comparing µk(α) with Θ0 and then of computing precisely

Θ0. It is also natural to wonder for which angle α we have µk(α) < Θ0. It was conjectured in [1, 8] that
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µ1 is strictly increasing from (0, π) onto (0,Θ0) and is equal to Θ0 on [π, 2π). This conjecture is based on

numerical computations and could be strengthened with an accurate estimate of Θ0.

As in the case of smooth domains, spectral informations produce results about the minimizers of the

Ginzburg-Landau functional for domains with corners. We obtain in particular a complete asymptotics of

HC3 for large values of κ in terms of linear spectral data and precise estimates on the location of nucleation

of superconductivity for magnetic field strengths just below the critical field:

Proposition 2.5 (see [10]). Let Ω be a curvilinear polygon and Λ1 = mins∈Σ µ1(αs). There exists a real-

valued sequence {ηj}∞j=1 such that

HC3(κ) =
κ

Λ1



1 +

∞
∑

j=1

ηjκ
−j



 , for κ→ +∞.

Let µ ∈ (Λ1,Θ0) and define Σ′ = {s ∈ Σ|µ1(α) ≤ µ}. There exist constants κ0, M , C, ε > 0 such that if

κ ≥ κ0, H/κ ≥ µ−1, and (ψ,A) is a minimizer of Eκ,H , then
∫

Ω
eǫ

√
κHdist(x,Σ′)

(

|ψ(x)|2 +
1

κH
|(∇− iκHA)ψ(x)|2

)

dx ≤ C

∫

{x:
√

κHdist(x,Σ′)≤M}
|ψ(x)|2 dx.

This Agmon type estimate describes how superconductivity can nucleate successively in the corners,

ordered according to their spectral parameter µ1(αs) seeing that µ1(αs) < Θ0. This reinforces the interest

to compare precisely µ1(α) and Θ0.

When we consider the Schrödinger operator in dimension 3, see [23, 24, 30], we have to analyze some

new operators: the Neumann realization of h2D2
s +h2D2

t +(hDr + t cos θ− s sin θ)2 on R3
+ = {(r, s, t) ∈

R3 : t > 0} where θ ∈ [0, π
2 ] is the angle that makes the magnetic field with the boundary at each point

(approximated by the tangent plane). We first make a Fourier transform in r. When θ = 0, we are led to the

so-called de Gennes operator H(ζ) on the half-line (see [12] and this present paper). If θ 6= 0, we perform

a translation in s and a rescaling. Thus we are reduced to a Schrödinger operator with an electric potential

on the half-plane R2
+ = {(s, t) ∈ R2 : t > 0}:

Lθ = D2
s +D2

t + (t cos θ − s sin θ)2.

This operator is deeply studied in [9], both theoretically and numerically. The authors prove an isotropic

estimate and anisotropic estimate for the eigenvectors. They also analyze the asymptotics when θ → 0. In

particular, they prove the following result:

Proposition 2.6. We have the following upper-bound for the n-th eigenvalue σn(θ) of Lθ:

σn(θ) ≤ Θ0 cos θ + (2n− 1) sin θ, ∀n ≥ 1. (2.1)

For all M0 ≥ 1, there exist h0 > 0 and C(M0) > 0 such that for all 0 < θ ≤ h0 and 1 ≤ n ≤M0:

|σn(θ) − Θ0 − θ a1 (2n− 1)| ≤ C(M0) θ
3/2, with a1 =

√

µ′′1(ζ0)
2

= Φ(0)Θ
1/4
0 . (2.2)

If we denote by n(θ) the number of eigenvalues of Lθ below the essential spectrum, we have with (2.1):

n(θ) ≥ 1 − Θ0 cos θ

2 sin θ
+

1

2
. (2.3)

If we bound from below Θ0 by 1, 0.6, 0.591, we lower-bound shows that n(π/2000) is greater than 0, 127
and 130 respectively. A greater approximation of Θ0 we have, a greater lower-bound of n(θ) we deduce.
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3 Error estimates on eigenmodes

This section concerns the analysis of the operator H(ζ) and error estimates between Θ0 and the energy

associated with a quasi-mode for H(ζ).

Notation 3.1. For any ζ ∈ R, we define qζ
1 and qζ

2 on D by

qζ
1(u) =

∫

R+

(t− ζ)|u(t)|2 dt, qζ
2(u) =

∫

R+

(t− ζ)2|u(t)|2 dt. (3.1)

Let ζ ∈ R and ϕζ be a normalized positive function of D. We define µ̆(ζ) and rζ by

µ̆(ζ) = 〈H(ζ)ϕζ , ϕζ〉, rζ = H(ζ)ϕζ − µ̆(ζ)ϕζ .

We denote also

ηζ = µ̆(ζ) + 2(ζ − ζ0)q
ζ
1(ϕζ) + (ζ − ζ0)

2, (3.2)

aζ =

(

‖rζ‖L2(R+) + 2|ζ − ζ0|
√

qζ
2(ϕζ)

)2

. (3.3)

With these Notation 3.1, we have

H(ζ)ϕζ = µ̆(ζ)ϕζ + rζ with 〈rζ , ϕζ〉 = 0.

