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Numerical estimates of characteristic parameters
©y and®(0) for superconductivity

V. Bonnaillie-Noét

December 6, 2007

Abstract

This paper is devoted to the computation of the bot&nof the spectrum for the Neumann realiza-
tion of the Schrodinger operator with constant magnetid fiethe half-plane. We propose an algorithm
to determine®, and we estimate the accuracy of these computations.

1 Introduction

Before motivating our analysis, we first define the paranse@gy and ®(0). We consider the operator
—d/dt*>+ (t—¢)? on (0, +o0). Its Friedrichs extension frofi§° ([0, +o00)) is denoted by (¢) and defined
on

D = {u € H*(0,+00)| t?u € L*(RT) andx’(0) = 0}.

We denote by (¢) thek-th eigenvalue of this operator arranged in the ascenditey avith the multiplicity
taken into account. The behavior of the first eigenvalue is kmewn (see, for example[ [10]):

Proposition 1.1. There exists), > 0 such thaty, is strictly decreasing fronf—oo, o) onto (+oc, ©g)
and strictly increasing fronfiy, +o0c) onto [©, +oo). Furthermore, if® denotes a normalized eigenvector
associated withu (¢p), then

[ 0w wr+o-atewp a=oo [T -wlew? a=o
0 0

2 11(Co) 2
|2(0)| RRTT ©o = (p-

These paramete®, and®(0) appear naturally when we analyze the emergence of the suqukrc-
tivity. We state in Sectiofl2 some results concerning thalipation of the superconductivity based. This
analysis is based on those of the low-lying eigenmodes frSthrodinger operator with magnetic field
(seelT[8] and Propositiois P[ZJ13]2.4). Motivated byftioe the©, and®(0) appear repeatingly in the
analysis of superconductivity (see Propositibng P11, 2v8) aim to construct quasi-mode to approximate
the eigenfunctionb. Its energy would be an approximation ©f. Before dealing with this construction,
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SectiorB is devoted to error estimates on eigenmodes: &mEBrl quantifies the gap between the eigen-
value ©y and the energy associated with a quasi-mode for the opefatoy. In Theoren:32, we prove
H'-estimate between the normalized eigenfunctiorassociated witt®, for the operatorH ({;) and a
normalized quasi-mode fat (¢). We deduce in Theoreln—B.4 a local estimateb¢f). In Sectior[#, we
construct an adequate quasi-mode combining the finiterdrifee method and analysis of the ODE theory
for the differential equations depending on parameters.iriydement this method in Subsectibnl4.5 and
obtain an accurate approximation®f and®(0):

Theorem 1.2.
|©¢ — 0.590106122| < 2 x 107° and  |®(0) —0.8730| < 1074

From a numerical point of view, we also mention papelr§][4, Bic deal with the numerical computa-
tions for the bottom of the spectrum @t /dt? + (t — ¢)? on a symmetric interval using a finite difference
method.

2 Motivation

To highlight how is important to compute accurately theseupeetersd, and®(0), we recall some results
about superconductivity modelled by Ginzburg-Landau mhedt is well-known that superconductors of
type Il lose their superconducting property when submitted sufficently strong external magnetic field.
This transition takes place for a vallliﬁjﬂ of the field which apperas as a function of a material-depsinde
parameters. We recall here results about the calculation of this aitfeeld for large values of in two
situations: smooth domains and domains with corners.

Let Q c R? be a bounded simply-connected domain with Lipschitz bonndehe Ginzburg-Landau func-
tional reads

2
Ennilth, A = / {119 = kHAWP = 2| + S|l do + I<L2H2/ curl A — 1) dz
Q 2 R2

with (v, A) € Wh2(Q;C) x {A = Ay + Awith A € H'(R?,R?),div A = 0}, Ao(z) = 1/2(—22,21).
We use the notatio/! (R?) for the homogeneous Sobolev spaces. We define the crititdlHie, as the
value of H where the transition between the normal and supercondustate takes place:

Hey (k) =inf{H >0 : (0, Ap) is a minimizer of, p} .