Theorem 3.2. Let ζ ∈ R and ϕζ be a normalized positive function of D. With Notation 3.1, we assume

ηζ ≤ µ2(ζ0).

Then we can compare Θ0 and µ̆(ζ):

ηζ −
aζ − 4(ζ − ζ0)

2qζ
1(ϕζ)

2

µ2(ζ0) − ηζ
≤ Θ0 ≤ µ̆(ζ).

Proof. The upper-bound is trivial: by definition of the minimum Θ0, Θ0 = µ1(ζ0) ≤ µ1(ζ) and by the

min-max principle µ1(ζ) ≤ µ̆(ζ) = 〈H(ζ)ϕζ , ϕζ〉. Thus:

Θ0 = µ1(ζ0) ≤ µ1(ζ) ≤ µ̆(ζ).

To prove the lower-bound, we bring to mind the Temple inequality (see [26], [19, Theorem 1.15]): Let

A be self-adjoint and Ψ ∈ D(A), ‖Ψ‖ = 1. Suppose that λ is the unique eigenvalue of A in an interval

(α, β). Let η = 〈Ψ, AΨ〉 and ε2 = ‖(A− η)Ψ‖2. If ε2 < (β − η)(η − α), then

η − ε2

β − η
≤ λ ≤ η +

ε2

η − α
. (3.4)

We apply this inequality with A = H(ζ0), Ψ = ϕζ . Since Θ0 is the first eigenvalue for H(ζ0), we can

choose α = −∞, β = µ2(ζ0). We rewrite H(ζ0) with H(ζ):

H(ζ0) = H(ζ) + 2(ζ − ζ0)(t− ζ) + (ζ − ζ0)
2.
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Since ϕζ is normalized and 〈rζ , ϕζ〉 = 0, we obtain η = 〈ϕζ , H(ζ0)ϕζ〉 = ηζ with definition (3.2). The

assumption ε2 < (β − η)(η − α) is then obviously fulfilled. Consider now ε2.

ε2 =

∫

R+

∣

∣

∣
rζ(t) + 2(ζ − ζ0)(t− ζ)ϕζ(t) − 2(ζ − ζ0)q

ζ
1(ϕζ)ϕζ(t)

∣

∣

∣

2
dt

≤
(

‖rζ‖L2(R+) + 2|ζ − ζ0|
√

qζ
2(ϕζ)

)2

− 4(ζ − ζ0)
2qζ

1(ϕζ)
2. (3.5)

Temple inequality (3.4) gives

ηζ −
ε2

µ2(ζ0) − ηζ
≤ µ1(ζ0) ≤ ηζ .

Let us now prove an estimate on the eigenfunction.

Theorem 3.3. Let ζ ∈ R and ϕζ be a normalized and positive function of D. With Notation 3.1, we assume

ηζ ≤ µ2(ζ0). Then

‖ϕζ − Φ‖L2(R+) ≤ 2
√

2

(

aζ + (ζ − ζ0)
3
(

ζ − ζ0 + 4qζ
1(ϕζ)

))1/2

µ2(ζ0) − µ̆(ζ)
,

‖ϕ′
ζ − Φ′‖L2(R+) ≤

(

aζ − 4qζ
1(ϕζ)

2(ζ − ζ0)
2

µ2(ζ0) − ηζ
+ µ̆(ζ)‖Φ − ϕζ‖2

L2(R+)

)1/2

.

To prove this result, we use an estimate of quasi-modes established in [21, Proposition 4.1.1, p. 30] :

Proposition 3.4. Let A be a self-adjoint operator in a Hilbert space H. Let I ⊂ R be a compact interval,

Ψ1, . . . ,ΨN ∈ H linearly independent in D(A) and µ1, . . . , µN ∈ I such that AΨj = µjΨj + rj with

‖rj‖H ≤ ε. Let a > 0 and assume that Sp(A) ∩ (I + B(0, 2a) \ I) = ∅. Then if E is the space spanned by

Ψ1, . . . ,ΨN and if F is the space associated to σ(A) ∩ I , we have

d(E,F ) ≤ ε
√
N

a
√

λmin
S

,

where λmin
S is the smallest eigenvalues of S = (〈Ψj ,Ψk〉H) and d the non-symmetric distance defined by

d(E,F ) = ‖ΠE − ΠF ΠE‖H, with ΠE , ΠF the orthogonal projections on E and F .

Proof of Theorem 3.3. We apply Proposition 3.4 with N = 1, A = H(ζ0), Ψ1 = ϕζ , E the space spanned

by ϕζ and F the space spanned by Φ.

We first connect the distance d with the norm ‖ϕζ − Φ‖L2(R+) by noticing that

d(E,F ) = ||ϕζ − 〈ϕζ ,Φ〉Φ||L2(R+) =
√

1 − |〈ϕζ ,Φ〉|2 ≥ 1√
2
‖ϕζ − Φ‖L2(R+). (3.6)

Writing

H(ζ0)ϕζ = µ̆(ζ)ϕζ + r̃ζ with r̃ζ = (H(ζ0) −H(ζ))ϕζ + rζ ,

6



we estimate ‖r̃ζ‖L2(R+) using the orthogonality relation 〈rζ , ϕζ〉 = 0:

||r̃ζ ||2L2(R+) =

∫

R+

∣

∣2(ζ − ζ0)(t− ζ)ϕζ(t) + (ζ − ζ0)
2ϕζ(t) + rζ(t)

∣

∣

2
dt

≤ aζ + (ζ − ζ0)
3
(

ζ − ζ0 + 4qζ
1(ϕζ)

)

. (3.7)

Relations (3.6), (3.7) and Proposition 3.4 with a = (µ2(ζ0) − µ̆(ζ))/2 give the L2-estimate of (ϕζ − Φ).
Let us now estimate the L2-norm of (ϕ′

ζ − Φ′). An integration by parts gives:

〈H(ζ0)(Φ − ϕζ),Φ − ϕζ〉L2(R+) ≥ ‖Φ′ − ϕ′
ζ‖2

L2(R+) . (3.8)

On the other hand,

〈H(ζ0)(ϕζ − Φ), ϕζ − Φ〉L2(R+) = 〈H(ζ0)ϕζ , ϕζ〉L2(R+) − 2Θ0〈Φ, ϕζ〉L2(R+) + Θ0

= ηζ − Θ0 + Θ0‖Φ − ϕζ‖2
L2(R+). (3.9)

We deduce from (3.8), (3.9) and Theorem 3.2 a upper-bound for the L2-norm of Φ′ − ϕ′
ζ :

‖Φ′ − ϕ′
ζ‖2

L2(R+) ≤ aζ − 4qζ
1(ϕζ)

2(ζ − ζ0)
2

µ2(ζ0) − ηζ
+ µ̆(ζ)‖Φ − ϕζ‖2

L2(R+).

�

We deduce now an estimate for ϕζ − Φ at point t = 0.

Theorem 3.5. Using the same notation and assumptions as Theorem 3.3, we have

|Φ(0) − ϕζ(0)|2 ≤ 2‖Φ − ϕζ‖L2(R+) ‖Φ′ − ϕ′
ζ‖L2(R+). (3.10)

Proof. As Φ − ϕ ∈ H1(R+), it suffices to write

|Φ(0) − ϕζ(0)|2 = 2

∫ ∞

0
|Φ(t) − ϕζ(t)||Φ′(t) − ϕ′

ζ(t)| dt.

We conclude with the Cauchy-Schwarz inequality.

4 Construction of a quasi-mode by a finite difference method

Theorem 3.2 gives bounds for Θ0 as soon as we get quasi-modes for the operator H(ζ). Of course, the

closer ζ is from ζ0, the better the bounds. A heuristic approach based on finite difference method and the

ODE theory gives a sequence of approximated values for ϕζ . Then we use this sequence to construct a test-

function with energy as small as possible and thus try and give a good approximation of Θ0. We organize

this approximation in several steps:

1. Reduce the problem to a finite interval,

2. Write a finite difference scheme,

3. Study the dependence of the discrete solution on the parameter ζ,

4. Construct a regular function on R+ from the discrete solution,

5. Deduce an algorithm to approximate Θ0,

6. Estimate the accuracy of the computations.
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4.1 Reduction to a finite interval

In a first step, we reduce the domain R+ to an interval [0, L]: We know that the eigenvector is exponentially

decreasing so, if L is large enough, the error due to cut-off is exponentially small. Let ϕζ be a normalized

eigenvector associated with µ1(ζ) for the operatorH(ζ). This functionϕζ is decreasing like t 7→ exp
(

− t2

2

)

as t→ +∞. Therefore there exists a positive constant C such that, for L > 0,

∫ ∞

a
|ϕζ(t)|2dt ≤ 2

C

L

∫ ∞

L
te−t2 dt =

Ce−L2

L
. (4.1)

Consequently, to approximate ‖ϕζ‖L2(R+) by

∫ L

0
|ϕζ(t)|2 dt with a better accuracy than 10−N , it is enough

that L satisfies
e−L2

L
≤ 10−N

C
.

It is equivalent to find L such that L2 + lnL ≥ N ln 10 + lnC. So it is reasonnable to restrict the study to

the interval (0, 10) for numerical computations. The numerical quasi-mode will be extend by 0 on (L,+∞)
to define a function on R+. We will control the error due to the cut-off.

We conclude this section with a comparaison between the fundamental energy on a finite interval and Θ0.

Lemma 4.1. Let L > 0. We denote by µN,N (ζ, L) and µN,D(ζ, L) the smallest eigenvalue of −d2/dt2 +
(t− ζ)2 with Neumann condition at t = 0 and respectively Neumann and Dirichlet condition at t = L.

Then µN,D(ζ, L) is decreasing with respect to L and for any L > 0,

µN,D(ζ, L) ≥ µ1(ζ) ≥ Θ0. (4.2)

For L large enough, the function µN,N (ζ, ·) is increasing on (L,+∞) and

µN,N (ζ, L) ≤ µ1(ζ). (4.3)

Proof. The monotonicity of L 7→ µN,D(ζ, L) is obvious: For L′ ≥ L, we extend the functions of {u ∈
H1(0, L)|u(L) = 0} by 0 on (L,L′) and use the min-max principle.