The calculation of this critical fieldZc, for large values of has been the focus of much activity (see

[@8, 2,121 222319, 1L 1P, 113]). In the recent woikd [1],[M#, the defintion offf, in the case of

samples with smooth section has been clarified and the asjimist given by:

Proposition 2.1. [see [13]] Supposé? is a bounded simply-connected domaiiRiwith smooth boundary.
Let knqe DE the maximal curvature éi2. Then

K 4

HCg (:‘i) = @—0 + Wﬁmax + 0(5_1/2) W|th Cl =
0

©(0)
5

The first rigorous definition of the critical fieldf, appeared ir[22].



It was realized that the asymptotics of the critical fieldoshpletely determined by the linear eigenvalue
problem. Indeed, if we denote hy™ (k) the n-th eigenvalue of the magnetic Neumann operatpr=
(=ihV — Ap)? defined orD(P,) = {u € H*(Q)|v - (=ihV — Ap)ujpq = 0}, then the asymptotics of
1™ (h) was established by Fournais-Helffer in]12]:

Proposition 2.2(see [T2]) Suppose thaf is a smooth bounded and simply connected domaik’pthat
the curvatured2 > s — k(s) at the boundary has a unique maximum,, reached ats = sy and that
the maximum is non-degenerate, i. /8. := —«x"(sp) # 0. Then for alln € N, there exists a sequence

{éj(-")};?‘;l C R such thatu(™) (h) admits the following asymptotic expansion (for- 0):

3k = i/se(n
1 (h) ~ Oph — KimaaC1h*% + C1OY "/ 72(271 — DRI 4 RIS /s,
=0

To carry through an analysis of the critical figlt, in the case of domains with corners, alinear spectral
problem, studied in depth ifl[Bl 6,[4, 8], is usefull. Let ustfgive estimates for the Schrodinger operator in
a model geometry: the infinite sector.

Proposition 2.3(see [6]) Let G be the sector ifR? with openinga: and Q* be the Neumann realization
of the Schidpdinger operator—(V — i4p)? on G*. We denote by () the k-th smallest element of the
spectrum given by the max-min principle. Then:

1. The infimum of the essential spectrung)8fis equal toOy.
2. Foralla e (0,71'/2], ,U,l(Oé) < B and,ul(ﬂ‘) = Oy.

3. Leta € (0,2m), k > 1 be such thaj, (o) < ©g and U an associated normalized eigenfunction.
ThenU¢ satisfies the following exponential decay estimate:

Ve > 0,3C. 0 > 0, [|elVOrmml@=olelga| 5 oy < C. g

Thanks to the model situation given by the analysis of theumgector, we are able to determine the
asymptotic expansion of the low-lying eigenmodes of ther&inger operator on curvilinear polygons:

Proposition 2.4 (see [7]) Let2 be a bounded curvilinear polygoiy; be the set of its vertices;s be the
angle at the vortex. We denote by, then-th eigenvalue of the model operatorcy, @, and (™ (h) the
n-th smallest eigenvalue @%,. Letn be such that\,, < ©,. There existd, > 0 and(m;),;>1 such that for
any N > 0andh < hy,

N
p(h) = hi\, + 1" mhd? £ O,
7=1
If ©2 is a bounded convex polygon, there exists> 0 and for anys > 0, C. > 0 such that

1
< C.exp <—ﬁ(rm/@o - A, — £)> )
For non constant magnetic field, the low-lying eigenvaludgsian asymptotic expansion in power of
Vh. These results highlight the importance of the localizati.;. (o) according td®, and then of an ac-
curate estimate dd. Itis also natural to wonder for each angleve haveu,(a) < ©y. It was conjectured

pl (h) = h,
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in [, 18] thaty; is strictly increasing front0, 7) onto (0, ©¢) and is equal t®, on [r, 27). This conjecture
is based on numerical computations and could be improvddamitaccurate estimate 6f,.

As in the case of smooth domains, spectral informations ymedesults about the minimizers of the
Ginzburg-Landau functional for domains with corners. Weaobin particular a complete asymptotics of
Hc, for large values of: in terms of linear spectral data and precise estimates oith&on of nucleation
of superconductivity for magnetic field strengths just kaetbe critical field:

Proposition 2.5 (see [9]) Let2 be a curvilinear polygon andh; = mingey; 111 (s). There exists a real-
valued sequencg; }32, such that

o
H@@OX2<1+§:%Kj), for k — +oo.
j=1

Lety € (A1,00) and definex’ = {s € X|u;1(«) < u}. There exist constants), M, C, € > 0 such that if
K > ko, H/k > p~1, and (v, A) is a minimizer of,, y, then

evVrHdist(z,X') < ¥ 2 1 o 2> 2
e )|+ V —ikHA)Y(x de < C (x)|* de.
/Q ()l xH I )l {z:v/kHdist(z,2) <M} W)l

This Agmon type estimate describes how superconductivaty rucleate successively in the corners,
ordered according to their spectral parameigios) seeing thaji («s) < ©¢. This reinforces the interest
to compare precisely; (o) and©y.