To deal with µN,N (ζ, L), we compute the derivative of µN,N (ζ, L) with respect to L:

∂Lµ
N,N (ζ, L) = ((L− ζ)2 − µN,N (ζ, L))|uζ,L(L)|2, (4.4)

with uζ,L a normalized eigenvector associated with µN,N (ζ, L). The positivity of the first derivative is

directly deduced for L large enough.

4.2 Finite difference scheme

Instead of looking for a normalized eigenfunction, we impose the value of Φ at t = 0. Therefore, we try to

determine (ζ0,Φ) ∈ R+ ×D such that:







H(ζ0)Φ(t) = ζ2
0Φ(t), ∀t > 0,

Φ(0) = 1,
Φ′(0) = 0.

(4.5)
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Varying parameter ζ0 and working on a finite interval, it is natural to look for a function ϕζ defined on (0, L)
and satisfying:







H(ζ)ϕζ(t) = ζ2ϕζ(t), ∀t ∈ (0, L),
ϕζ(0) = 1,
ϕ′

ζ(0) = 0.
(4.6)

The system (4.6) is numerically solved by a finite difference scheme. Let n be the number of discretization

points in (0, L) and h = L/n. We determine recursively an approximation ϕ̃ζ
j of ϕζ(jh) for any integer j ∈

{0, . . . , n}. For this, ϕ′′
ζ (jh) andϕ′

ζ(0) are classically approximated respectively by (ϕ̃ζ
j+1−2ϕ̃ζ

j+ϕ̃
ζ
j−1)/h

2

and (ϕ̃ζ
1 − ϕ̃ζ

0)/h. The boundary condition at t = 0 determines completely the sequence (ϕ̃ζ
j )j=0,...,n:











ϕ̃ζ
0 = 1,

ϕ̃ζ
1 = 1,

ϕ̃ζ
j+1 = (2 + jh3(jh− 2ζ))ϕ̃ζ

j − ϕ̃ζ
j−1, ∀j = 1, . . . , n− 1.

(4.7)

4.3 Dependence on ζ of the sequence (ϕ̃ζ
j)j=0,...,n

The change of variables x = t−ζ in the eigenmonde equation leads to the second order differential equation:

u′′(x) − x2u(x) − ζ2u(x) = 0. (4.8)

The Sturm-Liouville equation (cf [18, 20, 31, 12]) admits a basis of fundamental solutions u±ζ with u−ζ =

O(exp(−x2/2)) and u+
ζ = O(x−(1+ζ2)/2exp(x2/2)) at infinity. By a change of variable, we deduce that

the solution ϕζ of problem (4.6) is a linear combination of an exponentially increasing function denoting by

f+
ζ and an exponentially decreasing function f−ζ . Moreover f+

ζ → +∞ and f−ζ → 0 as t → +∞. Thus,

there exist constants aζ and bζ which depend continously on ζ such that:

ϕζ = aζf
−
ζ + bζf

+
ζ . (4.9)

We now use this dependence on ζ to determine Θ0. Indeed, for ζ = ζ0, ϕζ0 = Φ is integrable and then

bζ0 = 0. To determine Θ0, it is then enough to find the smallest ζ such that the solution ϕζ is bounded.

Furthermore, we know that the eigenvector Φ associated with the first eigenvalue Θ0 and normalized with

Φ(0) = 1, holds strictly positive. The positivity of Φ gives a criterion to select functions which constitute a

good quasi-modes. Indeed, if for some ζ, the sequence (ϕ̃ζ
j ) has positive and strictly negative coefficients,

then the coefficient bζ in the decomposition (4.9) of the associated interpolated function ϕ̃ζ is negative and

consequently ζ > ζ0. At the opposite, the parameter bζ is positive for ζ < ζ0.

4.4 Construction of quasi-modes

Discretization (4.7) gives two behaviors for (ϕ̃ζ
j )j (see Figures 1 and 2) and we modify coefficients of (ϕ̃ζ

j )j

consequently:

• The sequence (ϕ̃ζ
j )j remains positive (see Figure 1). We determine j0 the smallest integer where

the sequence (ϕ̃ζ
j )j reaches its minimum and we denote L′ = j0h. The restriction of ϕ̃ζ on (0, L′)

makes a better quasi-mode than the function defined enterely on (0, L) and we have µN,N (ζ, L′) ≤
µ̃(ζ, L′) with µ̃(ζ, L′) the energy of (ϕ̃ζ

j )j computed on [0, L′]. Nevertheless, as we can not compare

9
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Figure 1: (ϕ̃ζ
j )j for ζ = 0.76818.
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Figure 2: (ϕ̃ζ
j )j for ζ = 0.76819.

µN,N (ζ, L′) and Θ0 for any L′, we modify the sequence by translation so that the minimum equals to

0 and dilation to keep the normalization ϕ̃ζ
1 = 1. We then define the new sequence:

ϕζ
j =











ϕ̃ζ
j − ϕ̃ζ

j0

ϕ̃ζ
1 − ϕ̃ζ

j0

for j = 1, . . . , j0 − 1,

0 for j = j0, . . . , n.

(4.10)

The energy associated with a regular interpolation of (ϕζ
j )j gives a upper-bound of Θ0 according to

Lemma 4.1. The initial sequence (see Figure 1) corresponds to bζ > 0 in the decomposition (4.9).

• The sequence (ϕ̃ζ
j )j has positive and negative terms (see Figure 2). Let j0 be the smallest integer such

that ϕ̃ζ
j0
< 0. We set

ϕζ
j =

{

ϕ̃ζ
j for j = 1, . . . , j0 − 1,

0 for j = j0, . . . , n.
(4.11)

Lemma 4.1 bounds from above Θ0 by the energy of the function constructed from (ϕζ
j )j . For the

initial sequence, bζ < 0 in the decomposition (4.9).

Let us now be more explicit about the interpolation of the sequence (ϕζ
j )j to construct the quasi-mode

ϕζ . If we make an interpolation of (ϕζ
j )j by a piecewise linear function, this function does not belong to

H2(R+) and is necessarly not in the operator domain D. So we interpolate (ϕζ
j )j on [0, L] by a piecewise

polynomial function ϕζ of degree 2 defined by:

∀j = 0, . . . , n− 1, ∀t ∈ [jh, (j + 1)h], ϕζ(t) = αj(t− jh)2 + τj(t− jh) + ϕζ
j , (4.12)

with τ0 = 0 and














τj+1 = 2
ϕζ

j+1 − ϕζ
j

h
− τj ,

αj =
ϕζ

j+1 − ϕζ
j

h2
− τj
h
.

(4.13)
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We notice that τj = ϕ′
ζ(jh). We extend ϕζ by 0 on (L,+∞). With such a construction, ϕζ is continuous,

its derivative is continuous, piecewise linear and the second derivative is constant on [jh, (j + 1)h] for

j = 0, . . . , n − 1. Furthermore, any computations (norm, energy, . . . ) are explicit. With the change of

variables x = t− jh, we have:

||ϕζ ||2L2(R+) =
n−1
∑

j=0

∫ h

0
|αjx

2 + τjx+ ϕζ
j |2 dx

= h

n−1
∑

j=0

(

h4

5
α2

j +
h3

2
αjτj +

h2

3
(τ2

j + 2αjϕ
ζ
j ) + hτjϕ

ζ
j + (ϕζ

j )
2

)

. (4.14)

Let us compute the energy of ϕζ :

||ϕ′
ζ ||2L2(R+) =

n−1
∑

j=0

∫ h

0
|2αjx+ τj |2 dx = h

n−1
∑

j=0

(

4

3
h2α2

j + 2hαjτj + τ2
j

)

. (4.15)

To compute

∫

R+

(t− ζ)k|ϕζ(t)|2 dt, we define δj = jh− ζ. Put x = t− jh gives:

∫

R+

(t− ζ)k|ϕζ(t)|2dt =
n−1
∑

j=0

∫ h

0
(x+ δj)

k|(αjx
2 + τjx+ ϕζ

j |2 dx.

Consequently

∫

R+

(t− ζ)|ϕζ(t)|2dt = h

n−1
∑

j=0

(

h5

6
α2

j +
h4

5
αj(2τj + αjδj) +

h3

4
(τ2

j + 2αjϕ
ζ
j + 2αjτjδj)

+
h2

3
(2τjϕ

ζ
j + 2αjϕ

ζ
jδj + τ2

j δj) +
h

2
((ϕζ

j )
2 + 2τjδjϕ

ζ
j ) + (ϕζ

j )
2δj

)

. (4.16)

||(t− ζ)ϕζ ||2L2(R+) = h

n−1
∑

j=0

(

h6

7
α2

j +
h5

3
αj(τj + αjδj) +

h4

5
((τj + αjδj)

2 + 2αj(ϕ
ζ
j + τjδj))

+
h3

2
(αjϕ

ζ
jδj + (τj + αjδj)(ϕ

ζ
j + τjδj))

+
h2

3
((ϕζ

j + τjδj)
2 + 2ϕζ

jδj(τj + αjδj)) + hϕζ
jδj(ϕ

ζ
j + τjδj) + (ϕζ

j )
2δ2j

)

.(4.17)

Expressions (4.14), (4.15) and (4.17) present the main advantage to be exact. Let µ̆(ζ) be the Rayleigh

quotient of ϕζ :

µ̆(ζ) =
||ϕ′

ζ ||2L2(R+) + ||(t− ζ)ϕζ ||2L2(R+)

||ϕζ ||2L2(R+)

. (4.18)

To apply Theorem 3.2, we have to estimate the residus ‖rζ‖2
L2(R+) with rζ : = (H(ζ) − µ̆(ζ))ϕζ . As

we extend ϕζ by 0 on (L,+∞), we have just to compute the norms on (0, L). We notice that for any

j = 0, . . . , n− 1 and t ∈ [jh, (j + 1)h], we get:

rζ(t) = −2αj + ((t− ζ)2 − µ̆(ζ))(αj(t− jh)2 + τj(t− jh) + ϕζ
j ).
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As in (4.14), (4.15) and (4.17), the computation of ‖rζ‖L2(R+) is explicit. For j = 0, . . . , n− 1, we define:

r0,j = ϕζ
j (δ

2
j − µ̆(ζ)) − 2αj , r1,j = 2ϕζ

jδj + τj (δ2j − µ̆(ζ)),

r2,j = ϕζ
j + 2τjδj + αj(δ

2
j − µ̆(ζ)), r3,j = τj + 2αjδj .