3 Error estimates on eigenmodes

This section concerns the analysis of the oper#fd¢) and error estimates betweéh and the energy
associated with a quasi-mode f&r(().

Theorem 3.1. Let¢ € R andy, be a normalized function d@. We assume that
H(C)Qpc = @C(,DC +7¢ with <T‘C, (p<> =0 and (\/ ®C + |C — C0|)2 < [LQ(CO).
Then we can compai®, and©:
2
(/BT = [¢ — Gol)? — (Irell ey +24/0¢l¢ = Gol)™ +120¢(¢ = Co)?
‘ 12(Go) — (/O +1¢ — Gol)?

Proof. The upper-bound is trivial: by assumptions, we h@e= (H(()¢¢, ¢¢). Sinceu; (¢) is the bottom
of the spectrum of7(¢) and is bounded from below &, = 11 ({o), we deduce:

O¢ > p1(¢) > p1(¢o) = Bo.

To prove the lower-bound, we bring to mind the Temple ineigpésee [20], [15, Theorem 1.15]): Let
A be self-adjoint and € D(A), ||| = 1. Suppose that is the only eigenvalue ofl in an interval(«, 3).
Letn = (¥, AU) ande? = ||[A — )Y |%. If 2 < (B —1n)(n — ), then

<09 <O¢.

g2 g2

Ul <A<n+ .
B—n n—a«

(1)



We apply this inequality wittd = H((p), ¥ = ¢¢. Since®y is the first eigenvalue foff(¢y), we can
choosenr = —o0, 5 = ua((o). We formulateH (¢o) with H ({):

H(Go) = H(Q) +2(¢ = Co)(t — Q) + (¢ — ¢o)*
Sincey is normalized andr¢, ¢¢) = 0, we obtain
n=6c+ 20~ G) [ (t=OlecF de+ (¢ - G)”
R+
Cauchy-Schwarz inequality leads to

(VOc—1¢—Gl?<n < (VOr +1¢—Gl)?. ()

The assumption? < (3 — n)(n — «) is then obviously fulfilled. Consider now?. Using [2) and orthogo-
nality relation(r¢, pc) = 0, we get

e = /R [re() +2(C = Go)(t — Opc(®) + [(€ — Co)* + (O — m)] e(t)|” dt

2
< (”TCHLQ(Rﬂ +2v/6¢[¢ - Co\) +120¢¢ — Gol*. )
Temple inequality[{ll) gives
n— L pn1(Co) <
pa(Go) —n — Y=
Combining this last lower-bound &, = 11(¢o) with the upper-bound]3) of? and the lower-bound12)
of n achieves the proof. O

Let us now prove an estimate on the eigenfunction.

Theorem 3.2. Let( € R andy, be normalized irD. We assume that

H(¢)pe = Ocpe +1¢ with (re,0¢) =0 and (vVOc + ¢ = Go))? < p2(Go).

Then

1/2

[(Hr<HL2<R+> +20/0¢1¢ — Gol)* +1¢ — ol (1€ — Col + 4\/97)]

— P <22 ’
e — @l L2@w+) < 12(Co) — O¢

and

gl = @[l 2@y < (V/O¢ + 1€ = Col)? — O + 200|1® — | 2@+

—ah? A2
< 4/8C1C — ol + (Irell 2@y +24/O¢l¢ = Gol) ™ +120¢(¢ = o)
12(Co) — O¢

To prove this result, we use an estimate of quasi-modeslisstadh in [T7, Proposition 4.1.1, p. 30] :

+20¢(|® — ¢¢ll 2 (mt)-



Proposition 3.3. Let A be a self-adjoint operator in a Hilbert spad€. Let/ C R be a compact interval,
Uy,...,¥y € H linearly independent irD(A) and yu1,...,un € I such thatA¥; = p;¥; + r; with
|l7;]ln < e. Leta > 0 and assume thatp(A) N (I + B(0,2a) \ I) = (. ThenifE is the space spanned by
Uq,..., ¥y and if F is the space associated #dA) N I, we have

eV N

where X2 is the smallest eigenvalues §f= ((¥;, ¥, )4) and d the non-symmetric distance defined by
d(E,F) = |lIg — Hpllg||x, with I1g, I the orthogonal projections o' and F.

d(E,F) <

Proof. TheoreriZ312We apply PropositioR 313 with' =1, A = H((y), V1 = ¢¢, E the space spanned by
¢ and F' the space spanned kdy
We first connect the distancewith the norm|j¢; — ®| 2w+ by noticing that

1
d(E,F) = [lpc — (o, @)l 2y = 1/ 1 — [{¢¢, ®)|? = ﬁ”% — P 2wty (4)

Writing
H(Co)pg = Ocpe +7¢ with 7 = (H(Co) — H(C))pe + ¢,
we estimaté|7¢ || .2 r+) using the orthogonality relatiofr¢, ¢¢) = 0:

1l f2@e) = /R+ 12(C — Co)(t = O)pe(t) + (€ — Co)2opc(t) + ()] dt
(Hrdlm(w) +2y/0¢ ¢~ <o|)2 +1¢ - Gl (|< — ol +4¢@_¢) . 5)

Relations [(#),[{b) and Propositi@aB.3 with= (12(¢o) — ©¢)/2 give the L?-estimate or(¢, — ®). This
estimate makes appe@y which can be bounded thanks to Theoien 3.1.
Let us now estimate th&2-norm Of(cp/c — @’). Anintegration by parts gives:

IN

(H(Co)(®—0¢), ®—pc)r2m) = 19/~ |2+ /0 (t=Co)?[@— ¢ () dt > |~ pL|2o gy - (6)
On the other hand,

(H(Go)(pe — @)ypc — ®)ramey = (H(Co)pe, pe) 2@y — ©o +200(p¢, o¢ — P) r2met)
< (H(G)pe, pc)rzm+) — ©o +200]l0c — @llz@s).  (7)

With the notatior = (H((o)w¢, ¢) L2 (r+), We deduce fron{6)[17)[X2) and Theoréml3.1 a upper-bound
for the L*-norm of &' — ¢/

19 = ¢lliaery < 71— 80 + 20012 — clizqery

(Irell 2@y + 20/8¢1¢ — Gol) + 120¢ (¢ — ¢o)?
112(Co) — (v/O¢ + [¢ — Col)?

<44/06¢|¢ — o] + +20¢|® — @¢ll 2 (mt)-

O



We deduce now an estimate fof — @ at pointt = 0.
Theorem 3.4. Using the same notation and assumptions as Thebrém 3.2,wee ha
[2(0) — @c(0)]* < 2/|1® — el 2@+ 19" — KLl p2@®+)- (8)

Proof. As® — ¢ € H'(R"), it suffices to write

B(0) — pc () = 2 /O T @ — o)1) (@ — ) (1) d.

We conclude with the Cauchy-Schwarz inequality. O

4 Construction of a quasi-mode by a finite difference method

TheorenT 31l gives bounds fé¥, as soon as we get quasi-modes for the operataf). Of course, the
closer( is from ¢y, the better the bounds. A heuristic approach based on fiiffezehce method and the
ODE theory gives a sequence of approximated valuegfoifhen we use this sequence to construct a test-
function with energy as small as possible and thus try and gigood approximation &,. We organize
this approximation in several steps:

1. Reduce the problem to a finite interval,
. Write a finite difference scheme,
. Study the dependence of the discrete solution on the ghead)

2
3
4. Construct a regular function d@r" from the discrete solution,
5. Deduce an algorithm to approximadg,

6

. Estimate the accuracy of the computations.