A change of variables gives:

||rζ ||2L2(R+) = h

n−1
∑

j=0

(

h8

9
α2

j +
h7

4
αjr3,j +

h6

7
(2αjr2,j + r23,j) +

h5

3
(αjr1,j + r3,jr2,j)

+
h4

5
(2αjr0,j + 2r3,jr1,j + r22,j) +

h3

2
(r3,jr0,j + r2,jr1,j) +

h2

3
(2r2,jr0,j + r21,j) + hr1,jr0,j + r20,j

)

.

(4.19)

4.5 Algorithm and results

We described how interpolate the sequence (ϕζ
j ) to construct an appropriate quasi-mode and proposed cri-

teria to estimate Θ0. Let us now explain the algorithm to determine Θ0 accurately.

Algorithme 4.2.

1. We choose a length L for the finite interval and a step h for the discretization for finite difference

method.

2. We initialize a value for ζ with n decimals.

3. We construct the sequence (ϕζ
j ) by (4.7).

4. If (ϕζ
j )j has negative coefficients, we return to the first step with a smaller value for ζ. Otherwise, we

modify (ϕζ
j )j according to (4.10).

5. While (ϕζ
j )j has only positive coefficients,

(a) we define the function ϕζ by relations (4.12) and (4.13),

(b) we compute the L2-norm of ϕζ thanks to (4.14) and deduce the value of ϕζ(0) after normaliza-

tion,

(c) we compute the energy µ̆(ζ) associated with ϕζ thanks to relations (4.14), (4.15), (4.17) and

(4.18),

(d) we estimate the residus ‖rζ‖L2(R+) = ||(H(ζ) − µ̆(ζ))ϕζ ||L2(R+) with relation (4.19),

(e) we raise ζ of 10−(n+1).

6. We go back to the first step with the last value of ζ with the n + 1 decimals for which the sequence

(ϕζ
j ) has only positive terms.

Table 1 sums up the results obtained with this algorithm: we choose h = 1/26000 and L = 7. In each

part, results given at the last line correspond to a function ϕζ which takes negative values. The last colum

gives ă1 = ϕζ
j (0)

√
ζ which aims to approximate the constant a1 in the asymptotics expansion (2.2).

Of course, a dichotomy method should be faster but we aim at determining decimals step by step.
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ζ µ̆(ζ) ‖rζ‖L2(R+) minj ϕ̃
ζ
j ϕ

ζ
j (0) ζ2 − µ̆(ζ) ă1

0.761 0.611266093453 4.009e-01 1.194e-01 0.900663817274 -3.215e-02 0.796379904345

0.762 0.608936310293 1.020e+00 1.098e-01 0.898608814736 -2.829e-02 0.793804656654

0.763 0.606516822831 1.017e+00 9.947e-02 0.896392499552 -2.435e-02 0.791059092651

0.764 0.603984720795 6.395e-01 8.826e-02 0.893963619858 -2.029e-02 0.788090937531

0.765 0.601304928182 3.144e-01 7.585e-02 0.891237476384 -1.608e-02 0.784814703651

0.766 0.598417489656 5.889e-01 6.162e-02 0.888054169479 -1.166e-02 0.781071024723

0.767 0.595197681398 4.774e-01 4.408e-02 0.884029104176 -6.909e-03 0.776482855100

0.768 0.591201356836 1.450e-01 1.618e-02 0.877276976649 -1.377e-03 0.769255459845

0.769 0.592445239556 3.394e+03 -6.828e+04 0.873788252239 -1.084e-03 0.766599011697

0.7681 0.590667836454 7.786e-02 1.065e-02 0.875868144705 -6.902e-04 0.767846770648

0.7682 0.590132204890 1.014e+02 -1.375e+03 0.873060748639 -9.649e-07 0.765212036038

0.76811 0.590609794273 1.296e-01 9.960e-03 0.875688760473 -6.168e-04 0.767670649972

0.76812 0.590550467623 1.188e-01 9.220e-03 0.875497050852 -5.421e-04 0.767483313548

0.76813 0.590489644618 7.154e-02 8.424e-03 0.875290014381 -4.659e-04 0.767282062448

0.76814 0.590427028617 6.304e-02 7.555e-03 0.875063164549 -3.880e-04 0.767062868811

0.76815 0.590362189929 6.035e-02 6.587e-03 0.874809289953 -3.078e-04 0.766819273601

0.76816 0.590294414679 1.028e-01 5.472e-03 0.874515187142 -2.246e-04 0.766539474233

0.76817 0.590222359089 4.568e-02 4.101e-03 0.874151227495 -1.372e-04 0.766197068734

0.76818 0.590142134621 3.433e-02 2.059e-03 0.873603510214 -4.162e-05 0.765690971474

0.76819 0.590133901819 4.380e+02 -5.339e+02 0.873050162751 -1.803e-05 0.765203307905