4.1 Reduction to a finite interval
In a first step, we reduce the domdrt to an intervall[0, L]: We know that the eigenvector is exponentially
decreasing so, it is large enough, the error due to cut-off is exponentiallplniet ¢, be a normalized

eigenvector associated with (¢) for the operator? (¢). This functiony, is decreasing like — exp (—%)
ast — 4oo. Therefore there exists a positive const@nguch that, for > 0,

o C [® o Cel
2 <90 2 g .
| lectorae<og [ et a =< (©)

L
Consequently, to approximalies || 1.2 g+ by/ lpc()? dt with a better accuracy thard =", it is enough
0

that L satisfies )
e L 10~V
< —
a — C
It is equivalent to findL such thatL? + In L > N1ln10 + In C.
We conclude this section with a comparaison between theafuedtal energy on a finite interval adg.

7



Lemma 4.1. Let L > 0. We denote byV-" (¢, L) and VP (¢, L) the smallest eigenvalue ofd?/dt? +
(t — ¢)? with Neumann condition at= 0 and respectively Neumann and Dirichlet conditiort at L.
Thenu™:P (¢, L) is decreasing with respect th and for anyL > 0,

pNP(¢ L) > () > Oy. (10)
For L large enough, the function™-V (¢, -) is increasing on(L, +oc) and
pN(C L) < Q). (11)

Proof. The monotonicity ofl, — p™"P(¢, L) is obvious: ForL’ > L, we extend the functions dfu ¢
H(0, L)|u(L) = 0} by 0 on (L, L') and use the min-max principle.
To deal withu™N (¢, L), we compute the derivative of V-V (¢, L) with respect tal:

O™ N (¢ L) = (L = ¢)? = ™ N(¢ L)) ue, (D), (12)
with u¢ 7, @ normalized eigenvector associated with™ (¢, L). The positivity of the first derivative is
directly deduced foL large enough. O

4.2 Finite difference scheme

Instead of looking for a normalized eigenfunction, we ingtse value ofb at¢ = 0. Therefore, we try to
determing(¢p, ®) € R x D such that:

H({)®(t) = (2o(t), Vt>0,

®0) = 1, (13)
®'(0) = 0.

Varying paramete(, and working on a finite interval, it is natural to look for a @ion . defined on(0, L)

and satisfying:

0e(0) = 1, (14)
eL0) = 0.
The system[{14) is numerically solved by a finite differencleesne. Let: be the number of discretization
points in(0, L) andh = L/n. We determine recursively an approximat'ty?)ﬁof @¢(jh) for any integerj €
{0,...,n}. Forthisp{(jh) andy/(0) are classically approximated respectively(tﬁ>§+1—2c2>§+g5§_1)/h2
and(ﬁ — cﬁg)/h. The boundary condition at= 0 determines completely the sequer@@é)jzo,m,n:

{H(C)wc(t) = (%pc(t), Vte(0,L),

SOO = 17
g = 1, (15)
Foor = (2+iR3(h—20)85 — @5y, ¥i=1,...,n— L

4.3 Dependence oq of the sequence{@]g)j:(),,.,,n

The change of variables= ¢t —( in the eigenmonde equation leads to the second order diffarequation:

u' () — 2%u(z) — Culz) = 0. (16)

8



The Sturm-Liouville equation (cf]14,16,125,110]) admits asts of fundamental solutiom%t with v~ =
O(exp(—2?/2)) andu} = Oz~ (4" 2exp(22/2)) at infinity. By a change of variable, we deduce that
the solutiony. of problem [I#) is a linear combination of an exponentiatigreasing function denoting by
fgr and an exponentially decreasing functiﬁp. Moreoverfgr — 400 andfc‘ — 0 ast — +oo. Thus,
there exist constantg andb, which depend continously apsuch that:

(,DC = agfc_ + bgfg_ (17)
We now use this dependence ©to determinedy. Indeed, for{ = (o, ¢¢, = @ is integrable and theby,, =
0. To determine9y, it is then enough to find the smallessuch that the solutiop: “does not explode”.
Furthermore, we know that the eigenvecioassociated with the first eigenval@g and normalized with
®(0) = 1, holds strictly positive. The positivity 6P gives a criterion to select functions which constitute a
good quasi-modes. Indeed, if for somethe sequenceﬁg) has positive and strictly negative coefficients,
then the coefficient, in the decompositior{{17) of the associated interpolatedtfan . is negative and
consequently, > (o. At the opposite, the parametgris positive for¢ < (.

4.4 Construction of quasi-modes

Discretization[Th) gives two behaviors fgF}); (see FigureBl1 arld 2) and we modify coefficients ),
consequently:

Figure 1:(g%); for ¢ = 0.76818. Figure 2:(g5); for ¢ = 0.76819.

e The sequenceﬁ§)j remains positive (see Figure 1). We determjpéhe smallest integer where the
sequencé¢§)j reaches its minimum and we dendie= jyh. The restriction ofz. on (0, L’) makes
a better quasi-mode than the function defined enterelpoh) and we have:V"" (¢, L') < ©, with

O, the energy ofﬁ§ computed orf0, L]. Nevertheless, as we can not compafe™ (¢, L') and©,
for any L', we modify the sequence by translation so that the minimuoalscto0 and dilation to
keep the normalizatiorﬁzf = 1. We then define the new sequence:

¢ 56
P — P . .

' . forjzl,...7]0—1,

Y= F -, (18)
0 for j = jo,...,n.



The energy associated with a regular interpolatiorﬁgéf)j gives a upper-bound @, according to
LemmalZll. Figur&l3 plots the new sequence constructed BM@hfér ( = 0.76818. The initial
sequence (see FigUrk 1) corresponds; to 0 in the decompositior{17).

e The sequenceﬁg)j has positive and negative terms (see Fiflire 2).j¢.be the smallest integer such
that @} < 0. We set

¢ . .
_ )¢ forg=1,...50—-1, 19
£ {0 forj = jo,...,n. (19)

Lemma[Z1 bounds from abo¥®, by the energy of the function constructed erm§)j. Figureld
draws the sequence deduced WIH (19)fer 0.76819 (see Figuré&l2). For the intital sequentge < 0
in the decompositio (17).

Figure 3: Sequenc(apg)j constructed with[{1l8) for Figure 4: Sequenc(gp§)j constructed with[{19) for
¢ = 0.76818. ¢ = 0.76819.

Let us now be more explicit about the interpolation of theLmnpe(@JC.)j to construct the quasi-mode
@¢. If we make an interpolation qf¢§)j by a piecewise linear function, this function does not bgltm

H?(R*) and is necessarly not in the operator don@inSo we interpolateégp§)j on [0, L] by a piecewise
polynomial functiony, of degree 2 defined by:

Vj=0,....,n—1, Ve [jh,(j+ DA, c(t) = aj(t— jh)* +7j(t — jh) + &5, (20)

with 7 = 0 and
¢ e
S s S A
Tji+1 = ?—Tm

¢ ¢
Yiti ¥ T

h? h'
We notice that; = gp’c(jh). We extendp, by 0 on (L, 4+00). With such a construction,. is continuous,
its derivative is continuous, piecewise linear and the seaterivative is constant oph, (j + 1)h| for

(21)

a; =
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j =0,...,n — 1. Furthermore, any computations (norm, energy, ...) ardatxpWith the change of
variablesr = t — jh, we have:

h
loclBags) = Z / aj2? + 130+ G2 da
h ¢ C L0y
= hz <—a + 04]7'] + E(Tj + 2003) + b1z + (5) ) : (22)

Let us compute the energy ¢f:

n—1

||902||%2(R+) = / 202 + 75| do = hz ( h2a2 + 2hayTj + 7 > : (23)
7=0

To compute the contribution o/ (t — ¢)*|pc(t)* dt, we defines; = jh — (. Putz =t — jh gives:
R+

1t = OclBagge) = Z /O (@ + 6;)(aja% + 730 + 52 da

hd h4
= hz <—a + —o (15 + ) + — E ((1j + @;6;)% + 20@(@](- + 7565))

h3
+7(Oéj¢§-5j + (7 + @;05) (5 + 7507))
+ﬁﬂ(<+75)+2 05(7j + j0) + hepl 85 (5 + 7507) + (£5)%67 ). (24)
3\ T 50 $j0i\Tj T & ®j 793 )95 )
Expressions[[22)[(23) anfd{24) present the main advantage exact. If we choosé to be a rational
number, then the computation of these three expressidhgigtis a rational number.
Let ©, be the Rayleigh quotient qf,:

HSD/QH%Q(Rﬂ + H(t - C)‘PCH%2(R+)

O = (25)

||90C||%2(R+)