0.768181 0.590133151271 2.157e-02 1.743e-03 0.873518100671 -3.110e-05 0.765613198575

0.768182 0.590123767394 2.354e-02 1.362e-03 0.873415004924 -2.018e-05 0.765519794934

0.768183 0.590113720068 1.926e-02 8.410e-04 0.873273226533 -8.599e-06 0.765392272906

0.768184 0.590107683499 1.044e+02 -2.922e+01 0.873043549605 -1.026e-06 0.765189012531

0.7681831 0.590112657421 1.844e-02 7.719e-04 0.873254392844 -7.382e-06 0.765375421300

0.7681832 0.590111566559 1.475e-02 6.959e-04 0.873233650004 -6.138e-06 0.765356887258

0.7681833 0.590110458701 9.661e-03 6.117e-04 0.873210676290 -4.876e-06 0.765336392445

0.7681834 0.590109315459 9.490e-03 5.146e-04 0.873184139830 -3.579e-06 0.765312763566

0.7681835 0.590108138271 9.388e-03 3.972e-04 0.873152039956 -2.249e-06 0.765284247584

0.7681836 0.590106879933 3.373e-03 2.296e-04 0.873106158483 -8.366e-07 0.765243626286

0.7681837 0.590106497981 5.655e+01 -3.973e+00 0.873043196601 -3.010e-07 0.765188318823

0.76818361 0.590106749563 4.694e-03 2.067e-04 0.873099863951 -6.909e-07 0.765238067107

0.76818362 0.590106611147 3.686e-03 1.799e-04 0.873092510715 -5.371e-07 0.765231577409

0.76818363 0.590106470242 2.554e-03 1.488e-04 0.873083997748 -3.808e-07 0.765224070445

0.76818364 0.590106331385 2.147e-03 1.120e-04 0.873073906942 -2.266e-07 0.765215181231

0.76818365 0.590106179248 1.028e-03 5.386e-05 0.873057934293 -5.912e-08 0.765201132509

0.76818366 0.590106139402 6.353e+00 -5.838e-01 0.873043147328 -3.912e-09 0.765188159395

0.768183651 0.590106163301 1.082e-03 4.455e-05 0.873055377601 -4.164e-08 0.765198886499

0.768183652 0.590106145104 9.452e-04 3.139e-05 0.873051762303 -2.190e-08 0.765195711932

0.768183653 0.590106127974 4.699e-04 1.125e-05 0.873046229081 -3.238e-09 0.765190856726

0.768183654 0.590106128318 4.673e+00 -7.211e-02 0.873043139630 -2.045e-09 0.765188149055

0.7681836531 0.590106125876 1.536e-04 5.953e-06 0.873044774598 -9.864e-10 0.765189581249

0.7681836532 0.590106125048 5.487e-01 -3.761e-03 0.873043138584 -4.328e-12 0.765188147079

Table 1: Results obtained with Algorithm 4.2.
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4.6 Estimates of the second eigenvalue

To apply Theorem 3.2, we need an estimate of the second eigenvalue µ2(ζ0) of H(ζ0). For this point, we

do not need to be very accurate and so we consider the matrix Aζ defined by the discretization of H(ζ) for

ζ ∈ [0.76818, 076819]. If we denote by Aζ
i,j the coefficients of the matrix Aζ , we have:







































Aζ
1,1 =

1

h2
+ ζ2, Aζ

1,2 = −1
2 ,

Aζ
j,j−1 = − 1

h2 , Aζ
j,j = 2

h2 + ((j − 1)h− ζ)2, Aζ
j,j+1 = − 1

h2 , for j = 1, . . . , n− 1,

Aζ
n,n−1 = − 1

h2 , Aζ
n,n = 1

h2 + ((n− 1)h− ζ)2,

Aζ
i,j = 0 elsewhere.

We compute the second eigenvalue and obtain µ2(ζ0) ≥ 3.315. Theoretically, we can bound from above

µ2(ζ0) by the smallest first eigenvalue of the Dirichlet realization of D2
t + (t − ζ)2 on the half-line. We

obtain µ2(ζ0) ≥ 1.

4.7 Accurate estimate for Θ0 and Φ(0)

Lemma 4.3. We have this first coarse bound:

0.5 ≤ Θ0 = ζ2
0 ≤ 1.

Proof. The upper-bound was proved in [12] and recalled in Proposition 1.1. Let us prove the lower-bound.

For any ζ ∈ R, we write

1 = µ1(ζ) ≤ 〈H(ζ)Φ,Φ〉 = 〈H(ζ0)Φ,Φ〉 + 2(ζ0 − ζ)

∫

R+

(t− ζ0)|Φ(t)|2dt+ (ζ0 − ζ)2.

Choosing ζ = 0 and using Proposition 1.1, we deduce the lower-bound.

We apply Algorithm 4.2 for h such that 1/h ∈ {100 × k, k = 10, . . . , 40} and for L = 7, 8, 9, 10.

For each value, we obtain characteristic values as in Table 1 and we complete this table by computing the

lower-bound of Θ0 given by Theorem 3.2, a lower-bound and a upper-bound for Φ(0) given in Theorem 3.5.