To apply Theoreni3l1, we have to estimate the resifug?, ®+) With r¢: = (H(C) — O¢)pc. As
we extendy, by 0 on (L, +o00), we have just to compute the norms (M L). We notice that for any
j=0,...,n—1andt € [jh,(j + 1)h], we get:

re(t) = =205 + ((t — 0)? = O) (e (t — jh)? + 7t — jh) + ¢5). (26)
As in (22), [Z3) and[{24), the computation [of:[| .2 (o o) is explicit. Forj = 0,...,n — 1, we define:

roj = (70]((6]2 B @C) - 2aj7 45 = 290553 + 7 ((%2 — @C),
ro; = (,0§ + 27j5j + aj(5]2- — ®C)’ r3; = T+ 20[j5j.
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A change of variables gives:
) 7 hﬁ ) h5

Irllzzms+) = hz <—a +raursg T Qayrag ) + (g 4 rsra,)

4 h3 h2

h
+ 3(20@'7“0,]' + 2351 +155) + = (rsro + raryy) + g(

2 2
5 27”27j7°07j + 7“17]-) + hrLjTO,j + 7”07j> .

(27)

4.5 Algorithm and results

We described how interpolate the seque(w,c%) to construct an appropriate quasi-mode and proposed cri-
teria to estimat®,. Let us now explain the algorithm to determifg accurately.

Algorithme 4.2.

1. We choose a length for the finite interval and a step for the discretization for finite difference
method.

2. We initialize a value fo¢ with n decimals.

3. We construct the sequen((z,ejc.) by (@I3).

4. If ((p]) has negative coefficients, we return to the first step withallsmvalue for(. Otherwise, we
mod|fy(<pj ); according to(I3).

5. While(p ) has only positive coefficients,

(a) we define the functiop, by relations@0d) and 1),

(b) we compute thé2-norm ofy, thanks toZ2) and deduce the value of (0) after normalization,
(c) we compute the ener@y, associated withp, thanks to relationgZd), 3), 4) and 3),

(d) we estimate the residuis¢||.2r+) = |[(H (C) — O¢)w¢||L2(r+) With relation (Z4),

(e) we raise; of 10~ ("+1),

6. We go back to the first step with the last value @fith then + 1 decimals for which the sequence
(cpg) has only positive termes.

Table[d sums up the results obtained by application of theritifgn: we choose: = 1/22700 and
L = 7. In each part, results given at the last line correspond tmation ¢ constructed from sequence
with negative coefficients.

4.6 Estimates of the second eigenvalue

To apply Theoreri 311, we need an estimate of the second eigenw (o) of H((y). For this point, we
do not need to be very accurate and so we consider the mtridefined by the discretization &f (¢) for