To make these computations, we need a lower-bound of |ζ − ζ0|. We start with the coarse estimate of

Lemma 4.3 and we improve this estimate at each step of the algorithm with the new bounds of Θ0. Using

the upper-bound µ2(ζ0) ≥ 3.315, we obtain

Proposition 4.4.

0.590106124587 ≤ Θ0 ≤ 0.590106124951,

0.872997 ≤ Φ(0) ≤ 0.873090.

This proposition estimates Θ0 ≃ 0.590106125 with an error less than 10−9 and of Φ(0) ≃ 0.87304 at

5 × 10−4.
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5 Finite element method

In this section, we use a finite element method to analyze the dependence of µk(ζ) with ζ. We compute

the eigenvalues of the operator D2
t + (t − ζ)2 on [0, L] with Dirichlet condition on t = L and Neumann

condition on t = 0. The computed eigenvalues µ̆k(ζ) give a upper-bound of µk(ζ).
Figure 3 illustrates the fact that the minimum of ζ 7→ µk(ζ) is achieved on the curve ζ 7→ ζ2. We observe

also the convergence of ζ 7→ µk(ζ) to 2k − 1 as ζ → +∞. For these computations, we use a finite element

method with 10 elements of degree Q10 on [0, 10].

−1 0 1 2 3 4 5
0

2

4

6

8

10

Figure 3: µk(ζ) for ζ ∈ [−1, 5], k = 1, . . . , 4 and curve ζ 7→ ζ2 in dashed line.

Let us now use the finite element method to approximate Θ0 and Φ0. With this method, we do not have

exact estimate of the error but only a upper-bound for Θ0. To determine accurately ζ0, we use a finite element

method of degree Q8 or Q10 and nbel elements. The computational domain is [0, L] and we impose Dirichlet

condition on t = L. We compute the first eigenvalue µ̆(ζ) and compare it with ζ2. These computations give

also an accurate value for Φ(0) and a1. Let ϕ̆ζ be the computed normalized positive eigenvector associated

with µ̆(ζ). Then, we compute ă1 =
√
ζϕ̆ζ(0). Table 2 gives the results of these computations. In particular

we obtain approximation for Θ0, Φ(0) and a1:

Θ̆0 = 0.590106125, Φ̆(0) = 0.873043139, ă1 = 0.765188147.

Notice that computed values µ̆(ζ) in Table 2 provide better upper-bounds for Θ0 than in Proposition 4.4.
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L nbel Q ζ µ̆(ζ) ζ2 − µ̆(ζ) ϕ̆ζ(0) ă1

7 70 8 0.768183653140 0.590106124950497 1.0e-12 0.873043138513904 0.765188146985675

7 70 8 0.768183653141 0.590106124949945 3.1e-12 0.873043138513613 0.765188146985918

7 70 10 0.768183653140 0.590106124952671 -1.2e-12 0.873043138513392 0.765188146985226

7 70 10 0.768183653141 0.590106124952394 6.6e-13 0.873043138513095 0.765188146985464

8 100 8 0.768183653140 0.590106124949903 1.6e-12 0.873043138513603 0.765188146985411

8 100 8 0.768183653141 0.590106124949336 3.7e-12 0.873043138513245 0.765188146985595

8 100 10 0.768183653140 0.590106124952819 -1.3e-12 0.873043138513197 0.765188146985055

8 100 10 0.768183653141 0.590106124952989 6.3e-14 0.873043138512816 0.765188146985219

9 90 8 0.768183653140 0.590106124950496 1.0e-12 0.873043138513906 0.765188146985677

9 90 8 0.768183653141 0.590106124949943 3.1e-12 0.873043138513614 0.765188146985919

9 90 10 0.768183653140 0.590106124952671 -1.2e-12 0.873043138513392 0.765188146985226

9 90 10 0.768183653141 0.590106124952389 6.6e-13 0.873043138513095 0.765188146985464

10 100 8 0.768183653140 0.590106124950496 1.0e-12 0.873043138513906 0.765188146985677

10 100 8 0.768183653141 0.590106124949948 3.1e-12 0.873043138513614 0.765188146985919

10 100 10 0.768183653140 0.590106124952670 -1.2e-12 0.873043138513391 0.765188146985225

10 100 10 0.768183653141 0.590106124952392 7e-13 0.873043138513095 0.765188146985464

12 110 8 0.768183653140 0.590106124948481 3.0e-12 0.873043138514059 0.765188146985811

12 110 8 0.768183653141 0.590106124948091 5.0e-12 0.873043138513689 0.765188146985984

12 110 10 0.768183653140 0.590106124949202 2.3e-12 0.873043138513313 0.765188146985156

12 110 10 0.768183653141 0.590106124949127 3.9e-12 0.873043138513068 0.765188146985440

15 200 8 0.768183653140 0.590106124951757 -2e-13 0.873043138513820 0.765188146985601

15 200 8 0.768183653141 0.590106124951625 1.4e-12 0.873043138513444 0.765188146985769

15 200 10 0.768183653140 0.590106124949226 2.3e-12 0.873043138513258 0.765188146985109

15 200 10 0.768183653141 0.590106124949262 3.8e-12 0.873043138512969 0.765188146985353

Table 2: Computation with the finite element method.
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