12



¢ O¢ Irellregsy | min; &5 5(0) L2 bound | H' bound
0.76811 0.590609794| 1.24e-01 | 9.96e-03 | 0.875688761| 4.04e-01| 1.29e-01
0.76812 0.590550468 7.09e-02 | 9.22e-03 | 0.875497052 2.29e-01| 7.37e-02
0.76813 0.590489644| 6.38e-02 | 8.42e-03 | 0.875290012 2.06e-01| 6.63e-02
0.76814 0.590427030| 1.14e-01 | 7.55e-03 | 0.875063169 3.69e-01| 1.18e-01
0.76815 0.590362191| 1.15e-01 | 6.59e-03 | 0.874809295 3.75e-01| 1.20e-01
0.76816 0.590294421| 4.68e-02 | 5.47e-03 | 0.874515214 1.51e-01| 4.86e-02
0.76817 0.590222360| 3.69e-02 | 4.10e-03 | 0.874151234| 1.18e-01| 3.83e-02
0.76818 0.590142138 2.97e-02 | 2.06e-03 | 0.873603539 9.51e-02| 3.08e-02
0.76819 0.590142240 4.62e+02 | -5.34e+02| 0.873050163 1.74e+04| 4.80e+02
0.768181 | 0.590133151 1.91e-02 | 1.74e-03 | 0.873518103 6.10e-02| 1.98e-02
0.768182 | 0.590123772 1.48e-02 | 1.36e-03 | 0.873415060 4.74e-02| 1.54e-02
0.768183 | 0.590113724 1.15e-02 | 8.41e-04 | 0.873273295 3.69e-02| 1.20e-02
0.768184 | 0.590108700 1.29e+02 | -2.92e+01| 0.873043549 2.58e+03| 1.34e+02
0.7681831 | 0.590112653 1.01e-02 | 7.72e-04 | 0.873254315 3.23e-02| 1.05e-02
0.7681832 | 0.590111566 1.38e-02 | 6.96e-04 | 0.873233646) 4.42e-02| 1.43e-02
0.7681833 | 0.590110455 8.01e-03 | 6.11e-04 | 0.873210604 2.56e-02| 8.31e-03
0.7681834 | 0.590109318 8.42e-03 | 5.15e-04 | 0.873184197 2.69e-02| 8.74e-03
0.7681835 | 0.590108136 5.45e-03 | 3.97e-04 | 0.873151984 1.74e-02| 5.65e-03
0.7681836 | 0.590106880 5.47e-03 | 2.30e-04 | 0.873106156 1.75e-02| 5.68e-03
0.7681837 | 0.590106199 3.63e+00 | -3.95e+00| 0.873043196 1.67e+01| 3.77e+00
0.76818361 | 0.590106747 3.08e-03 | 2.06e-04 | 0.873099730 9.85e-03| 3.20e-03
0.76818362 | 0.590106610 2.87e-03 | 1.80e-04 | 0.873092435 9.16e-03| 2.98e-03
0.76818363 | 0.590106472 3.73e-03 | 1.49e-04 | 0.873084081 1.19e-02| 3.87e-03
0.76818364 | 0.590106327 3.07e-03 | 1.11e-04 | 0.873073561 9.82e-03| 3.19e-03
0.76818365 | 0.590106176 1.62e-03 | 5.24e-05 | 0.873057522 5.17e-03| 1.68e-03
0.76818366 | 0.590106138 3.59e+00 | -6.03e-01| 0.873043148 1.65e+01| 3.72e+00
0.768183651] 0.590106159 8.42e-04 | 4.21e-05 | 0.873054696] 2.70e-03| 8.77e-04
0.768183652 0.590106143 8.63e-04 | 2.98e-05 | 0.873051330 2.77e-03| 8.99e-04
0.768183653 0.590106126 1.79e-04 | 6.65e-06 | 0.873044968 5.86e-04| 1.88e-04
0.768183654 0.590106128 4.14e+00 | -7.38e-02| 0.873043140 1.97e+01| 4.29e+00

Table 1: Results obtained by AlgoritHm™H}.2.
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¢ €]0.76818,076819]. If we denote bwlg,j the coefficients of the matrid¢, we have:

1

¢ _ 2 ¢ _ 1
A1,1—ﬁ+c7 Aiy=—3

29

A ==k A =FH((-Dh—0)? A =g forj=1,..n-1,

A== Avn=E A+ (n—1Dh =02

A5 =0 elsewhere

We compute the second value and obiai¢) > 3.315. Figure[® draws the second eigenvector.

Figure 5: Second eigenvetor &f(¢) for ¢ close to¢y.

4.7 Accurate estimate for©, and ®(0)

We apply Algorithm[ZP forh such thatl/h € {100 x k,k = 10,...,30000} and forL = 7,8,9,10.
For each value, we obtain characteritic values as in Tdbledlwae complete this table by computing the
lower-bound o, given by Theorerfi 311, a lower-bound and a upper-bound {6y given in Theoreri 314.
To make these computations, we need a lower-bound ef(y|. The De Genne$[24] lower-bound 6%,

by 0.5901, our upper-bound b and the monotonicity of the square-root function bognty

V0.5901 < (o < /6.

We can improve the upper-bound by choosing @&rthe lowest energy among all the computations and
improve the lower-bound by the maximum betwegf5901 and the square-root of the lower-boundaaf.

We can iterate these computations and combine then to adbiivest result.

To extract the best computations, we collect the largesetdwund of©, and®(0), the smallest energy
O¢, the smallest upper-bound @f0). We obtain:

Proposition 4.3.
0.590106122 < ©¢ < 0.590106125,

0.872991 < ®(0) < 0.873095.
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This proposition estimated, ~ 0.590106123 with an error less thad x 10~ and of®(0) ~ 0.8730
at10=4.

5 Conclusion

The parameter®, and®(0) intervene naturally in the determination of the nucleatibauperconductivity.
We establish in this paper a very accurate estimate for tHdémase computations are useful to quantify the
location of superconductivity and generate improvememthefumerics in domains with corners.
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